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Editorial
We would like to welcome all delegates of the 9th European Precision Livestock Conference to Cork, Ireland. 

From both business and societal viewpoints, when we consider livestock farming, we need to focus on economic 
performance, environmental impact, well-being of the livestock unit and of the manager to ensure the 
sustainability of farm and food production into the future, and also the consumer. Never before have all of these 
aspects of livestock production been challenged on so many levels. Precision technologies can help farmers to 
become more effective and help the consumer to source products that satisfy all of these requirements. Precision 
Livestock Farming (PLF) focuses on using technology to monitor and collect livestock data on a continuous and 
automated basis, with the ultimate goal of providing a mechanism, whereby this data can be used to inform the 
decision making process, ultimately increasing the precision of the operations.

Technology is playing an increasing role in agriculture and this conference will examine the role of incorporating 
smart technology into sustainable livestock production systems, as well as harvesting big data reservoirs to 
enhance resource management and underpin claims made about products. The conference will largely focus 
on the use of instrumentation in the management and decision-making in the life-cycle of different livestock 
species, with a view to efficient production systems with reduced environmental impact, increased profitability 
and increased welfare status of livestock. The conference has sessions focusing on PLF data and its exploitation 
for solutions and decision-making; PLF technology for sheep; PLF sensing and monitoring techniques for dairy 
animals; PLF technology for grassland management; PLF technology for milking of dairy animals; PLF product 
development, optimization and testing in field conditions; Monitoring animal health and behaviour; Performance 
and welfare of dairy animals; Controlling environment for poultry systems; Location and tracking of animal 
movement; and PLF technology for pigs.

The opening session of the conference will provide an overview of the role of precision technology in the pharma 
and dairy industries together with the future vision for precision technologies in livestock production systems. 
The Farmers Workshop will focus on the considered view of farmers regarding the use of technologies on their 
farms, factors impeding and accelerating farmer uptake of technologies and identifying what needs to be put 
in place to allow progress of precision farming within farming communities. The Business Models Seminar 
will focus on the framework required to promote the development and use of technologies, data integration 
associated with different livestock farming systems as well as providing examples from outside of agriculture. 

Delegates will also have the opportunity to visit (i) Teagasc, Animal & Grassland Research and Innovation Centre 
at Moorepark, for an overview of the many aspects of on-going dairy research; (ii) the international company 
Dairymaster, manufacturer of hi-tech dairy equipment, including Milking Equipment, Feeding Equipment, 
Automatic Manure Scrapers, Milk Cooling Tanks and Health & Fertility Monitoring Systems; or (iii) a Marine 
Research Facility conducting increasingly significant research on climate change effects in coastal areas. 

Our thanks to the Committee of the EA-PLF for accepting our bid to host the 9thECPLF; we hope that we can 
continue the tradition of high quality and impactful meetings which have characterised previous ECPLF Meetings.

We would like to thank all authors for their papers and presentations, the numerous reviewers for their important 
comments and contributions which have helped to ensure the high quality of the papers. We want to thank our 
organising committees and conference partners. We especially would like to thank our sponsors and supporters, 
without whom we could not run this conference successfully. 

We hope that the 9th European Conference on Precision Livestock Farming will stimulate fruitful discussions and 
networking, identify common goals and develop new research collaborations. We hope that delegates enjoy their 
visit to Cork. 

Dr. Bernadette O’Brien, 
Dr. Deirdre Hennessy and 
Dr. Laurence Shalloo 
ECLPF-2019 The 9th European

Conference on
Precision Livestock
Farming
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Abstract

Extensive livestock systems face many challenges associated with their environment. 
They are often associated with poor quality grazing, harsh weather conditions, few or no 
fences and do not allow for frequent inspections of animals. In addition, the availability 
of appropriately skilled labour is becoming short in supply. PLF technology promises the 
capability to transform these systems. Four technologies are evaluated through case 
studies related to practical deployment and some research results. (1) LoRaWAN (Long 
Range Wide Area Network) often referred to as LoRa, which is an enabling, IoT, technology 
communicating, in this case, from animal-wearable sensors, via cloud-based computing 
to end-users. A network involving two LoRa gateways was established linking on-animal 
sensors to the ‘cloud’ and thence to management information. (2) GNSS - location data 
were collected from collars and communicated, via LoRa, to determine data transfer 
efficiency and location accuracy. (3) Proximity sensors - small proximity beacons on lambs 
and receivers with LoRA transmitters on their collared dams to assess lamb-dam pedigree 
information. (4) Tri-axial inertia movement units (IMU) - IMU data was communicated in 
real-time via LoRa enabled transmitting neck collars. The range of wearable technology 
provided reliable and potentially useful management information. Combined technologies 
provide the best technical promise but all four technologies have particular challenges in 
terms of costs and benefits in these extensive systems.

Keywords: real-time monitoring, extensive, LoRA, IMU, GNSS, proximity

Introduction

Real time monitoring (RTM), involving stockpeople using their eyes, ears and noses to assess the 
state of livestock is as old as domestication. New technology to collect data on animal behaviour 
and location typically involved storing data on the animal device. A shift from collecting past 
data to RTM now enables greater use in practical management within livestock systems.

In extensive systems, approaches to communication between devices and user through 
either copper wire systems or WI-FI based systems, do not work. The mobile phone 
network can be very effective but also has many issues of communication. The other 
major challenge is cost–effectiveness. In many intensive systems, individual animals 
have high value, or there are large concentrations of animals in the same location and 
opportunities for technology to improve animal output, reduce losses and save labour 
are frequently reported (e.g. Halachmi, 2019). These applications may involve individual 
wearable technology or fixed equipment in facilities with large concentrations. In extensive 
systems, by contrast, animals tend to be of lower value, are often widely dispersed, and 
typically have much lower stockperson contact. The cases for both technical effectiveness 
and cost/effectiveness are thus very different in extensive systems.

LoRa is fast becoming one of the key elements of the IoT revolution (Carvalho Silva et 
al., 2017). As a low power, long range, wireless telecommunication network, it is well 
suited to extensively farmed environments as gateways receive data packets from LoRa 
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devices located within ranges typically over 20 km line-of-sight radius in rural areas and 
then forward the data packets to a network server (Pharm et al., 2017). A single gateway 
can receive data from thousands of sensors. With significant promotion through cross-
industry partners (e.g. LoRa Alliance) and a business model that uses license-free sub-
gigahertz radio frequency bands, with network-costs embedded within the devices, it has 
the potential to benefit farming in the future.

GPS/GNSS is now a mature technology, but continues to develop to make it better suited for 
on-animal deployment in terms of spatial resolution, power requirement and cost. There are 
a number of businesses aiming to combine LoRa with GNSS to provide real-time monitoring 
for livestock. It is also feasible to obtain additional information across the LoRa network such 
as ‘proximity’ information through device-to-device communication using RFID technology, 
Bluetooth or NFC (near-field communication). Bluetooth technology has also been proposed to 
identify ewe-lamb connections (Sohi et al., 2017). Already commercial equipment and services 
are available to utilise this approach (e.g. SmartShepherd, www.smartshepherd.com.au/).

In this paper, we will provide some case-study experiences of four different technologies 
under testing for extensive system applications. This will give an insight into some 
of the issues involved in their development and application into practice, and their 
potential value in extensive sheep and beef systems. We will cover LoRa as an enabling 
communication method, and then some work with GNSS, proximity sensors and motion 
sensors. Specifically, we will highlight some of the benefits and constraints of real-time 
communication with LoRaWAN.

Material and methods

LORAWAN communication and study site

Two LoRa gateways were deployed with some overlapping coverage. Each was connected 
to the internet via an ethernet connection. Data was automatically uploaded to 
TheThingsNetwork server (www.thethingsnetwork.org) and data provided as data 
downloads. Visualisations to an app was also available for some of application case studies 
described. Figure 1 shows an illustration of a system connecting on-animal wearable 
technology with the farmer. LoRa provides the communication route for the GNSS data 
and any other on-animal sensor data. In our case studies, this involved both proximity 
data and IMU data.

The topgraphy and location of the study site (Kirkton Farm, Crianlarich, Scotland) was 
very challenging for LoRa. The three sheep studies described were undertaken within 
grazing fields and larger paddocks on rolling terrain with, or surrounded by, hillocky land. 
‘Line of sight’ to either of the two aerials was not possible from many locations within the 
study fields due to this topography.

Figure 1. The Communication pathway – from sensors on animals back to the stockperson
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GNSS

Sheep study A involved prototype sheep collars (containing GNSS technology and 
communicating via LoRa) that were placed on two non pregnant ewes within a flock of 12 
ewes in a small field (1.85 ha) referred to in the Results section as the target field. The field 
centre was 625 m from the nearest LoRa gateway. The field was not in the optimum ‘line 
of sight’ for the LoRa antennae, with some buildings and topography creating potential 
barriers. The two collars were configured to require a minimum of six GNSS satellites for 
location triangulation with data transmission frequency set to either one or five minute 
intervals over a 14 day period. Prior to deployment, the ‘1 minute’ collar was placed on the 
top of each corner fencepost for a minimum period of 60 minutes.

Sheep study B involved other prototype collars with combined GNSS technology (locating 
eight satellites before a fix) and three sets of tri-axial motion sensors. In this case the 
centre of the field was c 250 m from the nearest LoRa gateway antennae, with much of 
the field, including some narrow ravines, with no direct line of sight to either of the two 
gateways. Data were collected from five sheep amongst a small flock for 32 days.

Proximity

Sheep study C involved data collected from a small flock of 20 Scottish Blackface ewes 
and their lambs (n = 40). Collars were fitted to eight of the ewes and eighteen lambs over a 
three-week period. Each ewe collar had a printed circuit board with a Bluetooth proximity 
sensor and a LoRa communication module set to communicate every hour. Each lamb 
had a small collar with a proximity beacon. Firmware on the ewe collar identified the 
five closest lamb beacons over the hour period and communicated the identity of these 
beacons, together with the accumulated Received Signal Strength Indication (RSSI, a 
measure of signal strength) for each beacon, over each deployment.

Motion Sensors

This element of research was conducted alongside the GNSS study B above. The five 
collars incorporated both GNSS and a set of three tri-axial motion sensors. Data were 
recorded at 10 Hz for each of the axis, the magnitude of the vectors were computed after 
preliminary groundtruthing of specific behaviours of interest (grazing, lying, walking),   
were then mapped to the magnitude outputs. The condensed data were then sent through 
LoRa as a set of 11 indices every two minutes. Whilst some ‘ground-truthing’ behavioural 
observations were conducted, this element of the study is not described in this paper, here 
we focus on the simple feasibility of communicating a number of condensed elements of 
the very large sets of initial IMU data.

Results and discussion

The most fundamental technical need for the LoRa element is to be able to communicate 
data, without or with, manageable error. Figure 2 shows data communication intervals 
for two sheep collars, set with a two minute interval. As noted above, these sheep were 
in the same grazing area, but within a very hillocky paddock with less than perfect line-
of-sight between sheep locations and either LoRa gateway antennae. The pattern of 
communications shows that 95% of upload of data packets from collar to network server 
were within two minutes +/- 10sec, with subsequent pick up of data at each two minute 
interval with the residual number of lack of data packet transfers halving at each two 
minute period. The near perfect alignment between the two collars (the other three 
collars had near identical patterns) illustrates that very little of the communication drop 
off is likely to be due to within-field issues caused by differences in sheep location, but 
more likely performance issues with the GNSS not registering the minimum number of 
satellites. Longer gaps in transmissions were likely to be due to breaks in communication 
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between the gateway and network server affecting all collar data sets equally. One clear 
issue with real-time data transmission illustrated here is that data collected and collated 
on the collar during each programmed duty cycle is lost if it is not received by a gateway 
or if the gateway to network server connection is down. The collar/LoRa just moves on and 
sends the next duty cycle of data.

The spread of mapped points from the collars in Study A at static points were in excess 
of 20 m (10 m radius from the centre), as a result of standard GNSS error. Many sheep 
location ‘hotspots’ linked to both grazing and camping areas for the two collared sheep 
were in close proximity to the fence line with a high proportion of locations on the outside 
of the fenceline and simplistically these would be allocated to another field rather than 
the target field. As shown in Table 1, for Sheep 1, with 15,976 locations at one minute 
location cycles over 14 days, it was found that 29% of locations were outside the best 
assessment of the fence line boundary. Stepwise combinations of rolling average and a 10 
m buffer zone reduced the number of locations not allocated to the target field to just nine 
locations or 0.05% (1 in 1,775) and critically the numbers of time-consecutive locations 
outside the buffered target field was zero. For Sheep 2 with a GNSS cycle of five minutes, 
with 1,543 locations over 11 days, 21.3% of raw data points were outside the fenceline. 
With a combination of rolling average and 10 m external buffer zone effectively placed 
every location within the field.
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Figure 2. Performance of LoRA data packet transfers for two collars with a two minute duty cycle 
over 26 days

Table 1. GNSS – animal location – which field is the sheep in?

Outside fenceline 
(of raw data 

points)

Outside when 
using a 10 point 
rolling average

Outside fenceline 
use 10 m buffer

Outside fenceline 
methods 
combined

Sheep 1 (1 min. 
intervals)

29% 
(15,333)

20% 1.5% 0.05%

Sheep 2 (5 min. 
intervals)

21.3 
(1,543)

1.9% 1.3% 0.001%



24      Precision Livestock Farming ’19

In Sheep Study C, all ewe collars displayed uneven distributions towards certain lambs 
during each deployment phase. Chi-square analyses estimated for each ewe collar 
identified highly significant results in favour of the related lambs (p < 0.0005). There 
were clear differences between the mean number of contacts made by each ewe and her 
related lambs (29.51 ± 1.7), and the unrelated lambs (2.04 ± 0.14) (p < 0.0005) as illustrated 
in Figure 3 for one ewe collar with all collared lambs. All ewe/lamb pairings had very 
similar patterns. In addition, there were also large differences in RSSI for the contacts 
that were registered. The means of related (-80.61 ± 0.92) and unrelated (-91.12 ± 0.31), as 
illustrated in distribution form in Figure 4, were again highly significantly different (p < 
0.0005). So, not only did related lambs register dramatically more contacts, the nature of 
these contacts were stronger.

Overall, the highly significant results obtained, in terms of both contact number and 
distance associated with the contacts, suggests this is a very useful method to establish 
reliable ewe and lamb relationships. This could help to enable extensive hill flocks to 
benefit from genetic improvement, although sire identification would also need to be 
carried out. Nonetheless, the ability to relate the performance of the ewe to her lambs 
would provide valuable information in terms of traits such as lamb survival and growth.
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Figure 4. Data from ewe/lamb proximity pairings communicated showing Signal Strength (RSSI) 
distributions between proximity-logged related and un-related ewes/lambs
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Cost Benefit Analysis

There are two main issues linked to the adoption of real-time monitoring technology; 
firstly, will the technology provide useful information for decision support and secondly, 
will there be satisfactory cost/benefit for the technology uptake.

There are then two further elements of improved production. The first is linked to direct 
gain in the number of live animals available for sale through improved survival of both 
adult breeding animals and young growing animals. The high losses of lambs in extensive 
systems are well documented (e.g. Waterhouse, 1996). There are many life/death scenarios 
in extensive systems, and there are many situations where interventions by stockpeople 
could make a difference. The challenge is to ensure that the location of any problem can 
be highlighted to the stockperson but that there is then sufficient time and resources to 
have a chance of success. With wearable technology combining real-time location and 
diagnosable behaviour, then both the location and putative diagnosis of the issue could be 
communicated to the stockperson.

A second element of productive gain in these systems is the potential to increase the 
size and value of the livestock sold. Increases in liveweight of weaned lambs or calves 
would typically provide an economic gain. The biological mechanism by which this could 
be achieved via PLF technology is challenging to ascribe. Using a well-documented PLF 
approach for sheep, using so-called Targeted Selective Treatment (TST) for stomach worm 
control, there were clear benefits in terms of more sustainable use of anthelmintic drugs, 
and some limited input savings, but the main conclusion of a series of studies is that body 
weight change was not affected (e.g. Morgan-Davies et al., 2018).

The proximity system for lamb maternal pedigree has a simpler set of cost benefits. 
Commercial services using tissue samples and DNA analysis cost upwards of £10 per lamb 
for lamb-ewe-ram diagnosis. Using proximity sensors, an accurate pedigree of lamb-ewe 
appears feasible within one week, allowing multiple uses of the same equipment. The 
commercial service being offered in Australia provides further evidence that commercial 
cost/benefit exists.

Steenvold et al. (2015), showed no benefits in productivity, savings or changes in technical 
management after implementation of sensor systems on a large number of dairy farms, 
so it is important that the PLF science community asks questions about cost/benefit 
alongside studies of technical proficiency. Furthermore, differences between intensive and 
extensive systems should also considered.

Conclusions

LoRa communication within the range of a LoRa gateway network was shown to be very 
effective, though may lead to data losses through loss of connection across the different 
stages of data transfer. There are also constraints of data through data packet length and 
data transmission interval (which affects power use). Advantages are that data are real-
time, so data transmissions can be seen and therefore, it is possible to problem-solve issues 
of both communication and data acquisition. Limits of data packet length forces decisions 
on which data can be collected and communicated, rather than ‘everything’. On-going 
developments with LoRa networks, and with gateway locations in remote environments, 
are needed. There are challenges for remote, extensively farmed areas with poor coverage 
of mobile phone networks and connections to the internet. Knowing where animals are 
in real time is valuable, especially in extensive environments. This complements other 
‘behaviour’ information or alerts, because if an alert is received or a problem is identified 
then it is only through knowing where the animal is that action can be taken. For field-
based systems, field location is important, but may be beyond the resolution of GNSS 
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without use of runs of data. Proximity sensors show the capability to provide data on 
dam-offspring relationships essential for animal breeding and a practical alternative to 
DNA testing which could be particularly valuable for sheep breeding in extensive systems. 
The need and financial value of real-time monitoring of this data is less clear. Combined 
technologies provide the best technical promise but all four technologies have particular 
challenges in terms of costs and benefits in extensive systems.

Cost-effective precision livestock farming technology and applications could be 
transformational in extensive systems, but better case studies are needed to highlight the 
production and welfare impacts and these should include cost/benefit analyses.
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Abstract

Daily visual estrus detection is commonly considered the best indicator of a good timing 
for inseminating sows. Since each sow has a different estrus duration and semen viability 
is generally considered to last 24 hours, most breeders end up inseminating their sows 
multiple times during estrus. This approach has proven to yield good fertility results, but one 
can be skeptical about its optimality. We developed a different approach using algorithms 
that consider both sow behaviour and worker estrus observations to predict the optimal 
timing for insemination. Our approach allows breeders to reduce the average number 
of inseminations from an industry average of 2.3–1.35, while keeping good reproduction 
performance. Over the last two years, data has been collected from nine commercial 
farms that use our approach. This is a unique source of information about sows with only 
one insemination per estrus cycle. In fact, the exact date and time of the insemination, 
the onset and end of the estrus symptoms as seen by farm workers, and fertility results 
were recorded for more than 12,000 estrus cycles with a single insemination. An in-depth 
analysis of this data suggests that the result of a precise single-dose insemination is highly 
dependent on the timing of the insemination, as well as that only a half-day difference 
can have a significant impact on conception rate (up to 12%). This study pinpoints the 
right timing to inseminate sows within the estrus period for different estrus durations and 
sets the base for further improvement of precision breeding methods.

Keywords: sow fertility, single-dose insemination, precision breeding, artificial intelligence, 
artificial insemination

Introduction

Finding the right time to inseminate sows is a daily challenge for pig breeders and has an 
important impact on farm efficiency. In absence of a way to precisely identify an optimal 
timing for insemination relative to ovulation, daily visual estrus detection is commonly 
considered as the best indicator of a good timing for insemination. To ensure that the 
insemination is carried in time with ovulation, breeders generally inseminate sows once 
a day during estrus (Knox, 2016). This approach is subjective, and its quality is highly 
dependent on worker observations.

Research has shown that, considering sperm capacitation and lifetime of gametes, the 
optimal moment to inseminate is 24 hours to 0 hour before ovulation (Soede et al., 1994). 
Outside of this interval, the fertility and the litter size have been shown to decrease. In fact, 
Kemp & Soede (1996) observed that an insemination carried before this 24-hour interval 
results in 39.6% unfertilised eggs, while a later insemination results in 25% unfertilised 
eggs.

The timing of ovulation is highly variable and dependent on the duration of estrus. The 
timing of ovulation is generally positively correlated with the duration of estrus (Almeida 
et al., 2000; Weitze et al., 1994). However, the onset of estrus was qualified as a bad predictor 
of the moment of ovulation (Steverink et al., 1999). Some authors suggested to use the 
weaning-to-estrus interval (WEI) to predict the optimal moment to inseminate in view of 
the fact that the duration of estrus is negatively correlated with the WEI (Steverink et al., 
1999; Weitze et al., 1994). Consequently, the moment of ovulation is negatively correlated 
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with the WEI (Kemp & Soede, 1996; Knox & Zas, 2001; Weitze et al., 1994). Ovulation is 
generally known to occur between 60% and 86% through estrus, independently of its 
duration (Almeida et al., 2000; Anuvongnukroh et al., 2004; Bracken et al., 2003; Martinat-
Botté et al., 1997; Mburu et al., 1995; Nissen et al., 1997; Soede et al., 1992; Soede et al., 1995; 
Soede et al., 1997; Urasopon et al., 2003; Weitze et al., 1994).

Most studies used only a small number of sows (on average 115 sows per study) in an 
experimental context. This paper aims to evaluate how the timing of a single-dose 
insemination affects fertility in large-scale commercial sow farms and how this compares 
with literature.

Material and methods

Animals and housing

12,280 estrus cycles (from weaning to Day 9 post weaning) were analysed from nine 
commercial farms equipped with the PigWatch system in Canada, USA, Chile, Spain and 
Belgium (Table 1). PigWatch is a computerised system using a motion sensor installed on 
top of each sow stall. It uses artificial intelligence algorithms to predict the best timing 
for insemination based on real-time sow behaviour monitored during the first days post 
weaning. PigWatch allows the reduction of the average number of inseminations from 
an industry average of 2.3 to around 1.35. The data were collected from October 2016 to 
December 2018. The initial database of 38,513 estrus cycles was sorted to exclude data 
that seemed unreliable. In fact, not all participating farms always correctly input date and 
time of inseminations, end of estrus or conception rate results. When a significant number 
of sows in a group showed abnormalities, the whole group was automatically excluded 
from the analysis. Such abnormalities include, but are not limited to, pregnant sows that 
have no insemination data, sows with no date for the end of estrus, and batches with 
an average conception rate above 97%. The sows were housed in individual stalls after 
weaning. The genetics of the animals and the diet differed among farms.

Table 1. Number of analysed estrus cycles per farm and average parity

Farms Estrus cycles (n) Average Parity Analysis start date

Farm 1 74 NA October 2018

Farm 2 2,473 4.81 ± 1.84 October 2016

Farm 3 780 4.55 ± 1.88 May 2018

Farm 4 2,071 5.42 ± 2.44 October 2017

Farm 5 809 3.93 ± 2.26 May 2017

Farm 6 627 4.54 ± 2.48 February 2018

Farm 7 5,594 4.33 ± 1.76 December 2017

Farm 8 235 3.64 ± 1.27 June 2018

Farm 9 105 4.20 ± 1.93 June 2018

Estrus detection and insemination

For all estrus cycles, the timing of the onset and end of estrus (standing heat) as identified by 
farm workers were recorded in the PigWatch software. The actual moment of insemination 
was also recorded systematically. Post-cervical artificial insemination (PCAI) was used in 
all farms and the timing of insemination was determined by the PigWatch system.
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Estrus detection was carried out every 24 hours from weaning to 7–10 days post weaning. All 
participating farms used a boar and a Contact-O-Max boar cart (Ro-Main, Saint-Lambert-
de-Lauzon, Québec, Canada) to maximise snout-to-snout contact and thus maximize the 
sow’s physiological response, as per the PigWatch protocol. For the analysis, the onset of 
estrus was determined as the moment at which the standing reflex was first observed 
minus 12 hours, and the end of estrus as the time the sow stopped showing the standing 
reflex minus 12 hours. The moment of the observation of the standing reflex is considered 
to be at 6:00 am for all estrus cycles, independently of the actual estrus detection time 
that was between 5:00 am and 9:00 am. Pregnancy was checked approximately 35 days 
after the insemination with an ultrasound system for all sows that did not return to estrus 
before.

Data analysis

The timing of insemination for the different sows were grouped in four x 12-hour classes 
(AM-1 is 12:00 am to 11:59 am of the first day in heat; PM-1 is 12:00 pm to 11:59 pm of the 
first day in heat; am-2 is 12:00 am to 11:59 am of the second day in heat; pm-2 is 12:00 pm 
to 11:59 pm of the second day in heat) but sows were never inseminated before 5:00 am or 
after 6:00 pm. Only sows with an estrus duration of three days or shorter were kept in the 
analysis as there were too few longer estrus cycles. The analysis was done independently 
for each estrus duration, since the one-day estrus cycles have only two classes while two-
day and three-day have four classes. A logistic regression was made with a Tukey test to 
highlight the statistical differences between the classes (time intervals). The classes and 
farms were taken as factors of the model and alpha = 0.05. To compare with literature, 
the timing of ovulation was considered to occur 66% throughout the estrus duration. The 
conception rates presented in this study are adjusted means.

Results and discussion

One-day estrus

The conception rate is higher when the sow is inseminated in the afternoon of the first day 
of estrus (P = 0.024). The conception rate for the am-1 interval is 76.23% and is 82.41% for 
the pm-1 interval (Figure 1). In theory, the ovulation occurs at approximately 10:00 am for 
these sows, therefore, the obtained conception rate is not directly in line with literature. 
We were expecting a better conception rate in the morning as it was more likely to be 
in the interval of 0 hour to 24 hours before ovulation (Soede et al., 1994). This difference 
could be explained by the precision of the onset of estrus due to the low frequency of heat 
detection. In fact, the precision of the interval between the onset of estrus and the time 
of ovulation decreases when estrus detection is carried once a day (Almeida et al., 2000).

Two-day estrus

The conception rate of sows with a two-day estrus duration is 90.31%, 89.05%, 77.37%, 
and 71.19% for the intervals AM-1, PM-1, AM-2 and PM-2, respectively. The conception rate 
seems to decrease when sows are inseminated on the second day of estrus. However, there 
is an interaction between the intervals and the farms (P < 0.01) and thus global results 
cannot be interpreted (Figure 2).
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Figure 1. Conception rate of sows with one-day estrus duration and a single-dose insemination 
according to the timing of insemination. Different superscript letters indicate that variables were 
significantly different (P < 0.05). The numbers in brackets represent the number of estrus cycles 
analysed per interval

Figure 2. Conception rate of sows with two-day estrus duration and a single-dose insemination 
according to the moment of insemination for each farm of the study

The farms with a small number of estrus cycles seems to be those with erratic behaviour 
(Farm 1: n=74; Farm 3: n=780; Farm 8: n=235). It is important to note that Farm 1 and 8 
have been using the PigWatch system for a very short period and are still learning how 
to use the system properly. Farm 3 is one of the first farms equipped with the PigWatch 
system, but the number of cycles kept for analysis is very low. This means that most cycles 
were excluded due to abnormal data. We can therefore have some doubts regarding the 
precision of the input data from this farm. Farm 1, 3, and 8 were therefore eliminated 
from the data to see the general trend. Without these three farms, the interaction between 
farms and intervals is not significant (P = 0.073). The adjusted mean is 91.11%, 90.08%, 
77.46%, and 70.32% for the intervals AM-1, PM-1, AM-2 and PM-2, respectively (Figure 3). 
In theory, ovulation occurs around 2:00 am on the second day of estrus. Consequently, 
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the best moment to inseminate according to literature is on the first day of estrus. The 
results of our study show the same trend, which is that fertility is optimal when sows are 
inseminated on the first day of estrus. A half-day difference has a significant impact on 
conception rate (12.62%).

Figure 3. Conception rate of sows with a two-day estrus duration and a single-dose insemination 
according to the timing of insemination for Farm 2, 4, 5, 6, 7, 9. Different superscript letters indicate 
that variables were significantly different (P < 0.01). The numbers in brackets represent the number 
of estrus cycles analysed per interval

Figure 4. Conception rate of sows with a three-day estrus duration and a single-dose insemination 
according to the timing of insemination. Different superscript letters indicate that variables were 
significantly different (P < 0.05). The numbers in brackets represent the number of estrus cycles 
analysed per interval

Three-day estrus

The conception rate of each interval is 83.02%, 87.05%, 88.13%, and 91.52% for AM-1, PM-1, 
AM-2 and PM-2, respectively (Figure 4). The only observed statistical difference is between 
PM-2 and AM-2 (P = 0.0425). In theory, ovulation occurs around 6:00 pm on the second 



32      Precision Livestock Farming ’19

day of estrus. We should therefore observe better fertility on the second day of estrus 
in comparison with the first. Even though the conception rate on the first day of estrus 
seems not as good as the conception rate on the second day, this trend is not statistically 
significant and cannot be confirmed. Based on our results, it seems important not to 
inseminate too early (before AM-2) to maximise conception rate for sows with a three-day 
estrus duration.

The absence of cycles with a unique insemination on the third day of estrus makes 
it impossible to observe the effect of inseminating past the second day of estrus. It is 
important to note that the PigWatch system can create a bias in the study by predicting 
the length of the estrus cycle and targeting a supposedly optimal timing of insemination, 
resulting in fewer very early or very late inseminations. Thus, the timing at which each 
sow was inseminated was not determined randomly but carefully chosen by a predictive 
algorithm aiming to optimise reproduction performance.

Conclusion

The timing of a single-dose insemination is important to obtain optimal results. Our 
data suggests that the result of a precise single-dose insemination is highly dependent 
on the timing of the insemination, as well as that only a half-day difference can have a 
significant impact on conception rate (up to 12%). Furthermore, our results are in line 
with the conclusions presented in literature, i.e. that the optimal moment to inseminate 
is between 24 hours and 0 hour before ovulation, and that ovulation occurs within 60–77% 
throughout the estrus period.

Since this research was carried under commercial farm conditions, our results give 
an indirect evaluation of the best moment to carry a single-dose insemination in such 
conditions. Our evaluation is based on conception rate rather than direct observation of 
the ovulation as in other research projects. From our analysis, it seems that a suitable 
way to predict an optimal timing for a single-dose insemination is to predict the estrus 
duration, which the PigWatch system does from behaviour data. This study pinpoints the 
right timing to inseminate sows within the estrus period for different estrus durations and 
sets the base for further improvement of precision breeding methods.

Precision breeding achieved through precise single-dose insemination promises to reduce 
dependency on skilled labour, optimise reproduction performance, maximise the use of 
the best boars, and ultimately accelerate genetic improvement.
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Abstract

Among physiological measures, body temperature variation is an important indicator 
of the health and well-being of animals. This parameter is usually recorded using rectal 
or cloacal probes, which can result in stress-induced hyperthermia and bias data. The 
aim of this study was to evaluate the interest of a telemetric sensor (Anipill ®) in the 
continuous monitoring of body temperature in chickens. This system is composed of a 
miniaturized electronic sensor (capsule) which uses wireless technology to transmit data 
up to three meters to a dedicated monitor. A single monitor can track up to 16 capsules. 
The system was first tested in healthy chickens to evaluate its safety. Oral administration 
was easily performed for chickens (weight 727 ± 65 g). The sensor persisted in the gizzard 
without adverse effect or macroscopic lesion during the observation period of 14 days. 
Temperatures measured with the sensors were correlated with the cloacal temperature 
(r = 0.34, p = 0.0001645). In addition, the system revealed temperature variations likely 
due to the circadian rhythm in the chickens. In a second experiment, temperature 
variations were recorded after inoculating animals with a very virulent strain of infectious 
bursal disease virus (IBDV). The inoculated animals were clinically monitored in parallel 
using a validated scoring regarding IBDV. Temperature monitoring revealed a dramatic 
hyperthermia following infection. Temperature variations were a more sensitive indicator 
of disease than the monitoring through clinical scoring. This sensor could be used for 
example to prevent heatstroke in poultry buildings or to improve models in infectiology 
research for poultry.

Keywords: chicken, temperature telemetry, safety, infectious bursal disease, clinical 
monitoring

Introduction

Among physiological measures, body temperature variation is an important indicator of 
the health and well-being of animals. This parameter is usually recorded using rectal or 
cloacal probes because this procedure of measurement is considered as cheap and easy to 
execute both in live and anesthetised animals (Scudder et al., 2009). However, temperature 
measurement procedure using rectal or cloacal probes can result in stress-induced 
hyperthermia and bias data. For instance, Clark et al., 2003 reported that this procedure 
results in long-lasting elevations in body core temperature in rodents. Its influence may be 
especially crucial in pharmacological studies because the effects of many drugs depend upon 
basal temperature and the activity state of animals (Kiyatkin & Brown, 2005). In addition, 
Bae et al. (2007) reported a strong impact of repeated body temperature measurements in 
rodents, with a 0.6 ºC to 0.7 ºC rise in body temperature after each procedure. Thus, it can 
be assumed that rectal temperature measurement has an impact on animal welfare when 
repeated measures are made. Under these considerations, the use of telemetric devices 
allowing continuous temperature measurement could be a possible solution. Regarding 
poultry experiments, this possible alternative must fulfill some specifications: i) It should 
not be too large for easy oral administration or minimally invasive surgical implantation 
in smaller animals; ii) It should be able to operate with several surrounding sensors and 
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a single monitor should be sufficient for several animals; iii) The distance transmission 
should be high enough for easy data collection and its autonomy should cover several 
days. Considering these specifications, we evaluated the interest of a telemetric sensor 
(Anipill ®) in the continuous monitoring of body temperature in chickens. This sensor was 
previously tested in the rat by intraperitoneal route (Chapon et al., 2012). In a first step, the 
system was tested in healthy chickens to evaluate its safety. In a second step, it was tested 
on animals infected with a very virulent strain of infectious bursal disease virus.

Material and methods

Presentation of the tested device (Anipill®)

The tested device is composed of an electronic capsule integrated in a flex coating of 
biocompatible resin (Figure 1) with the following characteristics: size (length = 17.7 mm; 
diameter = 8.9 mm), weight (1.7 g) and accuracy of 0.1 ºC. The user can pre-select data 
sampling frequency of the capsule from 30 s to 15 min (30 s, 2 min, 5 min or 15 min). 
The capsule uses wireless technology to transmit data up to three meters to a dedicated 
monitor for recording and direct reading. A single monitor can track up to 16 capsules 
simultaneously.

Figure 1. ANIPILL® Caps

Experiment steps

Two successive experiments were set up. The studies were conducted in an approved 
establishment for animal experimentation (nºC-22- 745-1) in accordance with national 
regulations on animal welfare and after approval of the protocols by the host laboratory 
ethical committee (registered at the national level under n°C2EA-16).

Safety experiment

We tested safety of the system in 20 specific pathogen-free (SPF) White Leghorn healthy 
chickens (mean weight ± standard deviation: 727 ± 65 g). At day 0 (D0), animals were 
identified using a wing tag, weighed, then transferred into two pens. In each pen, five 
animals were orally administered a capsule set up to measure temperature every 15 
minutes (group A); five chickens remained as control animals without capsule (group C). 
After an acclimatation period of three days, and from D3 to D14, cloacal temperature was 
measured on all animals (group A and C) using a medical thermometer on a daily basis. 
Animals were weighed on D0 and then on D3, D7, D10 and D14 in order to calculate their 
daily weight gain. Data sampling frequency was selected with 15 minutes interval. On 
D14, all animals were humanely euthanized and necropsy was performed with careful 
examination of the gizzard.
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Challenge experiment

Four days before inoculation, five-week-old SPF White Leghorn chickens were randomly 
assigned to two groups (infected and mock-infected) of 11 individuals each and individually 
identified with coloured leg rings. Five and 11 individuals were orally administered a capsule 
in the mock-infected and infected group, respectively (sampling frequency: 15 minutes). 
Chickens were then transferred into biosafety level two isolators. After an acclimatation 
period of four days, chickens from the infected group were inoculated intranasally (200 
µL per bird) with 106 median B cell infective dose (TCID50) (Soubies et al., 2018) of the very 
virulent strain 89,163 of infectious bursal disease virus (IBDV) (Eterradossi et al., 1992); 
mock-infected chickens received 200 µL of diluent. Animals were then checked daily for 
10 days following inoculation and clinical signs were recorded using a symptomatic index 
ranging from zero (no clinical sign) to three (severe clinical signs that meet the ethical 
endpoint or dead birds) as previously described (Le Nouen et al., 2011). Ten days post-
inoculation, chickens were humanely euthanized and necropsy was performed.

Data analysis

The first safety criterion concerned the non-difference in rectal temperature between 
animals with and without Anipill capsule. This difference was tested throughout the 
experiment (D0, D3, D7, D14) by a mixed analysis of variance. Time and whether or not 
the animals received a capsule were considered fixed effects; animals are considered as 
a random effect. A time first-order autoregressive correlation structure was considered 
and the ‘lme’ function from the ‘lme’ R package was used. The Type I error of the factor 
‘capsule’ was interpreted. In addition, in order to conclude about the equivalence in 
temperature between the groups that received or did not receive a capsule, the Type II 
error was also calculated with the ‘power.anova.test’ function from the ‘stats’ R package.

The second safety criterion was related to the non-difference in weight between animals 
with and without capsule. This difference was tested in the same way (i.e. mixed analysis 
of variance) as above.

The last criterion was about the relationship between rectal temperature and temperature 
obtained from the capsules. This link was studied with the Pearson correlation between 
those two measures. The ‘cor.test’ function from the ‘stats’ R package was used.

Results

Safety experiment

Oral administration of the capsule was easily performed for all animals. After introduction 
into the esophagus, soft massaging of the throat ensured movement of the capsule down 
the crop. At the end of the experimental period, that is 14 days after implantation, during 
necropsy, all capsules were found in the gizzard, and no macroscopic gizzard lesion was 
found in implanted nor control animals, as shown in Figure 2.

Figure 3 displays temperature data from one chicken over the entire study period, with 
cloacal temperature and temperature data recovered from the capsule. Data from the 
capsule revealed decreases in temperature when no intervention took place in the 
facility and during nighttime, except from D6 to D7 in the night where a disruption of the 
ventilation system occurred. It also revealed temperature increase during interventions, 
for example, when cleaning the facility or weighing the animals.
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Figure 2. Gizzards of one animal in group A (Anipill) and one animal in group C (Control), on D14, 
showing no macroscopic lesion

Figure 3. Temperature data from one chicken over the entire study period, with cloacal temperature 
and temperature  recovered from the capsule (gray spiky curve). Data also show temperature 
variation with (presence of technician ) or without (absence of technician ) intervention in the 
facility and during the weekend period 

Figure 4 displays the mean cloacal temperature data in groups A and C as well as the 
mean temperature data in group A 15 minutes before taking the corresponding cloacal 
temperature. No statistically significant difference was observed between the cloacal 
temperatures of the two study groups (p = 0.82). On the other hand, cloacal temperatures 
values and those recorded by the capsules were significantly correlated (r = 0.34, p = 
0.0001645) but cloacal values were consistently higher than those recorded using the 
continuous monitoring system. This increase in temperature varied from 0.5 ºC on 
D5–1.0 ºC on D14.
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Figure 4. Mean cloacal temperature data in groups A and C as well as the mean temperature data in 
group A 15 minutes before taking the corresponding cloacal temperature
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Figure 5. Mean weight of animals in group A (Anipill) and in group C (Control) over time

Figure 5 displays the profile of live weight over time in groups A and C. No significant 
difference was observed between groups (p = 0.1787). At placement of animals, on D0, 
there was a slight difference in live weight (+5.6% in group C) between the two groups. On 
D14 the same trend was observed (+5.6% in group C).

Challenge experiment

Data are shown in Figure 6. Following inoculation, none of the mock-infected chicken 
developed clinical signs. In the infected group, clinical signs were first observed two days 
post inoculation (dpi), peaked at three dpi (mean score: 1.6/3) and decreased to totally 
disappear by eight dpi. One bird was found dead at three dpi; on the same day, two birds 
were euthanized for ethical reasons as they displayed severe clinical signs (mortality of 
27%, 3/11 birds). Upon necropsy, no specific lesion was observed on mock-infected birds 
while infected chickens displayed clear bursal atrophy: capsules were recovered and data 
were extracted for analysis. Data from two capsules were incomplete and were excluded 
from analysis.

Prior to inoculation, temperature follow-up revealed a similar trend for all birds, with a 
mean temperature of 41.2 ºC, with lower values during the night and higher values during 
daytime. After inoculation, mock-infected chickens kept such a pattern of temperature 
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variation (gray line). Conversely, infected chickens (black line) showed a dramatic increase 
in temperature that was visible one dpi and reached a maximum at two dpi (maximum 
mean value: 43.4 ºC) and progressively returned to normal values on five dpi. Extreme 
values were recorded with several chickens reaching temperatures above 44 ºC and one bird 
peaking at 44.5 ºC. Interestingly, the chickens that were euthanized due to severe clinical 
signs, although prostrated when euthanasia was decided, did not show hyperthermia at 
that precise moment, with respectively 40.9 ºC and 39.6 ºC of temperature.

Figure 6. Average temperature values recovered by the capsules in mock-infected and infected 
animals before and after inoculation

Discussion

This study assessed the use of a telemetric sensor for the continuous monitoring of body 
temperature in chickens. The objectives of the experiments were first to test the safety 
of the system and then to evaluate its interest in animal infectiology research using 
inoculation by a very virulent chicken virus.

In natural conditions, chickens readily eat small stones. These stones, called grit, persist in 
the gizzard where they improve digestion by helping to grind coarse material such as seeds. 
We thus favored oral administration of the capsules rather than surgical implantation, as 
we anticipated ease of administration as absence of adverse effect in the animals.

Safety of the system was demonstrated under the conditions of our study. Oral administration 
was easily performed and no gizzard lesion was observed after implantation of the capsules 
during 14 days. For this study, the mean weight of animals was 727 ± 65 g (mean ± standard 
deviation). However, we already successfully and painlessly administered these capsules to 
chickens weighing about 300 g (unpublished data). Thus, this possibility extends the range 
of poultry species and size for which it is possible to implement the system.

Chickens that were given capsules had a similar growth rate compared with control 
chickens, further confirming the absence of any adverse effect of the system. Finally, 
cloacal temperatures were comparable for implanted and control chickens, arguing 
against any impact on body temperature due to capsule administration.

Even if cloacal and capsule temperatures were correlated, we found that cloacal 
temperatures values were consistently higher than those recorded by the capsules. This 
increase in temperature, ranging from 0.5 ºC to 1.0 ºC, likely reflected stress-induced 
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hyperthermia due to handling of the animals prior to cloacal temperature measurement. 
Increasing of the capsules sampling frequency (for instance to one measure every 30 
seconds) and comparing cloacal with capsule temperatures at the exact time of cloacal 
temperature measurement would help to confirm the origin of this apparent discrepancy. 
Our results comply with those of Bae et al., 2007, who reported a temperature rise from 
0.6 ºC to 0.7 ºC in rodents after each procedure, when repeated measurements of body 
temperature were carried out. More generally, the wealth of data obtained by continuous 
temperature measurement may be of interest to evaluate stress and behaviour in the 
context of animal welfare studies, for instance, in combination with video recording.

Viral challenge experiment with a very virulent strain of IBDV further highlighted the 
interest of the system, this time in the context of infectious diseases experiments. Dramatic 
hyperthermia was observed in infected birds, which was concomitant with the onset of clinical 
signs. Continuous monitoring of body temperature provided a more sensitive, quantitative 
and objective information compared with clinical scoring. Interestingly, and maybe counter-
intuitively, while all infected birds developed severe hyperthermia, the two chickens that 
displayed severe clinical signs, probably a few moments prior to death, had normal to low 
temperature. This subterminal hypothermia is in agreement with early descriptions of IBD 
(Cosgrove 1962) and argues against the idea that lethal fever would be responsible for the 
death of IBDV-infected animals. Such a drop in body temperature immediately before death, 
if confirmed, could be a useful parameter for ethical endpoint in animal experiments.

Conclusion

Under the conditions of our study, the telemetry system tested was safe for chickens and 
can be used to improve models in infectiology research for poultry.
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Abstract

An important factor in circular agriculture is efficient application of animal manure. 
Therefore, input and output of nutrients, like phosphorus (P), need to be balanced. 
Currently, manure application is regulated with rather fixed P application norms as 
a generic translation of P yields of grassland and maize. Predicting P yields based on 
field specific, historical data could be an important step to better balance P input and 
output. This study’s objective was to predict P yields based on field and weather data, 
using machine learning. The dataset contained 640 records of yearly crop yields per field 
between 1993–2016 with information on P input and output, irrigation, and soil status at 
field level as well as local weather data. Generalized boosted regression (GBR) was used 
to predict P yields for the last five years based on information from all previous years. 
Model performance was evaluated per year as well as together by plotting observed versus 
predicted values of all five years in one plot. This final plot was compared to a plot with the 
currently used generic application norms. Model performance per year showed that GBR 
could predict the trend from low to high rather well (correlations of ~0.8). Results of the 
five years together showed that GBR performance was better than the generic application 
norms (correlation 0.68 vs 0.59; RMSE 7.3 vs 8.2). In conclusion, GBR contributed to defining 
more flexible P application norms with the aim to realize a phosphate equilibrium.

Keywords: boosting, crop yield, machine learning, manure, phosphorus, regression tree

Introduction

Nutrient management is increasingly important in agriculture when public concerns 
about environmental issues and circularity are strong. An important factor in nutrient 
management on a dairy farm is the efficient use of animal manure for growing crops 
or grass, which means balancing inputs and outputs of nutrients. Current legislation 
concerning manure application is mainly focussed on phosphorus (P), and aims at 
realizing P equilibrium at field level with rather fixed P application norms. Legislation 
and control, however, focus on farm level, whereas for improving nutrient management, 
we need to scale down to field or even within field level. Predicting P yields based on field 
specific, historical data could be an important step to better balance P input and output. 
Models predicting future P yield may use information on fields, crops, soil parameters 
and open source weather data. Machine learning techniques can be useful in this respect, 
because they can be trained with many variables, without prior knowledge regarding their 
relationship or distribution function and with noisy data (Witten & Frank, 2005). This 
study’s objective, therefore, is to predict P yields based on field and weather data, using 
machine learning before the first manure application.
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Material and methods

Data sets

Data were available from the experimental dairy farm ‘De Marke’, located on a light sandy 
soil in the eastern part of the Netherlands. The dataset contained 640 records of yearly 
crop yields per field between 1993–2016, i.e., 26–28 fields per year. Six fields were permanent 
grassland, while the majority of the fields were used in a rotational scheme. This scheme, 
in general, consisted of three years grassland, two years of maize and one year a cereal 
crop, although the number of subsequent years varied sometimes depending on the farm 
planning. Information was available on P input and output, irrigation, and soil status at 
field level as well as local weather data. Precipitation and temperature were measured at 
an on-farm weather station, whereas data on wind, sunshine, irradiation and evaporation 
were from the nearest weather station, located about 21 km east of the farm (KNMI, 2018). 
Mean daily temperature was 10 ºC (ranging from -17 – 31 ºC) and mean annual rainfall was 
763 mm (ranging from 610–996 mm). Data were pre-processed to attain reasonable input 
variables and to reduce the number of weather variables from daily to monthly averages, 
five-day rolling averages and cumulative sums.

Model development and validation

Decision tree induction is one of the basic machine learning techniques and is, e.g., robust 
against irrelevant input variables and is able to handle missing values (Friedman, 2001; 
Witten & Frank, 2005). To alleviate the main disadvantage of decision trees, namely its 
inaccuracy in prediction, we used the itterative method called boosting. Generalized 
boosted regression (GBR) using the Gradient Boosting Machine (h2o.gbm function (h2o 
version 3.20.0.2)) was applied to predict P yields for the last five years based on information 
from all previous years. Model performance was evaluated by plotting observed versus 
predicted values (Piñeiro et al., 2008) per year, as well as together for all five years in one 
plot. This final plot was compared to a plot with the currently used generic application 
norms. The root-mean-square error (RMSE), coefficient of determination (R2) and 
correlation coefficient (r) were used as performance metrics. Statistical significance of 
differences in performance were tested using a simple randomization test with 1,000 
iterations for MSE, i.e., the squared RMSE (Van der Voet, 1994) or using a t-test on Fisher’s-z 
transformed correlation coefficients (or square root of R2 values) (Cox, 2008). All analyses 
were performed in RStudio (version 1.1.423 running R version 3.5.0).

Results and Discussion

Yearly P yields ranged from 16–64 kg ha-1 (n = 393; 36.4 ± 7.9; mean ± SD) for grassland, 
11–36 kg ha-1 (n = 202; 22.3 ± 4.7; mean ± SD) for maize and 18–43 kg ha-1 (n = 45; 28.3 ± 
6.2; mean ± SD) for cereal crops for all years in the dataset. Grass yields were on average 
higher than crop yields, which corresponded well with the higher P application norms for 
grassland (80 kg P2O5 ha-1, i.e., 34.9 kg P ha-1) compared to crop land (50 kg P2O5 ha-1, i.e., 21.8 
kg P ha-1). The year 2013, in general, had relatively low yields, whereas the year 2014 had 
relatively high yields. Those years were recognized as a ‘bad’ respectively a ‘good’ year for 
growing grass and crops by some of the co-authors and by a colleague of the experimental 
farm.
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Table 1. Model performance (root-mean-square error (RMSE), coefficient of determination (R2) and 
Pearson correlation coefficient (r)) of the models for 2012–2016 on validation datasets

Year RMSE R2 r

2012 4.52 0.63 0.80

2013 7.61 -0.64 0.80

2014 10.35 0.26 0.80

2015 7.43 0.58 0.77

2016 5.09 0.63 0.82

Prediction performance on the validation data was rather good and constant when the 
correlation coefficient was considered (Table 1), indicating that the model was able to 
predict the trend from low to high yielding fields well in all years. The predicted levels, 
however, deviated stronger in the more deviant years 2013–2014 and the year thereafter, 
indicating that the model had difficulty with capturing the influence of year on P yields. 
Although weather information was included in the training of the model, weather of the 
coming growing season was considered to be not known at the moment of prediction, 
as the aim was to predict before the first manure application. Therefore, the model 
overestimated the P yields for 2013, the year with the more adverse weather circumstances, 
and underestimated the P yields for 2014. Futhermore, the model was probably not able 
to fully correct for these strong deviations in recent years, as performance for 2015 was 
worse than for 2012 and 2016 (Table 1).

When all five validation years were plotted together and compared to the legal application 
norms, it was shown that the GBM model performed better, both with respect to predicting 
the trend in observed P yields (r = 0.68 for the model compared to 0.59 for the application 
norms, P < 0.001) as with respect to predicting the exact levels (R2 = 0.46 vs. 0.32 (P < 0.001) 
and RMSE = 7.33 vs. 8.22 (P < 0.05)). This proof of principle, however was based on a data 
from just one farm, which means, e.g., one management and one soil type. The developed 
model, therefore, is not directly applicable on other farms and soil types. Development of 
a general applicable model requires detailed data from a range of farms from different 
regions with different soil types, which is currently not easily collected. When it becomes 
more common to apply precision farming technologies on dairy farms, like in-line manure 
or crop analysis sensors, and satellite or drone observations of fields, more data will 
become available to develop a more general applicable model.

Especially on grassland there are some clear opportunities to improve the model. Manure 
and artificial fertilizer are applied during the whole growing season and the model, 
therefore, could be adapted to within season prediction and management. In this way, 
more weather data and data on actual grassland usage, like mowing and grazing, and 
yields could be utilized. Another difficulty in the development of the model was that P 
yields from grazing could not be measured and are, therefore, based on calculations and 
assumptions. In this way the ‘observed’ values were not a real gold standard. When new 
ways of estimating grass growth and yields become available, the accuracy of the data 
could be improved.
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Conclusions

This study has shown, as a proof of principle, that it is possible to predict P yields of 
individual fields before the first manure application reasonably well with a data driven 
method like GBM. These predicted P yields could be used to support decisions on 
manure application which are closer to the realized yields than the current legal manure 
application norms. A closer balance between P application and P yield helps to decrease 
losses and leads to a more circular agricultural system.

Acknowledgements

The authors thank Knowledge and Training Centre ‘De Marke’, Hengelo, Gelderland, the 
Netherlands, and especially Gerjan Hilhorst, for suppling the data and sharing valuable 
information and comments on the results.

This study was part of KB-27-001-001 ‘Big data for healthy resources utilisation’, funded by 
the Dutch Ministry of Economic Affairs.

References
Cox, N.J. (2008). Speaking Stata: Correlation with confidence, or Fisher’s z revisited. Stata Journal, 8(3): 

413–439.

Friedman, J.H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of 
Statistics, 29(5): 1189–1232.

KNMI (2018). Daggegevens van het weer in Nederland (Daily weather data in the Netherlands). The Royal 
Netherlands Meteorological Institute (KNMI). https://www.knmi.nl/nederland-nu/klimatologie/
daggegevens, date accessed: June 28th, 2018.

Piñeiro, G., Perelman, S., Guerschman, J.P., and Paruelo, J.M. (2008). How to evaluate models: Observed 
vs. predicted or predicted vs. observed? Ecological Modelling, 216(3-4), 316–322.

Van der Voet, H. (1994). Comparing the predictive accuracy of models using a simple randomization 
test. Chemometrics and Intelligent Laboratory Systems, 25(2): 313–323.

Witten, I.H., and Frank, E. (2005). Data mining: practical machine learning tools and techniques, Elsevier/
Morgan Kaufmann, San Fransisco, CA.



Precision Livestock Farming ’19      45

A decision support system for energy use on dairy farms

P. Shine1, M. Breen1,2, J. Upton2, A. O’Donovan1 and M.D. Murphy1*
1Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Cork, Ireland; 2Teagasc 
Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
Corresponding author: MichaelD.Murphy@cit.ie

Abstract

This body of work pertained to the development and application of the Decision Support 
System for Energy use in Dairy Production (DSSED), an online portal offering decision 
support to dairy farmers wishing to invest in new farm infrastructure or upgrade their 
existing farm infrastructure. Increasing the utilisation of energy efficient and renewable 
technologies on dairy farms may increase the probability of Ireland achieving its strict 
EU targets by: 1) reducing electricity related CO2 emissions on dairy farms, 2) reducing 
the required load from the electrical grid, and 3) increasing the proportion of renewable 
energy contributing to national electricity demand. However, such technologies may lead 
to greater long-term costs for dairy farmers if not managed and sized correctly. In order to 
provide useful advice, information such as dairy farm infrastructure details, management 
practices, available grant aid and electricity tariffs are required, as the impact of installing 
a particular technology may interact with existing on-farm technologies. Thus, the DSSED 
was developed to allow dairy farmers to calculate how a potential investment in a renewable 
or energy efficient technology will affect their economic and environmental sustainability, 
using input details specific to their current farm setup. The technologies which may be 
assessed include: plate coolers, variable speed drives, heat recovery systems, solar thermal 
water heating systems, solar photovoltaic systems and wind turbines. It is anticipated that 
the DSSED will be used extensively in the future to assist farmers, farm managers and 
policy makers with decisions pertaining to dairy farm energy, costs and CO2 emissions.

Keywords: decision support; dairy energy; renewable energy; agricultural sustainability

Introduction

The dairy sector is Ireland’s largest food and drink sector, representing a third (€4 billion) 
of overall export value in 2018, with export volumes of dairy products increasing by 5% in 
2018 compared to 2017 (Bord Bía, 2019). Concurrently, Ireland produced 7.6 billion litres of 
milk in 2018, representing a 50% increase over 2007-09 levels, thereby achieving Ireland’s 
2020 milk production target of 7.5 billion litres, set out in 2010 (CSO (Central Statistics 
Office), 2019; DAFM, 2010).

The increased dairy herd, milk production and exportation of dairy products comes 
with its own significant challenges with regard to Ireland’s 2020/2030 EU GHG targets, 
which aim to reduce GHG emissions by 30% by 2030, compared to 2005 levels (European 
Commission, 2016; Lanigan et al., 2018). It is projected that with existing measures in place, 
Ireland’s 2020 GHG emissions are set to be between 4–6% below 2005 levels, thus less than 
the targeted 20% reduction, with agricultural activities representing the largest sectoral 
share (EPA, 2017). This is representative of a projected increase in agricultural emissions 
by 4% to 5% by 2020 over 2015 levels, with an expected dairy cow herd increase of 7% 
being a contributing factor (EPA, 2017). As no immediate solution is available for reducing 
methane production from dairy cows, increasing the utilisation of energy efficient and 
renewable energy technologies in dairy production may serve as an appropriate measure 
to offset the projected increased GHG emissions. Moreover, effectively reducing the energy 
intensity of the milk production process may increase profits for dairy farmers as well 
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as reduce the magnitude of carbon credits required to ensure compliance with the 2030 
climate and energy framework (European Union, 2014).

As the most energy intensive agricultural sector, research regarding energy use and 
environmental performance on Irish dairy farms has been extensive in recent years. 
The Model for Electricity Consumption on Dairy Farms (MECD) was developed by Upton 
et al. (2014), to simulate the electricity use and carbon emissions on dairy farms through 
mathematical equations. Breen et al. (2015) further developed the MECD model by integrating 
solar PV and wind turbine models. This allowed Breen et al. (2019) to develop a discrete 
infrastructure optimisation model for economic assessment on dairy farms (DIOMOND) to 
maximise the return on investment in dairy farm infrastructure (such as plate coolers, solar 
PV, etc.) on Irish dairy farms. Additionally, Murphy et al. (2013) developed a control system 
which varied the flow of ground water and ice chilled water in a dual stage plate cooler 
to minimise milk cooling related energy costs. Further comprehensive work in the Irish 
dairy domain has focused on applying machine-learning algorithms for forecasting milk 
production across different time horizons (Murphy et al., 2015; Zhang et al., 2016).

To help optimise the production of milk, some dairy farmers will look to purchasing new 
technologies such as solar PV, wind turbines and/or VSDs to reduce the cost of production. 
The implementation of these technologies has the dual impact of firstly, reducing the required 
load from the electrical grid, and secondly, increasing the penetration of renewable energy 
contributing to overall consumption, thus, improving Ireland’s probability of achieving EU 
targets. However, such technologies may lead to greater long-term running costs for dairy 
farmers if not managed and sized correctly. Similarly, the impact of grant aid for these 
technologies may not be maximised without decision support infrastructure in place. 
Forecasted cost savings described by technology suppliers cannot be relied upon as these 
figures are typically calculated for the average dairy farm. For accurate calculations, 
information regarding details such as, specific dairy farm operations, available grant aid and 
electricity tariffs is required, as the impact of installing a particular technology may be greatly 
affected depending upon specific conditions. Without this information (i.e. making decisions 
based upon averaged/estimated payback periods calculated by the technology supplier), 
the cost savings of a particular technology may be greatly over-estimated, pro-longing the 
return on investment (ROI) period for farmers. This is of particular interest in the current 
volatile market whereby the average dairy farmer income declined by 22% in 2018 compared 
to 2017 (Bord Bía, 2019). Thus, this paper focused on the development and implementation 
of a Decision Support System for Energy use in Dairy Production (DSSED), offering a virtual 
environment whereby the cost and related GHG emissions associated with the installation of 
energy efficient and renewable technologies on Irish dairy farms can be assessed using state-
of-art mathematical modelling. When utilised correctly, this will ensure ROI will remain as 
low as possible and ensure the long-term sustainability and growth of Ireland’s dairy industry 
while helping to reduce the agricultural sector’s contribution to overall GHG emissions, and 
improving Ireland’s chances of achieving 2030 GHG emissions targets. More specifically, 
improving the energy efficiency, and increasing the penetration of renewable energy attributed 
to milk production directly aligns with the delivery of Ireland’s National Energy Efficiency 
Action Plan (NEEAP) and National Renewable Energy Action Plan (NREAP).

Material and methods

Data Acquisition

Data were acquired through the automated recording of energy and water consumption 
through Teagasc, Moorepark (Cork, Ireland), the completion of a once-off farm 
infrastructure audit, monthly farmer input sheets, milk processor data and stock data 
from the Irish Cattle Breeding Federation (ICBF, 2016). These data were stored in the central 
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Teagasc Oracle database (Figure 1). In total, 58 Southern Irish pasture based dairy farms 
were monitored for inclusion in the database. Data collected from this cohort of Irish dairy 
farms has previously been utilised to conduct a statistical analysis of dairy farm energy 
and water consumption which informed the development of multiple linear regression 
and machine-learning models (Shine et al., 2018a, 2018b, 2018c)the Irish government 
has targeted a 50% increase in milk production by 2020 over 2007–09 levels. Resulting 
milk price volatility and environmental constraints are forcing farmers to produce 
milk at lower costs with a lower overall environmental footprint. This entails using less 
energy and water resources to maintain commercial competitiveness and to reduce the 
environmental consequences of the production. This paper presents a detailed analysis 
of electricity and direct water consumption of 58 pasture-based, Irish commercial dairy 
farms. Data was acquired through a remote monitoring system installed on each farm in 
2014 alongside corresponding milk production, stock, infrastructural and managerial data. 
The results derived from the analysis of this data allow key drivers of both electricity and 
water consumption to be understood with the ultimate aim of generating data to develop 
footprint models, to achieve a reduction in electricity and water use and to improve the 
cost efficiency of Irish pasture based dairy farms. The analysis showed electricity use of 
39.84 Wh Lm−1and water use of 7.43 LwLm−1for the period Jan - Dec 2015. Dairy farm 
processes directly associated with milk production (milk harvesting and milk cooling. 
Currently, 20 dairy farms are recording sub-metered energy consumption allowing for the 
dynamic updating of consumption statistics and model parameters on a continuous basis.

Figure 1. Acquisition of energy consumption, survey, stock and milk production data

Model for electricity consumption on dairy farms (MECD)

The model for electricity consumption on dairy farms (MECD), developed by Upton et al. 
(2014), was used to simulate the electricity consumption, related costs and CO2 emissions 
on dairy farms under the headings of milk cooling, water heating, milking machine, water 
pumping, lighting and winter housing. Inputs to the MECD included details pertaining 
to the equipment on the farm such as milk cooling system, water heating system and 
milking machine. Information relating to the farm’s herd such as number of cows and 
milk yield were also required, as well as specifics concerning the management of the farm 
including the milking times and frequency of on-farm milk collection.

In order to assess the feasibility of technology investments on dairy farms, a previously 
published dairy farm ROI model was used (Upton et al., 2015). This model used average 
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farm financial performance data and variable and fixed cost data from the Teagasc 
Eprofit Monitor (Teagasc, 2017), as well as revenue from sales of both milk and livestock, 
with a base milk price set to 33 cents per litre. Farm variable costs were also included, 
such as feed, fertilizer, veterinary bills, contractors and electricity. The electricity costs 
were calculated using the MECD as described above. Fixed costs included hired labour, 
machinery, car/phone expenses and depreciation. All costs in the analysis were inflated 
by a certain amount (percentage) per annum. The financial performance of the farm 
before and after the addition of technologies, taking into account the capital costs of the 
technology in question, was then compared to assess the payback of these technologies. 
Further information on the modelling strategy can be found in Upton et al. (2015).

Technology Calculator

In order to develop a tool which allowed farmers to investigate whether investment in 
certain renewable and energy efficient technologies is economically viable, an intuitive 
user interface for existing models was developed to create the DSSED Technology 
Calculator (TC). The TC enables the user to enter details pertaining to a farm, including 
herd size, morning milking time, evening milking time, number of milking units, type of 
milk cooling system, type of water heating system, hot wash frequency, milk collection 
interval, whether the farm has a plate cooler, and the electricity tariff used. The user 
may then select from six different renewable and energy efficient technologies, with the 
user subsequently entering the size and cost of the technology as well as the level of 
grant aid associated with the technology and the rate of inflation. Information is then 
displayed relating to the payback period, CO2 emissions, energy savings, renewable energy 
penetration and day/night time electricity use associated with the selected technology on 
the user’s chosen farm. The six renewable and energy efficient technologies which may 
be chosen by the user, along with a brief explanation of each technology, are as follows:

•	 Plate cooler – Reduces milk cooling energy use by cooling milk using cold water in a plate heat 
exchanger, prior to the milk entering the main cooling system. As the use of a plate cooler may 
be simulated using the MECD, the development of a separate model was not required.

•	 Variable speed drive – This technology controls the speed of the milking machine 
vacuum pump motor in order to maintain the desired vacuum level for milking. VSDs 
can greatly reduce milking machine energy use. As the use of VSDs may be simulated 
using the MECD, the development of a separate model was not required.

•	 Heat recovery – These systems are installed in order to recycle the heat extracted from 
milk during cooling to preheat water for sanitation, thus reducing the energy used in 
water heating while also increasing the coefficient of performance of the milk cooling 
system. A mechanistic model was developed which used coefficients empirically 
derived from a series of experiments on the heat recovery system.

•	 Solar water heating – This renewable technology uses solar irradiance to heat a fluid as 
it is passed through solar panels. The fluid is then transferred from the panels through 
a coil in a water tank, transferring heat to the water before being passed through the 
solar panels once more. A mechanistic model was developed which used coefficients 
empirically derived from a series of experiments on the solar water heating system.

•	 Solar PV – These renewable systems use solar irradiance to produce electricity. 
This electricity may then be used on the farm as required, or exported to the grid if 
not needed. For simulation of solar PV system power output, the model previously 
described in Breen et al. (2015) was used.

•	 Wind turbine – This renewable technology converts wind power to electricity. This 
electricity may then be used on the farm as required, or exported to the grid if not 
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needed. For simulation of wind turbine power output, wind turbine power curve 
modelling was used. This involved the fitting of a polynomial curve to data provided by 
the wind turbine manufacturer, whereby the power output of the turbine could then 
be determined based on wind speeds. For more details on this method please refer to 
Breen et al. (2015).

Results and discussion

Energy Breakdown

The DSSED incorporates both graphical and numerical breakdowns of mean energy 
consumption, cost and carbon efficiencies (per litre of milk produced) according to each 
energy consuming process on a dairy farm. Energy consumption is reported in watt-hours 
per litre of milk (Wh Lm

-1), energy costs are reported in euro cent (cent) per litre of milk 
while carbon emissions are presented in grams of carbon dioxide (gCO2) per litre of milk. 
When Cost is selected, users may analyse varying day and night rate electricity tariffs. 
A day rate electricity cost of 18 c/kWh and night rate cost of 9 c/kWh is set by default, 
in line with those from a standard Irish electricity provider (Electric Ireland, 2014). Day-
time hours are fixed at 9am - 12 midnight. When Carbon Emissions is selected, users may 
analyse varying carbon intensity levels and the impact on gCO2 Lm

-1. A Carbon intensity 
level equalling 468 gCO2/kWh is set as default in line with Ireland’s carbon intensity 
level in 2015 (SEAI, 2016). A table is also presented containing numerical data related to 
efficiencies for each dairy farm process. With default parameters set, the DSSED database 
shows that in total, 41.1 Wh Lm

-1 produced, equating to 0.60 cent/Lm and emitting 19.2 
grams of CO2 Lm

-1. These values are in a similar range with (although may be considered 
more accurate due to larger timeframe) as the 39.8 Wh Lm

-1and 0.55 cent/Lm efficiency 
indicators calculated by Shine et al. (2018). The proportion of total energy consumption, 
cost and CO2 related to each process is shown in Figure 2.

a) Energy Breakdown b) Cost Breakdown c) CO2 Breakdown

Figure 2. Pie charts presenting energy consumption (a) cost (b) and CO2 emissions (c) breakdowns 
(downloaded from DSSED tool using default input parameters)

Figure 2a and Figure 2c show the breakdown of energy and CO2, respectively. These 
figures have near identical data breakdowns due to the only difference in data being the 
carbon intensity figure. However, differences between percentage breakdowns shown in 
Figure 2a and Figure 2b, can be quite prevalent as cost is calculated using a day and 
night pricing structure, and thus is dependent upon the average daily usage trend of each 
energy consuming process e.g. heating hot water for the washing of parlour equipment 
etc. is responsible for 19.5% of total energy consumption. However, this equates to only 
16.2% of total energy related costs. This is due to farms employing timers on their water 
heating systems to allow for the heating of water during cheaper night time hours. This 
has minimal impact on their usage of hot water, thus reducing the proportion of total 
costs attributed to water heating.

a) Cost Breakdown
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Technology Calculator Demonstration

The following scenario displays hypothetical results pertaining to the application of the 
TC when wishing to invest in Solar PV technology for a particular farm.

Table 1. Scenario farm setup and investment parameters

Farm setup Investment conditions

Herd size: 210 cows Energy technology: Solar PV

Milking times: 07:00 & 17:00 Solar PV size: 10 kWp

No. of milking units: 24 Investment cost: €11,000

Cooling system type: Direct expansion Grant aid: 50%

Hz of hot wash: Once per day Inflation rate: 2%

Milk collection Hz*: Every two days Feed-in-tariff: €0.18/kWh

Plate cooler (Y | N): Yes Household demand: 5,500kWh

Electricity tariff:
Daytime: €0.18/kWh 
Night time: €0.09/kWh

* Hz = Frequency

Figure 3. Showing graphical results from hypothetical scenario



Precision Livestock Farming ’19      51

As shown in Figure 3, the addition of a solar PV system under the conditions described 
saves 96,248 kg of CO2 over its lifetime, offsets approximately 29% of the farm’s total 
energy use, uses 16.1% renewable energy and 83.9% energy from the grid, uses 27.7% 
daytime and 72.3% night time electricity, and pays back within 6.1 years.

Conclusions

This paper detailed the methods by which the Decision Support System for Energy use 
in Dairy Production (DSSED) was developed, and demonstrated its usability. Both the 
statistical database and the technology calculator in DSSED are anticipated to be extremely 
useful to dairy farmers looking to expand their farms, as well as those looking to invest in 
renewable and energy efficient technologies. It is anticipated that the DSSED will be widely 
used in the future to aid farmers in making informed decisions. The information provided 
by DSSED is wide-ranging and will not only provide essential decision support, but also 
provide useful material for informing policy. Future work will extend the DSSED further 
by focusing on the optimization of dairy farm infrastructure investments, whereby the 
optimum combination of dairy farm equipment, management practices and electricity 
tariff will be found for a user-defined farm size, in terms of payback, CO2 emissions 
and renewable energy penetration. Optimising dairy farm infrastructure investments is 
important since slight changes in equipment setup, management practices and electricity 
tariff can greatly affect the farm, both economically and environmentally. The optimisation 
of dairy farm infrastructure on a large number of farms could hypothetically save millions 
for the Irish dairy industry, and has the potential to considerably reduce CO2 emissions.
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Abstract

The increasing amount of data collected in livestock farms thanks to PLF devices represents 
a huge potential of information to optimise animal husbandry and barn design. With 
particular reference to dairy cattle farming, Automatic Milking Systems (AMS) and the 
related devices and control software represent a highly informative source of cow-specific 
data. Such data can be translated into useful indications for management and design 
through algorithms able to provide a clear characterisation of the animal within the herd.

This study developed and tested a procedure for the comprehensive analysis of AMS-
generated multi-variable time-series, with the following objectives:

•	 to define clusters of cows on the basis of daily values of their descriptive parameters 
analysed over a selected time period;

•	 to permanently monitor the time trend of the descriptive parameters of each cluster;

•	 to identify animals with anomalous scores with respect to the herd.

A commercial dairy cattle farm in the Po valley (Italy) was adopted as study case. A 
methodological approach based on hierarchical clustering has been formulated to best 
characterise each cow and identify cow clusters. The method proved suitable to identify 
clusters of cows clearly diversified in terms of parity, body mass, days in milk and daily 
milk yield, as well as individual outlier animals.

The results lend support to cow monitoring and to herd management optimisation. Future 
developments are represented by the integration of processing algorithms in PLF software.

Keywords: automatic milking system, cow-specific data, early warning, cow performance, 
animal monitoring

Introduction

The big amount of data collected in dairy cattle farms equipped with PLF devices 
represents a source of radical innovation in animal rearing. In fact, proper data processing 
approaches can lead to implement systems of early alert of anomalies in animal behaviour 
or performances with consequent increase in production efficiency and sustainability. In 
this regard, a study (Stangaferro et al., 2016) was specifically devoted to analyse the trends 
of cows’ rumination and activity scores in relation to clinical diagnosis in order to identify 
patterns of these variables with forecasting potential, particularly for what concerns 
metritis. The increasing adoption of Automatic Milking Systems (AMS) in dairy cattle 
farms has been continuously providing cow-specific data to farmers with time frequency 
greater than once a day. The impact of adopting AMS on farms with regards to changes 
in milking labor management, milk production and milk quality was documented in 
literature (Tse et al., 2018). A cluster-graph approach was developed and tested to datasets 
collected in Italy by automatic milking systems and containing real-time information for 
each cow (Bonora et al., 2017). In this regards, a research (Adamczyk et al., 2017) assessed 
the effectiveness of cluster analysis to analyse the physical activity of dairy cows milked 
with AMS, taking into account environmental conditions. The validity of the clustering 
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approach was confirmed by further insights (Bonora et al., 2018) and the literature review 
revealed that defining optimal processing methodologies to extract information from 
AMS-generated data appears a topical issue in the field of PLF innovation.

The goal of this study was to define a data processing procedure for dairy farms equipped 
with automatic milking systems, suitable to define subgroups of the herd characterised by 
common values of the parameters describing the cows conditions, as well as to identify 
outlier animals characterised by anomalous trends of any parameter.

Material and methods

Study case

An Italian dairy farm with ordinary productive characteristics, equipped with AMS, was 
adopted as the study case for data collection, test of the methodology developed, and 
interpretation of the results. The study case farm was located in the municipality of Ghedi, 
province of Brescia, Lombardy Region, Italy (WGS84 coordinates 45°24’07.2’’N 10°16’49.08’’E), 
equipped with an automatic milking system (AMS) by Lely (Maassluis, The Netherlands), 
model Astronaut 4, and hosted around 90 Friesian cows. The barn hosting the lactating and 
dried cows was a 42 m long and 17 m wide rectangular building with steel frame structure 
and double pitched roof of insulated metal panels with gutter heights of 5 m, 20% slope and 
ridge opening. The barn, whose longitudinal axis had 71° azimuth orientation, consisted of 
a feeding area and an external feed delivery lane on the southern side and a resting area 
in the northern part of the building, with two head-to-head rows of cubicles. The barn 
had concrete floor with scrapers. The AMS was located on the western side and beyond it 
there were the milk-room, the control office and a technical plant room. Ventilation was 
controlled by four high volume low speed (HVLS) fans with five horizontal blades which 
were activated by a temperature-humidity sensor. The milking robot was programmed to 
assure a number of daily visits for each cow depending on the cow productivity and its 
expected optimal milk yield per visit, with a minimum of two and a maximum of four 
daily visits as constraints. The analyses performed are referred to the study period from 
7–22 July 2016, with multiple time intervals illustrated below. The average number of daily 
milking events in that period was 2.7 and the average number of daily milking refusals of 
the AMS system was 1.3. The average daily milk production per cow was 39.4 liters and the 
average of the daily supplementary feeding delivered to lactating cows was 3.8 kg.

Time frames

This study was targeted to the short-time trends of the main parameters usually available 
in farms equipped with AMS, connected to production and animal behaviour, with the 
specific aim of finding anomalies. Previous researches about cows clustering showed that 
a long study period such as three months is suitable to achieve a steady subdivision of 
the herd with the identification of the main performance potentials of the individual cows 
(Bonora et al., 2018). At the same time this approach was not suitable to account for the 
variation in animal conditions that can occur in shorter periods. A further study underlined 
that cow clusters developed on monthly basis revealed changes in cluster arrangement in 
the different time frames (Bonora et al., 2017). At the same time, data analyses performed 
over several dairy farms (Bonora, 2018) pointed out that the descriptive variables of animal 
performances and conditions showed significant daily oscillations and trends that could 
appear clear and comparable on a weekly basis. For this reason, the analysis methodology 
was defined to be implemented in time intervals of eight days, considered suitable to 
identify groups with similar trends in time and at the same time to update dynamically 
the results. The time intervals were meant to be reconsidered daily, with the identification 
of the period of the eight previous days as the reference for the analysis, so that the famer 
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can have an up-to-date picture of the conditions of its herd, besides the time series of all 
the previous conditions. This work presents the analyses referred to three eight-day time 
intervals shifted four days from one another, in order to study the clusters composition 
and the respective features, besides their evolution in time.

Clustering methodology

The variables for the implementation of the clustering procedure among the parameters 
available describing each cow’s behavior and health conditions were selected as follows: 
daily average of the activity score (recorded by electronic collars); daily average of 
rumination time (minutes, recorded by electronic microphones); days in milk; daily average 
milk temperature (°C); daily average cow body mass (kg); daily average milk conductivity 
(cS/m); parity (#). The data about milking and milk properties were recorded by the AMS.

The variables expressing milk productivity, such as daily number of milkings and milk 
yield, were not selected as parameters for clustering because they were considered as 
dependent variables according to which the effectiveness of the clustering procedure and 
the productive feature of each resulting group of cows were assessed.

On the basis of the study aims, a hierarchical clustering was selected as the methodological 
approach. It was preferred to the alternative clustering algorithms based on k-means 
approach because neither it requires a starting point, nor it calls for an aprioristic definition 
of the number of subgroups. In fact, the final output of a hierarchical clustering is not a 
unique clustering arrangement, but a dendrogram, i.e. a multilevel ‘tree’, so that the level 
of grouping may be specific for each process, depending on conditions that can be stated 
on the basis of the study objectives.

The hierarchical clustering was achieved by developing the following phases:

I Distance. The differences among every pair of cows were calculated in terms of 
Euclidean distance on all the variables considered, expressed in terms of z-scored 
values. The output of this first phase was a symmetric distance matrix;

II Linkage. First, the algorithm joined the two animals with the smallest distance 
calculated in Phase 1. Then the distance matrix was recomputed using the newly 
formed cluster instead of the two individual cows. The procedure was iterated until a 
complete hierarchical tree was formed and all the cows were connected. In particular, 
the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) was selected to 
compute the distance between two clusters: the distance d(C,E) between two clusters 
C = A U B and E is equal to:

 d(C,E)=  |A|*d(A,E) + |B|*d(B,E) 
|C|

          (1)

where |X| represents the cardinality of the generic set X and d is the Euclidean distance;

III Cut. In the third phase, the method to decide where to cut the tree was chosen, i.e. 
which level of the dendrogram had to be selected to identify different groups. The 
starting selection consisted in the identification of simply two clusters corresponding 
to the last linkage. Then, the two found clusters were tested against the conditions 
stated below:

• “No Small size” (S) condition. If the size of one found cluster was less than or equal 
to 2, the one or two cows identified were considered outliers: they were removed 
from the herd data and separately analysed. In this case, the ‘new’ herd (i.e. 
without the outliers) restarted from point II: linkage phase;

• “No Big size” (B) condition. If the size of one found cluster was greater than 60% of 
the herd, it was translated into the possibility to deepen the analysis. In this case, 



56      Precision Livestock Farming ’19

the procedure restarted from the Phase III increasing the number of clusters by 
one unit and the two conditions were verified again on the new clusters obtained.

The process stopped when both conditions were verified, which means that the subdivision 
of the herd into clusters represented a trade-off between size and dissimilarity which was 
considered functional to the study aims.

IV Analysis. The last step was diversified depending on the presence or absence of outliers, 
as follows:

a. Presence of outliers (i.e. at least one outlier cow detected). If some outliers were 
found by the S condition, the distances between all the z-scored parameters of this 
cow and all the remaining ones in the herd were calculated within the time period 
selected for the analysis. The maximum distance represented the parameter with 
the greatest effect for the definition of the outlier. Then the analysis went on as in 
the case without outliers (see point b).

b. Herd without outliers. After the identification of the best subdivision of the animals 
into clusters, the trends of the clustering parameters and the other significant 
variables available in the selected time period were plotted and analysed.

The software selected for the development and processing of the algorithm is MATLAB 
R2018b (Mathworks, 2018). The above procedure is meant to be repeated every day 
adopting the previous eight days as the reference period, thus providing the farmer with 
an up-to-date perspective of the conditions of the animals and the respective trends.

Results and discussion

The algorithm developed is suitable to run with every time period length, and in this study 
the eight-day format was identified as the best solution, as it was mentioned above. The 
analysis method was tested with reference to several study periods and, on the basis of the 
preliminary results, the time frame from 7 July 2016–22 July 2016 was selected as a study 
case to be reported, as it involves all the methodological phases identified and represents 
a useful example to show all the steps provided for the algorithm formulated. Three eight-
day intervals were analysed within this period 7-14, 11-18, 15-22 July, respectively referred 
to as f (first), s (second), t (third) period. In this time interval, the total number of milking 
cows reared - and thus analysed - ranged between 59–63. The clustering procedure led to 
identifying two clusters in the first and second periods, while three clusters in the third 
one. Figure 1 shows the results of the iterations which led to the definition of the clusters. 
In the first period, two iterations were necessary to identify three outliers meeting the S 
condition after the Phases I, II and III (one in the first iteration and two in the second one), 
then after one more iteration, B condition was also met. In the second period, the outlier 
was found after the first iteration, then the clusters were defined after the second one. In 
the third period, the procedure identified the outlier, then the procedure came back to the 
linkage phase and the algorithm identified two clusters. In this case, the B condition was 
not met: the bigger cluster was composed by more than 60% of the herd, so the algorithm 
came back to the ‘Cut phase’ increasing the number of clusters and bringing it to three, 
thus defining the final grouping for this time period. Therefore in all the three periods 
there is no cluster with greater size than 60% of the herd and there is no cluster composed 
by less than three animals.



Precision Livestock Farming ’19      57

Figure 1. Dendrograms resulted from the last iteration, where the clusters were identified per each 
period; cluster cardinalities in brackets. 

After the formulation of the final clusters, the algorithm analysed the characteristics of 
the found groups: this step is useful to monitor the trend of the herd for what concerns 
the most common variables measured in a modern barn. All the variable monitored 
were thus analysed to identify the features characterising each cluster. Firstly, a clear 
diversification among clusters was recognised in terms of parity and days in milk, as it 
is shown in Table 1: one cluster in each period, specifically 1(f), 1(s), 2(t), mainly included 
primiparous cows; clusters 2(f), 2(s), 1(t) included mainly the animals in third lactation; 
in the third period a further Cluster 3(t) was identified, mainly composed by cows with 
five lactations. Moreover, Clusters 1(f), 1(s), 2(t) mainly included cows in the first part of 
lactation, while Clusters 2(f), 2(s), 1(t) concerned the final stage of lactation and Cluster 3(t) 
about the third quarter of lactation period.

Table 1. Parity and days in milk values in clusters (average ± standard deviation)

Cluster 7-14 July (f) 11-18 July (s) 15-22 July (t)

Parity

1(f), 1(s), 2(t) 1.27±0.45 1.57±0.85 1.53±0.5

2(f), 2(s), 1(t) 3.3±1.1 3.58±1.35 3.07±1.16

3(t) - - 5.67±0.58

Days in Milk*

1(f), 1(s), 2(t) 105±73 108±83 103±81

2(f), 2(s), 1(t) 217±99 242±71 236±88

3(t) - - 198±46

* At the beginning of the time period

The parity condition was clearly confirmed by the body mass values: cows of Clusters 1(f), 
1(s) and 2(t) had masses on average over 100 kg smaller than the rest of the herd. Clusters 
1(f), 1(s) and 2(t) were also characterised by a clearly higher activity score, while cluster 
3(t) had the minimum one.

Then the average daily number of milking events was analysed (Figure 2), showing that 
younger cows of Clusters 1(f), 1(s) and 2(t), steadily went to the AMS more often (about 
three) than older cows of clusters 2(f), 2(s) and 1(t), who expressed about 2.5 milkings per 
day. This relationship was confirmed by the trend of Cluster 3, composed by the oldest 
cows, which expressed the minimum number of daily visits to AMS.

Figure 2 shows that productions of Clusters 1(f), 1(s) and 2(t) were almost always neatly 
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higher than Clusters 2(f), 2(s) and 1(t), respectively. This was likely due to the different 
days in milk, as cows of Clusters 1(f), 1(s) and 2(t) were mainly in the lactation peak period. 
Cluster 3 did not reveal a particularly lower milk yield (38.1 l), although it was composed 
by old animal beyond the production peak.

The model can be also used to compare the parameters of the outlier cows and the average 
parameters of clusters with particular reference to the variables marked in the step of outlier 
identification as mostly significant. The three outliers detected in the first periods expressed 
anomalous values respectively of days in milk conductivity (and activity. The first case (492 
days in milk at the beginning of the period) was clearly due to abortion, the second case 
highlighted anomalous high values of conductivity in comparison to the herd, and it can be 
interpreted as an early warning of mastitis risk. The third case was referred to a 6th parity 
cow and pointed out activity scores within the same range of Cluster 2, but with a different 
distribution within the period. In the second period the outlier was due to her activity score, 
with a peak at the beginning of the period, which is compatible with possible heat, as the 
cows had 67 days in milk. In the third period the outlier expressed high conductivity in 
comparison with the three clusters, thus calling for attention to animal’s health.
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Figure 2. Trends of average number of daily milkings and milk yield in the clusters (association 
between colours and cluster numbers reported in labels)

Conclusions

The study led to the development of a data processing method suitable for dairy farms 
equipped with automatic milking systems, capable of defining subgroups of the herd 
characterised by common short-term trends of the parameters describing the health and 
production conditions, as well as identifying outlier animals.

The method was tested over a study case and it proved suitable to be adopted by farmers 
as a tool to enhance the informative content of the huge amount of data made available 
by the adoption of PLF tools, such as milking robots and related devices. In particular, the 
method proved suitable to identify outlier cows with production and health parameters 
significantly different from average herd values.
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The analyses performed are meant to be repeated every day, with the same time frame 
length. In this way it is possible to provide the farmer with a vision of the condition of the 
herd in the last week, with the identification of possible anomalous cows. At the same 
time, the results are meant to be recorded, thus constituting the time history of the herd. 
This system allows to have an immediate representation of the trends of the parameters, 
which can be in-depth analysed with reference to individual cows.

This system represents a preliminary early warning for the animals identified as outliers, 
which should be closely monitored to understand the reasons of the anomalies. In 
case health issues were the cause of the anomalies, this procedure clearly provides an 
advantage in treating the problematic cows early. The method also allows cow clusters 
within the herd to be recognised, thus providing the farmer with a knowledge framework 
about the main features of the groups. In this way, it is possible to better understand 
performances and behaviours of individual cows, comparing them with the parameters 
describing the respective cluster.

Future developments of the research include the combined analysis of clustering results 
with the trends of environmental data, to better identify their effects on the animals, 
with reference to the various features detected in clusters and outliers. The integration of 
the methodology proposed with the cluster-graph approach already developed could also 
enhance the effectiveness of the representation of the clustering results.
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Abstract

The accurate estimation of herbage intake is key to adequately feed grazing ruminants. Ten 
dairy Sarda sheep fitted with a halter equipped with an accelerometer (BEHARUM device) 
were allowed to graze for six minutes on micro-swards of Italian ryegrass (Lolium multiflorum 
L.), alfalfa (Medicago sativa L.), oat (Avena sativa L.), chicory (Cichorium intibus L.) and a mixture 
(Italian ryegrass and alfalfa). Accelerometer data and video recordings of behaviour were 
collected simultaneously. The raw acceleration data was processed to calculate 15 variables: 
mean, variance and inverse coefficient of variation (ICV; mean/standard deviation) for the 
X, Y and Z axis and the resultant. A database was then created inclusive of the acceleration 
variables and herbage intake (DMI, g), intake rate (DMIR, g/minute), bite mass (DMBM, g) on a 
DM basis, and the logarithm of number of bites (LB) measured during the tests. Partial least 
square regression analysis (PLSR) was used to verify if the acceleration variables could be 
used as predictors of behavioural traits. The precision and accuracy of PLSR were evaluated 
implementing the Model Evaluation System, in which predicted values were regressed against 
observed ones, based on R2, RMSEP and Dent & Blackie test. The PLSR showed an overall good 
accuracy (Dent & Blackie test P = 1) and was proven precise for the estimation of LB (R2 = 0.86, 
RMSEP = 3%), DMI and DMIR (R2 = 0.71, RMSEP = 22%), but not of DMBM (R2 = 0.32, RMSEP = 26%). 
To conclude, BEHARUM can accurately estimate with high to moderate precision number of 
bites and herbage intake of sheep short term grazing Mediterranean forages.

Keywords: accelerometer, PLSR, bites, herbage intake

Introduction

Studying the feeding behaviour of ruminants and monitoring the energy intake during 
grazing is of fundamental importance to improve feeding efficiency, animal productivity 
and pastures management, respecting environment and animal welfare (Blomberg, 2011; 
Oudshoorn et al., 2013; Swain & Friend, 2013). The productivity of grazing animals depends 
indeed on feed intake, which is a difficult measurement, particularly for long periods 
(Milone et al., 2012). Jaw movements are of great importance to assess animal grazing 
strategies when grazing in different types of pastures and to better estimate their intake 
(Andriamandroso et al., 2016). Several techniques have been developed to monitor animal 
jaw movements and to detect bites that are the elementary components of the grazing 
process (Ungar et al., 2006a; Andriamandroso et al., 2016). Accelerometer sensors have been 
tested to automatically count jaw movements (Umemura et al., 2009; Oudshoorn et al., 
2013; Rombach et al., 2018) however, as for sound sensors, the sensitivity of accelerometers 
could provide interferences and undesirable signals during recording sessions, therefore 
significant developments are required in order to isolate the signal relative to the jaw 
movements of grazing animals (Andriamandroso et al., 2016).

The objective of this study was to derive a model to predict sheep behavioural variables as number 
of bites, bite mass, intake and intake rate, on the basis of variables calculated from acceleration 
data recorded by a customised tri-axial accelerometer based sensor named BEHARUM.
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Material and methods

Forage species

Five treatments, four monocultures and one mixture, established by sowing in paired 
boxes the forage species to create micro-swards (Orr et al., 2005) were compared. The 
monocultures were: Italian ryegrass (Lolium multiflorum L.), alfalfa (Medicago sativa L.), oat 
(Avena Sativa L.) and chicory (Cichorium intibus L.); the mixture was constituted by Italian 
ryegrass and alfalfa.

Experimental design

Two replicate groups of five animals each of Sarda lactating ewes, homogeneous for age (4 
± 1.5 years, means ± SE), body weight (43.68 ± 3.07 kg), body condition score (2.65 ± 0.19), 
stage of lactation (104 ± 9 DIM) and milk production (1.270 ± 0.04 kg) were used for the 
micro-swards test. Each treatment was offered to each ewe in a 5 × 5 Latin-Square with two 
replicates in a five day period. Within each replicate, the five experimental animals were 
submitted to the treatments in succession. The order in which the tests were conducted 
was randomised within each experimental day.

Measurements

Animals were worn with the BEHARUM device (Giovanetti et al., 2017) and each treatment 
was offered to each subject (Figure 1) in a rack for six minutes (test). The behaviour of 
each experimental animal was recorded by a fixed camera (eating time and number 
of prehension bites) during the test. The micro-sward boxes were weighed before and 
after each test with an accuracy of 0.5 g in order to determine the biomass removed. 
The following traits were calculated: dry matter herbage intake (g) and intake rate (DMI, 
DMIR, respectively); number of bites recorded during the test; dry matter bite mass 
(DMBM, g) calculated dividing the DM weight changes of the microswards, corrected for 
evapotranspiration losses, by the number of bites.

Figure 1. Sheep during the test

Preliminary data processing

Video recordings were coded manually counting the total number of bites taken by each 
animal during the test. The number of bites was transformed in logarithm (LB), in order to 
obtain a normal distribution of the variable.

Mean (MX, MY, MZ), variance (VX, VY, VZ), sum (SX, SY, SZ), inverse coefficient of variation 
(i.e. mean/standard deviation, ICVX, ICVY, ICVZ) of acceleration data for each axis, as well 
as the resultant mean (MRES), variance (VRES) and inverse coefficient of variation (ICVRES) 
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values of the three axes (Watanabe et al., 2008), were calculated for the total eating time. A 
dataset was then created including the behavioural traits (LB, DMI, DMIR, DMBM) and the 
above mentioned acceleration variables calculated for the total eating time of feeding, for 
a total of 19 (number of variables) per 70 (number of record) dataset.

Statistical analyses

Degression analyses were performed to see if the acceleration variables (MX, MY, MZ, VX, 
VY, VZ, SX, SY, SZ, ICVX, ICVY, ICVZ, MRES, VRES, ICVRES) can be used as explanatory 
variables of the response variables (DMI, DMIR, DMBM and LB).

For this scope, the partial least square regression (PLSR) model was used (Dimauro et al., 
2011).

The general structure of the model is:

Y = XB + E (1)

where Y is an n x m response matrix, X is an n x p design matrix, B is an n x m regression 
coefficient matrix, and E is an n x m error term.

To validate the model a leave-one-out cross-validation has been used. The root-mean-
square error of prediction (RMSEP) was used to assess the prediction ability of PLSR. 
Finally, the precision and accuracy of the model were assessed implementing the Model 
Evaluation System (MES, release 3.1.16, Tedeschi, 2006) in which the predicted values were 
regressed against the observed ones. The model evaluation was based on Dent and Blackie 
test and R2.

Results and discussion

The aim of this work was to derive a model to predict sheep behavioural variables related 
with intake on the basis of calculated accelerometer variables.

Results of the adequacy of predictions of PLSR procedure are reported in Table 1. As 
demonstrated by the Dent and Blackie Test (P > 0.05), this procedure was able to provide 
accurate estimates, that is how closely model-predicted values are to the true values of 
the predicted values for all variables listed. This means that equation parameters, the 
intercept and slope, were contemporarily not significantly different from 0 and 1, thus 
indicating that all the equations pass through the origin and the intercept is equal to zero.

Table 1. Results of Model Evaluation System (MES)

Y Adjusted R2 Dent and Blackie test P< RMSEP (%)

LB 0.86 0.88 3.3

DMI (g) 0.71 1.0 22.2

DMBM (g) 0.32 1.0 26.4

DMIR (g min-1) 0.71 1.0 22.1

LB=logarithm of number of bites; DMI=dry matter intake; DMBM=dry matter bite mass; DMIR=dry matter intake rate

Plots of the regression equations among predicted and observed values are shown in 
Figure 2. The degree of precision of the model that indicate the model’s ability to predict 
similar values consistently, was pretty good although it varied according to the variable 
considered. The prediction of the number of bites, expressed as logarithm (LB) reported 
the highest adjusted R2 followed by DMI and DMIR variables while DMBM has the lowest 
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R2 value. The RMSEP was very low when the number of bites were predicted while it grew 
up for the other variables, especially for DMBM.
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Figure 2. Plots of predicted versus observed values of behavioural variables
LB = logarithm of number of bites; DMI = dry matter intake; DMBM = dry matter bite mass; DMIR = dry matter 
intake rate

Several techniques have been developed over the years for estimating bite mass, bite 
rate and daily intake. Microphone-based methods are the most used devices for this 
purpose because they showed a good accuracy for jaw movements detection and allow 
three types of jaw movements to be differentiated: chew, bite and chew-bite, that are 
fundamental components of intake process (Ungar et al., 2006b). Good results were 
achieved by combining video and acoustic recordings of ingestive behaviour in short-term 
studies. Laca & WallisDeVries (2000) for example, were able to correctly classify chews 
and bites (accuracy of 94%) and to predict intake with a good accuracy (R2 = 0.90) by a 
linear combination of energy flux density in the chewing sounds and average intensity 
of biting sounds. Clapham et al. (2011) used an acoustic monitoring system to detect and 
analyse bites, and were able to differentiate bite and chew using a discriminant function 
with an accuracy of 94%. Galli et al. (2011) demonstrated that it is possible to accurately 
estimate DMI in grazing sheep by acoustic analysis (coefficient of variation = 18%, R2 = 
0.92), using chewing energy per bite and total amount of energy in chewing sound as 
the most important predictors, being able to integrate information about eating time and 
intake rate. Only few references can indeed be found on the use of acceleration sensors for 
the identification and classification of jaw movements. Umemura et al. (2009) succeeded to 
count cattle jaw movements with an accuracy of 90% compared with manual counts over 
10 minute segments, modifying a pedometer into a pendulum.
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Tani et al. (2013) used a 1-axis accelerometer coupled to a microphone, being able to distinguish 
cattle chewing activities at 90%, reaching 99% when the sensor was attached to the cow’s 
horn. Umemura (2013) used three types of pedometers installed on neck collars to determine 
the accuracy with which the devices measured the number of grazing bites performed by 
cows. He found that the values recorded by the devices were linearly related to the number of 
bites recorded by visual observation, but concluded that this technique requires calibration to 
relate the pedometer values to the number of grazing bites. Andriamandroso et al. (2015) used 
a smartphone inertial measurement unit (IMU) which combined accelerometers, gyroscope, 
magnetometer and location sensors, to count the number of bites through frequency pattern 
of 1-axis acceleration data, achieving a mean error of 4–5% when compared with visual 
observations. Oudshoorn et al. (2013) used a 3-axis accelerometer to record cow bites at 
pasture, testing a series of thresholds values to determine the peak with the best correlation 
to the observation, but obtained an average correlation coefficient of only 0.65, similar to that 
obtained in our previous experiment (Giovanetti et al., 2017) with sheep in grazing conditions. 
These results confirmed the difficulty to count bites using an accelerometer in free ranging 
animals, as more recently described by Rombach et al. (2018), that tried to validate the 
RumiWatch System (RWS; Itin and Hoch GmbH, Liestal, Switzerland) for the measure of 
ingestive and rumination behaviours of dairy cows during grazing and supplementation in 
the barn. The algorithms tested in the evaluation software were not able to differentiate 
between mastication and true bites while eating, indeed the number of bites is overestimated 
both for grazing and supplemented cows. They achieved a low relative prediction error (≤ 
0.10%) for the number of rumination boluses, rumination chews, and total eating chews, but 
a higher error (> 0.10%) for the number of bites and time spent in biting and eating.

As the estimate of free-grazing animals intake is arduous, because of the difficulty of 
accurately establishing the weight of each bite, in the present study we have chosen to 
use sown micro-sward boards (Black & Kenney 1984) and to determine the average BM 
by weighing the micro-swards before and after the animal is fed. In complex grazing 
environments the best method available to estimate bite mass remains hand-plucking, 
that simulates a bite by mimicking grass prehension by hand and the estimations accuracy 
can be as high as 95% for cows and goats with trained operators (Bonnet et al., 2011).

In the present study, the PLSR was able to provide better accurate estimates of the number 
of prehension bites, expressed as logarithm (LB), and DMI than DMBM, confirming how 
difficult it is to predict this variable with automated methods. This is a good result 
considering that bite is the elementary unit of the grazing process, therefore, by counting 
bites it is possible to determine their frequency, which, combined with the bite mass and 
the grazing time, allows calculation of herbage intake (Hodgson, 1985). Bonnet et al. (2015) 
recently studied the possibility of estimating bite mass combining the hand-plucking 
method with acoustic sensors coupled to the continuous bite monitoring, achieving 
an accuracy ranging between 80–94%. These results suggest that the combination of 
information provided by different sensors, such as microphones, accelerometers and 
GPS, can allow better estimates of intake at pasture. Moreover, the lack of differentiation 
between bite and chew can lead to overestimations of bites or to different accelerations 
signals from those originated by bites alone whereby, in agreement with other researchers 
(Laca & WallisDeVries, 2000; Giovanetti et al., 2017; Rombach et al., 2018) we believe that 
the differentiation between mastication chews and bites is very important for estimating 
intake and should therefore be integrated into validation models.
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Conclusions

Accelerometer sensors placed under the jaw appear promising estimators of the number 
of bites as well as of DMI and DMIR variables even if at lower level. This is confirmed also 
by RMSEP that was very low when the number of bites were predicted, while it grew up 
for the other variables. Overall caution is advised when using accelerometer sensor to 
estimate intake in grazing conditions. A combination of information provided by different 
sensors and the integration of chews and chew-bites differentiation in validation models 
can allow probably better estimates. This approach warrants further research.
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Abstract

This paper aims to identify determinant traits of ewes by measuring their impact on lamb 
survival. For that, we devised a machine learning model that correlates ewe traits to lamb 
survival, and figured out as to which ewe traits explain the correlation and hence help us 
to identify the better mother.

In this study, we kept pregnant ewes under 24 h observation by two researchers starting 
approximately three days before expected parturition dates. We conducted the study 
using native and crossbreed lambs produced in high altitude and cold climate region. It 
is critical to note that parturation took place with minimum interruption unless there is 
a birth difficulty.

Independent variables used in the machine learning model pertain to mother’s 
behaviours during parturation, however, we also took into consideration factors like dam 
breed, dam body weight at lambing, age of dam, litter size at birth, lamb breed and sex. 
Lamb survival is a nominal output variable, hence we tried out several classification 
algorithms like Bayesian Methods, Artificial Neural Networks, Support Vector Machine and 
Tree Based Algorithms. Classification algorithms applied for lamb survival were Bayesian 
Methods, Artificial Neural Networks, Support Vector Machine and Trees.

RandomForest algorithm was found best performer among tree algorithms.

We were able to present tree visualisation for mothering ability with 80% accuracy rate 
and 0.43 Kappa Statistics.

The result of the study shows that grooming behaviour is the first determinant mothering 
ability. If the grooming duration is longer than 15 minutes, then it is a good mother.

Keywords: maternal quality, lamb survival, machine learning

Introduction

Maternal effects play a significant role in offspring, however, in sexually reproducing 
animals, both parents are equally likely to affect the phenotype of offspring (Gowane 
et al., 2014). It was emphasised that offspring’s phenotype can be affected by parental 
phenotype with regard to significant impact on growth, survival and adaptation due to the 
fact that mothers transfer environmental information to their offspring (Mastropieri and 
Mateo, 2009). Neonate survival is dependent on the coordinated expression of appropriate 
behaviours from both mother and lamb (Dwyer, 2003) and behavioural interactions are 
much more important for prolific sheep with higher litter size.

Several studies have been conducted using machine learning algorithms to genomic 
prediction (e.g. review Gonzalez-Recio et al., 2014). Machine Learning models help us to 
form prediction models that assist decision making. As we have large amount of data 
describing ewe traits using the data, we aim to set up a machine learning model so that 
the system continuously learns to figure out factors affecting lamb survival.

In this study, machine learning algorithms were studied in the behavioural and productive 
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traits affecting lamb survival of native and crossbreed lambs produced in high altitude 
and cold climate region.

Material and methods

In many areas of animal behaviour research, improvements in our ability to collect large 
and detailed data sets are outstripping our ability to analyse them.

These diverse and complex data sets exhibit nonlinear dependencies and unknown 
interactions across multiple variables. They may fail to conform to the assumptions of 
many classical statistical methods. The field of machine learning provides methodologies 
that are ideally suited to the task of extracting knowledge from these data.

We used classification trees as the method in this study. The classification trees are modern 
analytic techniques which are data-mining group tools [1, 2, 3, 6]. They allow for building 
graphic easily-comprehensible models used to describe and to predict the phenomenon 
expressed in both the nominal and the ordinal scale.

The classification trees can also be used for the purpose of preliminary selection of the 
traits which have a statistical effect on the dependent variable.

The structure of the classification tree starts with the entire information set (root node) 
(Figure 1). The subsets which emerge as a result of division are referred to as child nodes. 
The final subsets which are not exposed to further divisions are called leaves. The number 
of leaves determines the tree size, while the number of edges between the tree top and 
the most distant leaves informs about the tree depth. The classification trees have already 
been applied in financial management [2], medicine [1] as well in animal farming [15]. As 
per animal farming, Sawa et al. [15] used the classification tree technique to determine the 
genetic-and-physiological-and environmental parameters which ensure obtaining milk 
rich in protein and poor in somatic cells.

Experimental data

Individual and cohort data were combined into an original dataset. Our original dataset contains 
1,351 event records from 193 individual lambs and 750 event records from 150 individual ewes 
from three different genotypes such as Awassi, Morkaraman and Tuj sheep breeds.

This data set contained 15 unique variables and several combinations, derived and 
redundant variables.

Lambs were born in April-May (spring) and under shed lambing conditions. Ewes were kept 
under 24 h observation by at least two researchers starting approximately three days before 
expected parturition dates. As it is described by Dwyer (2003), parturation took place with 
minimum interruption unless there is a birth difficulty. Sources of data on dam behavioural 
factors were used as stated by Emsen et al. (2012). Lambs were weaned at 60 days of age.

Independent variables used in the model are grooming, dam breed, dam age, dam weight 
at lambing, litter size at birth, lamb genotype, lamb breed, lamb sex, lamb birth weight. 
Output variable is mothering ability.

We scored mothering ability in this study according to the following observations: 
maternal vocalisation (low-pitched bleating), cooperation with lamb, attempts to find the 
udder and suckle, and absence of rejection or avoidance of the lamb. These are a series of 
dam behaviours that are used to measure mothering ability, as described by Dwyer (2014). 
Also, maternal behaviour decribed by Goursaud and Nowak (1999) shows that mother’s 
intense grooming of the lamb is accompanied by several factors such as low pitch bleating 
and standing to suckle within the first six hours. These parameters facilitates sucking, 
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helps recognition of the lamb and formation of the ewe-lamb bond.

As indicated by Cloete and Scholtz, (1998) there are behavioural differences between 
breeds and some of the maternal behaviours which play a part in lamb survival are likely 
to be under genetic control.

According to our study, good mothering ability is described as follows: Ewe gets up within 
three minutes of lamb expulsion, vigorously grooms lamb and stands and facilitates 
suckling. Moderate mothering ability is described as follows: Ewe approaches lamb but 
does not initiate physical contact, circles when lamb attempts to suckle.

Poor mothering ability is described as follows: Ewe kicks/butts lamb and will not allow 
lamb to suckle.

In measuring maternal quality, we used WEKA (Waikato Environment for Knowledge 
Analysis) as the tool and Bayesian Methods, Artificial Neural Networks, Support Vector 
Machine and Trees as Classification algorithms.

Results and Discussion

Randomforest performed very well in classification of the mothering ability. Although 
RandomForest was found best performer among WEKA trees, visualize tree is not available. 
Therefore, we presented REPtree visualize tree for mothering ability with 75% accuracy 
rate and 0.27 Kappa Statistics in Table 1.

Table 1. Classification algorithms and accuracy rates for mothering ability

Algorithms

Correctly 
Classified 
Instances 

(%)

Kappa 
statistic

Mean 
absolute 

error

Root mean 
squared 

error

Relative 
absolute 

error

Root 
relative 
squared 

error

BayesNet 74.61 0.36 0.21 0.35 78.77 96.31

NaiveBayes 75.75 0.39 0.19 0.34 73.28 92.45

Multilayer 
Perceptron

72.72 0.25 0.20 0.40 75.67 109.43

SMO 75.75 0.19 0.29 0.38 109.23 103.68

RandomForest 83.33 0.54 0.17 0.30 65.66 82.30

Reptree 75.13 0.27 0.21 0.34 79.46 94.97

It can be observed clearly from visualize tree (Figure 1) that grooming behaviour is the 
first determinant for mothering ability. Grooming behaviour alone is almost sufficient to 
describe mothering ability if the grooming duration is longer than 15 minutes.

If grooming is more than 15 minutes, mothering ability is superior.

If grooming is less than 15 minutes, dam breed played an important role to describe 
mothering ability. While Awassi breed with less than 15 minutes grooming was still 
classified as good mother, Morkaraman breed with less than 15 minutes grooming were 
not classified as good mothers.

Tuj breed is known for its aggressiveness. Results showed that Tuj breed’s mothering 
ability was related to their lamb birth weight. Lambs with lower birth weight (< 2.85 kg) 
were taken good care of by Tuj ewes.
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Figure 1. Mothering ability REPtree classification tree

Labels on outgoing edges from grooming refers to:

A: > 30 minutes grooming

B: 15-30 minutes grooming

C: < 15 minutes grooming

Leaf nodes depict mothering ability:

A: Good mothering (Ewe gets up within three min of lamb expulsion, vigorously grooms 
lamb and stands and facilitates suckling)

B: Moderate mothering (Ewe approaches lamb but does not initiate physical contact, 
circles when lamb attempts to suckle)

C: Poor mothering (Ewe kicks/butts lamb and will not allow lamb to suckle)

Lamb vigour is associated with ewe’s behaviours towards the lamb, which is called 
mothering ability. We tested factors influencing mothering ability and found that grooming 
of the lamb is the main determinant of mothering ability. REPtree classification algorithm 
explains this relationship clearly in a tree visualization as depicted in Figure 1.

Conclusions

This study revealed that duration of grooming is a strong indicator of mothering ability. 
Ideal mothering ability requires at least 15 minutes of time spent for grooming. Another 
conlusion we found is that dam breed played an important role if grooming behaviour is 
weak. Awassi ewes’ mothering ability was found unrelated to duration of grooming.
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Abstract

A Mobile Sheep Manager Software (M-SMS) was developed for commercial lamb production 
model using cloud architecture that collects and utilises farm data and responds to the 
farm management with respect to insights on the operational and financial aspects of the 
farm. Metadata used in the software is composed of ewe reproductive performance, overall 
productivity, lamb growing rate, survival rate of newborns, and health status of flock. The 
system detects alerts occurring in the farm and suggests for troubleshooting. M-SMS was 
combined with Cloud Services compounded with Predictive Analytics Services for helping 
fine-tune flock management and improve operational excellence. Mobile Sheep Manager 
Software is aimed at sheep farmers who need an easy to use “point and click” solution to 
keep legislative records, to attain operational guidance and build flock performance data. 
The product supports for purchase, cull or breed decisions are based on targets of flock 
performance.

Keywords: software, sheep, precision flock management, predictive services

Introduction

Animal husbandry is one of the oldest agricultural practices in the world, but has 
benefitted little from monitoring and processing techniques currently being adopted by 
other industries. Contrary to mechanised industrial developments in livestock husbandry, 
research and development of appropriate technology for use in monitoring animals has 
fallen behind other technological improvements.

Mixing within an animal system refers to conditions where different types of animals are 
kept together. However, over the last three decades, small scale mixed livestock enterprise 
has been changed into large, single species units. Intensive and modern farming of single 
livestock make the farmer totally responsible for all livestock under his control. In such a 
system, animals now are produced intensively, and maintained under near ideal conditions 
for growth and production within current technological limits (Frost et al., 1997).

Meat consumption is projected to rise nearly 73% by 2050 (FAO, 2011), and meat producing 
animals are required to be raised more efficiently for production and less impact for the 
environment. Moreover, the public is more concerned than ever about animal welfare, 
including both its monitoring and management (Butterworth, 2018). Precision livestock 
farming (PLF), can be defined as the management of livestock production using the 
principles and technology of process engineering (Wathes et al., 2008). Europe has been the 
birthplace of PLF research, and it continues strongly with over three decades of research 
and innovation through at least four major EU-funded (EU-PLF, BioBusiness, AllSmartPigs, 
BrightAnimal) and many other national projects (Mottram, 2016; Wathes et al., 2008). 
In livestock production, there are already a few examples of commercialisation of PLF 
techniques, but all of them focused on dairy cattle, poultry and pigs (Guarino et al., 2008) 
and limited number of studies has been done in sheep breeding.

The purpose of this study is to report a Mobile Sheep Manager Software (M-SMS) tool 
developed for intensive sheep breeding for meat production for improving the efficiency 
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of production, while increasing animal and human welfare, via applying advanced 
information and management system (IMS) and Cloud and Predictive Machine Learning 
services.

Material and methods

Experimental data

Metadata used in this study is composed of the following: ewe reproductive performance, 
overall productivity, lamb growing rate, survival rate of newborns, feed cost, health status 
of flock and financial implications. We tested Mobile Sheep Manager Software (M-SMS) 
tool in intensively managed sheep flock (300 heads) at Er-Gen Biotechnologies Ltd R&D 
farm placed in Istanbul, Turkey for two consecutive years. Er-Gen has been raising sheep 
for meat production and breeding stock of maternal ewes since 2008 using a traditional 
recording and managing system. Flock was managed with M-SMS integrated data 
collection station. In order to determine the effectiveness of these tools, productive and 
management results of this farm were compared with the results of this particular farm 
before its implementation.

Data collection of individual and flock production information

Sheep in different categories such as breeding ewes, ewe-ram lambs, rams, weaned lambs, 
suckling lambs are RFID tagged and were tracked at their own production stages for 
creating inventories and setting targets for increase the lambs marketed per ewe.

Er-Gen practices a terminal crossbreeding program which requires maternal ewes with 
acceptable maternal characteristics.

Ewe flock was scored with the reproductive performance i) age at first lambing < 1,5 ii) 
lambing interval < 9 iii) litter size at weaning > %180 iv) total productivity (total kg of 
lambs at weaning) > 30kg. Being able to analyse lambing percentage, the number of open 
ewes and weaning reports helped to focus on ways to improve ewe productivity. Terminal 
crossbred lambs were scored for i) birth weight ii) weaning weight iii) average daily gain 
weight (ADW) iv) feed conversion rate v) dressing percentage. Rams were subjected to 
individual tests for their reproductive performance i) scrotum circumference ii) body 
weight iii) libido test.

M-SMS creates reports to analyse ewe performance, identifying both the top and the 
bottom producing ewes in the flock. Time-tune culling decision for ewes was automatically 
generated by M-SMS and notified the breeder through his smartphone. By doing so, 
unproductive ewes are culled on time to avoid their negative impacts on profit margins and 
selecting replacement ewe lambs from the right ewes improved overall flock productivity. 
The system autonomously improves decisions made on culling through machine learning 
algorithms that are trained by farm data on a weekly basis.

Data Collection Station

Data Collection Station is a three meter long, 3-way sorting drafting gateway that is 
equipped with sensors to collect weight data, and RFID tag of the animal as well as the 
operation performed on the animal inside the unit. The unit is equipped with 3-way 
drafting, ultrasound scanning unit, weight platform and RFID reader to get an individual 
recording of the animal for different purposes of productivity measurements. Single 
station for multiple purposes was used to precisely collect animal data.

Cloud Computing

Cloud Computing is a natural fit to enable precision flock management on a farm, in a way 
that it utilises sensors attached to an auto drafting unit, and electronic tags attached to 
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the animals to facilitate data collection. All these devices are IoT devices connected to a 
cloud system, and they push data when a critical event occurs on the farm. It is the cloud 
infrastructure that collects, measures, analyses and suggests improvements.

Mobile Flock Management Software

The Mobile Sheep Manager Software (M-SMS) is aimed at sheep farmers who need an easy to 
use “point and click” solution to keep legislative records and build flock performance data.  
The product is an invaluable support for purchase, cull or breed decisions based on targets 
of flock performance. It provides suggestions with no bias, purely based on farm data.

Results and discussion

The Mobile Sheep Manager Software and other integrated tools for precision flock 
management increased significant efficiency of an intensively managed sheep farm for 
lamb production. Users performed very well in adapting to tools when animals are needed 
to be sorted, weighed, treated and scanned.

Precision management of pregnant ewes reduced neonatal lamb mortality from 13% to 
5%. Pregnancy rate in ewe lambs increased from 70% to 94% thanks to steady growth 
which was assured by M-SMS. Thomas (2002) suggested that level of nutrition should be 
targeted towards maintaining a gain of at least 0.4 lbs/day before and throughout breeding. 
Another achievement for reproductive success was the 20% increase in the mature ewes in 
accelerated eight-monthly lambing schedule. Total productivity of ewes was recorded as 
average 44 kg which is 14 kg more than previous years. Barren ewes’ ratio was significantly 
reduced from 10% to 3%.

Efficient use of feed energy has an important link for both in animal welfare and 
environmental impact. Norton and Berckmans (2018) emphasised the fact that we need 
more animal product with less feed, less manure and emissions. In our current study, feed 
cost was found to be one of the strategically important improvements with 23% decrease 
recorded for total feedstuffs used per ewe.

There is no doubt that Precision Flock Management is potentially one of the most powerful 
technology to revolutionise the intensive sheep farming industry. The significant result of 
this study is that if properly implemented M-SMS could definitely improve farm profitability 
increase in animal welfare and reduce labour and feed costs. PFM developed and tested 
in the case study farm within EU Project (iSAGE), quickly took interest of other intensive 
sheep farmers which shows successful commercialisation potential of this technology. 
As stated by researchers (Thysen, 2000 and Lewis, 1998) for the other livestock industries 
and agribusiness, we found that efficient information management is very much a part 
of profitable intensive sheep production. Farmers and/or investors choosing intensive 
sheep farming showed great interest and were found to be quite convincing when using 
M-SMS applications which supports the operational aspects of sheep farming in intensive 
management system.

The challenge to the sheep breeding M-SMS development is to organise the flow of data 
and the proper interpretation of data. When sheep are raised under an intensive system, 
organising the data collection and interpretation of the data is less complex compared 
to semi-intensive and extensive system in which environmental and external factors are 
much more complex.

Conclusions

It is concluded that through the adoption of M-SMS for precision sheep breeding has the 
potential to improve production efficiency and reduce costs. To ensure that the potential 
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of M-SMS is developed for intensive sheep breeding, we need to verify it in the same flock 
for a lifetime cycle; also in different genotypes used for maternal line and different market 
needs for commercial lambs in terms of slaughter weights and ages.
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Abstract

The quantification of grazing behaviour of free-ranging animals such as sheep can help 
to improve the efficiency of animal production on rangelands. The understanding of the 
interaction between animals and sward characteristics can be investigated based on 
detailed knowledge of the grazing process of animals. However, there are few sensors 
available to measure grazing behaviour of sheep for long-term periods. The RumiWatch 
noseband sensor is an automated measurement system, which is already validated and 
established for recording feeding behaviour of cows and horses. The objective of this study 
was (1) to validate two versions of prototypes of the RumiWatch noseband sensor, which 
were adapted to sheep and (2) to analyse the agreement, when raw data were converted 
with two different analysis software versions. Visually observed behavioural data for 16 
Merino sheep were compared against data automatically gathered by the sensors. These 
sensor systems are able to record data of detailed grazing behaviour (such as grazing and 
rumination time). The results demonstrated that there is a high correlation detected for 
measuring grazing behaviour of sheep with the analysis software of cattle. There is an 
influence on the accuracy of the sensor based on the analysis software version as well as 
the prototype, the results are ranging between a Pearson’s r of 0.90 and 0.95 for grazing 
time and r = 0.70 and r = 0.88 for rumination time, respectively. These results showed that 
there is potential to use the RumiWatch system for measuring grazing behaviour of sheep.

Keywords: grazing management, feed intake, ewes, rumination, pasture

Introduction

Optimised grazing management systems seek to control the relationship among animals, 
plants and soil by regulating the number of animals and the duration and location of 
animals. This does include a greater understanding of diet selection and activity of 
livestock within grazing systems (Cox et al., 2017). Grazing behaviour as well as pasture 
intake (and the efficiency of its use for liveweight gain) for various livestock species 
has always been difficult to measure long-term under field conditions (Cottle, 2013). In 
comparison to housed animals with feed provided, the quantification of the feed intake on 
pasture is difficult to obtain. On pasture, some approaches to quantify the intake are based 
on either plant biomass or animal parameters (Rombach et al., 2019). However, some of 
the measurement methods can disturb normal grazing behaviour and interfere with the 
intake (Cottle, 2013). Therefore, a sensor technology, which can automatically gather data 
on grazing behaviour without inhibition of natural behaviour can be beneficial.

There are already various approaches to using sensor technology to measure grazing 
behaviour on cattle (e.g. Andriamandroso et al., 2016), however, the application of the 
sensors on sheep is limited. The RumiWatch noseband sensor is a commercially available 
sensor technology, which is able to gather detailed grazing behaviour of dairy cows, such as 
grazing and rumination time as well as a classification of jaw movements into grazing bites 
and rumination chews (Werner et al., 2018). This technology was therefore adapted to be 
tested in a pilot study on grazing sheep. For this, the noseband was reduced and the halter 
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was modified to fit on a sheep’s head. The first aim of the study was to test two different 
prototypes of the noseband sensor for sheep. One sensor had the datalogger and battery 
placed on top of the head, whereas the other one had the technical components placed 
on the right side of the cheek. Without any further adaptations of the generic algorithms 
in the analysis software (RumiWatch Converter), the automated measurements of the 
noseband sensor were compared against the gold standard of visual observation. There 
are various different versions of the RumiWatch Converter available depending on the 
species, e.g. cattle or horses, and depending on the feed intake behaviour of the cattle, 
namely either grazing on pasture, or feeding in a housed system. Therefore, the second 
aim of this study was to compare different RumiWatch Converter versions against visual 
observation to assess the agreement.

Material and methods

The trial was conducted at the research station for sheep “Oberer Lindenhof” of the 
University of Hohenheim in Eningen, Germany over a period of four weeks from 14 August 
to the 07 September 2018. The experimental area was permanent grassland with ryegrass, 
meadow grass as well as clover and herbal contents. The average sward height was 4.3 ± 
1.7 cm.

Experimental design

In total, there were 16 merino ewes selected, which were accompanied by their lambs. A 
group of four ewes per week was kept separately in a paddock for visual observation. The 
average body weight of the ewes was 73 ± 10.4 kg, with a mean number of lambs of 1.3 
± 0.4 and a mean lambing date of 27/07/2018 at the beginning of the experiment. During 
the experiment the group of focal sheep was kept on the paddocks from 08:00–16:00 h and 
was supplemented in the barn with hay. Prior to sending the sheep to the paddock, each 
morning two of the sheep were equipped with the noseband sensors, which were removed 
when the sheep returned to the barn. The first two days per week, two sheep out of the 
group were equipped with the same sensors, whereas for the last two days of a week the 
focal sheep alternated.

Behavioural data was obtained by visual observation with one observer as a gold standard 
to compare against the automated sensor measurement. There were four measurement 
days per week from Tuesday to Friday. Within each day, there were two, two hour periods 
of observation of two sheep equipped with sensors, where a one minute scan sampling 
protocol was conducted by the observer to classify each minute in either grazing, 
rumination or other activity. “Grazing” was defined as the behaviour for feed intake e.g. 
ripping the grass or mastication of ingested grass, whereas “Rumination” was defined as 
the regurgitation, chewing, salivation and swallowing of ingested grass. If the sheep did 
not show any of the mentioned behaviours, the minute was classified as “Other Activities”. 
The data were recorded on a spreadsheet and were transferred manually to an electronic 
spreadsheet (Microsoft Excel Version 2010; Microsoft Corporation, Redmond, USA) for 
analysis. The observation times per day changed every week and were either 08:00 - 10:00 
hrs and 11:00 - 13:00 hrs or 11:00 - 13:00 hrs and 14:00 - 16:00 hrs to capture the behaviour 
of the sheep over the full grazing period.

The automated sensor system consisted of two prototypes of the RumiWatch noseband 
sensor (Itin+Hoch GmbH, Liestal, Switzerland), which were adapted to fit on sheep. Further 
information about the technical specification of the noseband sensor can be found in a 
study by Werner et al., 2018. On one of the prototypes (head), the datalogger, including 
the accelerometer and the battery supply was placed on top of the head, see also Figure 
1, whereas on the second prototype (cheek), the box with the datalogger and battery was 
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placed on the level of the sheep’s right cheek, see Figure 2. The RumiWatch Manager 
2 (V.2.1.0.0) was used to synchronise both RumiWatch devices to UTC (Universal Time 
Coordinated) at the beginning of the experiment.

Figure 1. Sensor prototype 1 (head), the 
plastic box with datalogger and battery 
placed on the head of the sheep

Figure 2. Sensor prototype 2 (cheek), the 
plastic box with datalogger and battery 
placed on the right side of the sheep’s 
head

Data preparation and analysis

This visually recorded data at one-minute intervals were totalled for one hour periods, 
which included data for the time durations of the specific behavioural classifications, 
which resulted in 100 hours (6,000 min) of valid observations in total.

The automatically captured raw data were converted by two versions of the assigned 
analysis software for the noseband sensor, namely the RumiWatch Converter (RWC). Both 
versions of the RWC were developed for cows. The first version V0.7.3.2 (V2) was developed 
and validated for housed cows by Zehner et al., 2018. This RWC version does not include the 
accelerometer for distinguish the head position of a cow. The second version of the RWC 
V0.7.3.36 (V36) was developed as an advanced version of V2 for grazing cows, see Werner 
et al., 2018. This version integrated the accelerometer to distinguish the head position of a 
cow in either head up or head down, to measure grazing bites and to further improve the 
classification of rumination of cows on pasture.

Statistical analysis was performed using R version 3.5.1 (R Foundation for Statistical 
Computing, Vienna, Austria). A number of tests were conducted to assess agreement 
between data of the noseband sensor and visual observations. A Pearson’s correlation 
coefficient (r) and a concordance correlation coefficient (CCC) was calculated. Interpretation 
of r -values and CCC were based on criteria defined by Hinkle et al., (2003) as follows: 
Negligible = 0.0 - 0.3, low = 0.3 - 0.5, moderate = 0.5 - 0.7, high = 0.7 - 0.9 and very high = 0.9 
- 1.00. Furthermore, the Bland-Altman-analysis was conducted, which indicated the mean 
differences (bias) between the paired automatically recorded and visually observed values, 
as well as the lower and upper 95% limits of agreement (LoA). The limits of agreement 
were calculated as ± 1.96*standard deviation from mean difference.
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Results and discussion

The results of the comparison between visual observation and automated measurement 
for measuring grazing time of sheep are presented in Table 1. The median measured by 
visual observation for grazing time was 28 min/h, while observing sheep wearing the 
head sensor and 30 min/h for the cheek sensor. The automated measurement of the head 
sensor was measuring as a median 33 min/h, when analysed by V2 and 30 min/h analysed 
by V36, respectively. The median value for measuring grazing time by the cheek sensor 
was 36 min/h for V2 and 30 min/h for V36.

The Bland-Altman analysis revealed that the grazing time was slightly overestimated by 
the head sensor in comparison to visual observation with a mean bias of 3.9 min/h, when 
using V2 and 0.1 min/h using V36, respectively. The higher correlation of V36 compared to 
visual observation was also demonstrated in a higher r-value with 0.93 and a CCC = 0.93, 
whereas V2 had a correlation of automated measurement and visual observation of r = 
0.90 and a CCC = 0.88.

Contrary to the results of the head sensor, there was a higher correlation between the 
automated measurement and visual observation detected by V2 with an r-value of 0.95 and 
a CCC-value of 0.93 compared to r = 0.91 and CCC = 0.87 for V36, respectively. The mean 
bias for V2 demonstrated an overestimation of grazing time by the sensor with 3.2 min/h 
compared to visual observation, whereas V36 underestimated the grazing time by -3.7 min/h.

Table 1. Statistical analysis of grazing time with Pearson’s r, concordance correlation coefficient 
(CCC) and Bland-Altman-analysis (mean bias, lower 95% limit of agreement (LoA) and upper 95% 
limit of agreement (LoA) while using different sensor positions and converter versions

Sensor 
position

Converter-
version Pearson’s r CCC Mean bias Lower LoA Upper LoA

Head
V2 0.90 0.88 3.9 -10.4 18.25

V36 0.93 0.93 0.1 -11.7 12.0

Cheek
V2 0.95 0.93 3.2 -7.3 13.6

V36 0.91 0.87 -3.7 -17.5 10.2

In Table 2, there are the results of the statistical analysis for the comparison of visual 
observation to the automated measurement of rumination time presented. Visually 
observed median rumination time, while observing sheep with head sensor, was 3 min/h 
and median visual rumination time for the cheek sensor was 10 min/h. The noseband 
sensor “head” was measuring a median rumination time of 9 min/h for V36 and 3 min/h 
for V2, respectively. V36 analysed a median rumination time for the cheek sensor of 19 
min/h and 11 min/h, when the RWC V2 was used.

In general, the agreement of visual observation and automated measurement was lower for 
rumination time in comparison to measuring grazing time. This is demonstrated in a lower 
Pearson’s r for the head sensor with an r-value of 0.88 for both Converter versions and a CCC-
value of 0.75 for V36 and 0.87 for V2, respectively. The correlation between visual observation 
and the automated measurement for the cheek sensor was also high with an r-value of 0.70 
for V36 and r = 0.87 for V2. There is also a higher agreement demonstrated for analysing the 
raw data with V2 in comparison to V36 when comparing the CCC-values for the cheek sensor 
with a CCC = 0.52 for V36 and a CCC = 0.86 for V2.

For both sensor prototypes, the Bland-Altman analysis revealed that rumination time was 
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overestimated by both sensors regardless of the Converter versions. However, rumination 
time is measured more accurately by the Converter version V2 in comparison to V36, while 
using both prototypes. For the sensor cheek the mean bias for rumination time was lower for 
V2 with 1.3 min/h on average compared to V36 with a mean bias of 7.8 min/h in comparison 
to a mean bias of 1.1 min/h for V36 and 4.5 min/h for V2, when measured by the sensor head.

Table 2. Statistical analysis of rumination time with Pearson’s r, concordance correlation coefficient 
(CCC) and Bland-Altman-analysis (mean bias, lower 95% limit of agreement (LoA) and upper 95% 
limit of agreement (LoA) while using different sensor positions and converter versions

Sensor 
position

Converter-
version Pearson’s r CCC Mean bias Lower LoA Upper LoA

Head
V2 0.88 0.87 1.1 -6.8 9.1

V36 0.88 0.75 4.5 -3.3 12.3

Cheek
V2 0.87 0.86 1.3 -8.7 11.3

V36 0.70 0.52 7.8 -6.6 22.2

Overall the results demonstrated that both sensor prototypes are able to measure 
grazing time accurately with a high or even very high correlation in comparison to 
visual observation. However, depending on the Converter version, there was a better 
correlation detected for grazing time, when the raw data captured by the sensor head were 
analysed with V36 compared to V2. This might be due to the reason that the converter 
V36 is integrating the accelerometer measurements to detect grazing behaviour of cows. 
Although the positioning of the datalogger and accelerometer differed from the position 
of the technical components on a cow’s head, there was still a higher correlation and a 
lower mean bias for the head sensor then the cheek sensor for measuring grazing time. 
The difference in the grazing behaviour of both species might influence positively the 
better detection of grazing by the head sensor than by the cheek sensor, as the sheep are 
not ripping the grass with their tongue, accompanied by a very special head movement 
as it can be seen by a cow. This specific movement is captured by the accelerometer of 
the sensor technology with Converter version V36 and can be integrated in a successful 
detection of grazing bites. This fact is also enhanced by the result of the cheek sensor, which 
had a higher correlation of visual and automated measurement for V2 than V36. Within 
the Converter V2, which was developed for housed cows, the algorithms do not include 
the accelerometer measurements to a larger intention for measuring feeding behaviour 
of cows. Therefore, this version is less sensitive to detect specific head movements. This 
might explain the better accuracy of measuring grazing time when using the Converter 
V2 and the prototype cheek.

Contrary to the measurement of grazing time, there was a higher correlation detected 
by the head sensor for measuring rumination time with the Converter version V2. As 
described before, this might be also due to the decreased sensitivity of V2 in comparison 
to V36. Therefore, the less advanced Converter version V2 showed more robust results, 
than the advanced Converter version V36.

The RumiWatch noseband sensor is also able to classify each jaw movement of cattle 
into either grazing or mastication bite, rumination chew or any other jaw movement, 
which is not assigned to any mentioned category. In further studies, this might be the next 
level to test the feasibility of the noseband sensor to also measure those parameters for 
sheep. However, the accurate recording of grazing time and rumination time is already 
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an improvement to laborious visual observation. The application of the automated 
measurement over long-term periods may now deliver a better understanding of grazing 
behaviour of sheep and is also beneficial for an improved grazing management.

Conclusion

The results of this pilot study on sheep demonstrated that it is possible to measure grazing 
and rumination time on a 1 h resolution accurately with the RumiWatch noseband sensor 
based on the cows’ analysis software. Depending on the parameter, the converter version 
and the positioning of the datalogger and the accelerometer influenced the accuracy. 
This means that the highest correlation between visual observation and automated 
measurement was detected for grazing time while using the head sensor with the 
Converter version V36. In comparison to this, for rumination time, the highest correlation 
was detected for the head sensor with using Converter version V2. These results give a 
first indication for further development of the sensor technology to be used on sheep. For 
a high accurate sensor technology to measure grazing behaviour, a tailored hybrid version 
of the Converter versions to sheep`s behaviour may be beneficial. Combined with further 
data collection and improvements on the correct positioning of the technical components 
on a sheep’s head, the application of the RumiWatch on sheep can be realised.
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Abstract

The aim of this project was to develop a model capable of predicting day of lambing from 
GNSS data. A field trial was conducted in New Zealand over a two-week period from 
September to October 2017. Forty ewes were fitted with GNSS tracking collars, recording 
at three-minute intervals. Animals were visually observed to record birth events. Of the 
40 ewes, 25 lambed during the experimental period. A heuristic model was developed to 
predict the day of lambing by classifying ewes as either ‘non-lambing’ or ‘lambing’ on each 
day of the study based on her speed of movement, mean distance to peers and extent 
of spatial landscape. Predictions were based on the series moving over or under a given 
threshold, determined through estimated least-square means from the linear mixed-
effects statistical analysis. The overall accuracy of the model was 83.0%, with a sensitivity 
of 63.6% and specificity of 84.1%. The results of this project highlight the potential for 
GNSS tracking for  post-hoc  detection of lambing events. This could be used to inform 
graziers on the status of individual animals and their flock as a whole, particularly in 
extensive farming systems where close observation may be limited. Further work should 
be conducted on larger datasets to improve reliability of results.

Keywords: behaviour monitoring, GNSS, movement metrics, parturition, sheep, spatio-
temporal

Introduction

Appropriate animal welfare is critical for all livestock production systems. Whilst historical 
focus has been on welfare standards for intensively-raised animals, issues associated 
with extensive production systems are still significant. In countries such as Australia 
where farm size can be taken to the extreme, large stock numbers and little manpower 
often make regular inspection of animals difficult (Petherick, 2006). In neighbouring New 
Zealand, whilst farms are not as physically large, many cover mountainous terrain (Kelly 
& Smith, 2012) which can also make animal inspection problematic. This raises concerns 
for complying with welfare standards.

Autonomous on-animal sensors offer a solution to this issue, improving capabilities for 
monitoring individual animals. This is particularly attractive during critical times of an 
animal’s life, for example, parturition where the welfare and productivity of both the 
mother and offspring are challenged. Previous studies by Dobos et al. (2014) and Dobos et 
al. (2012) have examined behavioural changes in ewes using GNSS technology. In Dobos et 
al. (2014) mean daily speed decreased at lambing and mean distance to peers increased 
on the day of birth. In Dobos et al. (2012), pregnant Merino ewes significantly reduced their 
home range size on the day of lambing compared to the seven days prior. While the ability 
of Global Navigation Satellite System (GNSS) sensors to detect behaviour change is clear, 
the use of this data to develop predictive models is yet to be widely explored.

This study used GNSS tracking collars to monitor sheep behaviour at parturition. Metrics 
derived from sensor data were then used to develop a heuristic model that could indicate 
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if a ewe had given birth within a 24 h period. This represents the first attempt to develop 
a post-hoc predictive model for lambing detection at a day-scale.

Material and methods

Experimental data

The field trial was conducted at a mixed enterprise property in North Canterbury, New 
Zealand from September to October 2017. Forty pregnant ewes (20 twin-bearing and 
20 single-bearing) were randomly selected from the larger commercial flock based on 
confirmed pregnancy and expected lambing day. Ewes were fitted with GNSS tracking 
collars recording at three-minute intervals. Ewes were also fitted with identification bibs 
to allow individual recognition from a distance. After collar and bib attachment, ewes were 
monitored for signs of distress before being moved to the experimental paddock (3.09 ha).

Ewes were observed from a neighbouring paddock using binoculars. Video observations 
were also conducted. Animals were observed ab libitum to record birth events for a total 
of 14 days. Collars and bibs were removed and downloaded at the conclusion of the trial.

GNSS data analysis

GNSS data was downloaded and processed using R (R Core Team, 2018). Speed of travel 
between consecutive GNSS locations was calculated and speeds > 3 m s-1 were excluded 
(Taylor et al., 2011). A moving average for each location was then calculated using the two 
preceding and two following values. All data analysis was conducted using this dataset, 
with the exception of 95% minimum convex polygon (MCP) calculation where data was 
‘trimmed’ to exclude any locations apparently outside of the paddock boundaries.

The data was then randomly split into a 50:50 training and test set, with individual 
animals allocated in their entirety. The following metrics were calculated: (i) daily speed 
of movement (mean, minimum, maximum); (ii) daily mean distance to peers; and (iii) 
daily paddock utilization by way of MCP. This was analyzed using a linear mixed-effects 
models with significance of P < 0.05. Least-square means (Lsmeans) were generated with 
Tukey adjustment.

Heuristic model development

A heuristic model was developed to predict the day of lambing by classifying ewes as either 
‘non-lambing’ or ‘lambing’ on each day of the study based on her speed of movement 
(mean, maximum and minimum), mean distance to peers and extent of spatial landscape 
utilisation (95% MCP). Predictions were based on the series moving over or under a 
given threshold, determined through estimated Lsmeans from the linear mixed-effects 
statistical analysis.

Results and Discussion

Of the 40 ewes, 25 lambed during the experimental period. Three ewes were removed from 
analysis due to GNSS collar failure or incomplete datasets.

The estimated lsmean based on the training dataset is shown in Table 1. These were used 
as the threshold values in model development. If the calculated daily values for each 
animal were below (mean, maximum daily speed, 95% MCP) or above (minimum daily 
speed, mean distance to peers) the threshold, this was flagged as a potential ‘lamb’ day. 
The heuristic model developed dictated that animals had to be flagged for at least three of 
the five criteria to be classified as ‘lambing’.
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Table 1. Estimated least square (Lsmean) for day of lambing. Values include standard error (SE)

Metric Lsmean ± SE

Mean daily speed (m s-1) 0.044 ± 0.002

Maximum daily speed (m s-1) 0.18 ± 0.03

Minimum daily speed (m s-1) 0.011 ± 0.0007

Mean distance to peers (m) 30.8 ± 0.08

95% MCP (%) 49.8 ± 2.55

The overall accuracy of the model was 83.0%, with a sensitivity of 63.6% and specificity 
of 84.1%. Of the 11 animals assessed, seven lambing days were correctly identified. These 
results are summarized in Table 2.

Table 2. Confusion matrix where values in bold are correct observations

Predicted
Observed behaviour

Lamb Non-Lamb

Lamb 7 33

Non-lamb 4 174

As shown in Table 2, whilst the model correctly identified the majority of true lambing 
events, 33 non-lambing days were also classified as lambing (i.e. false positive). In a real-
life situation, this number of false alarms would not be practical. Thus, there is a need 
for further development of a model that reduces the number of false alarms but ensures 
true events are not missed. Research should also be conducted using a larger number of 
animals and with an improved validation of the model with an independent data set or 
cross-validation procedure.

Given this model has been developed using specific threshold values, we would not expect 
this model to have universal application across all sheep systems. Instead, this model 
represents a first attempt to develop a heuristic model for lambing prediction in an effort 
to explore how GNSS data could be applied in a commercially available tracking system.

Conclusions

This study supports the use of GNSS tracking for post-hoc detection of lambing events. 
This information could be used in the development of online detection models that can 
detect if a ewe has given birth in the preceding 24 h. This information would be beneficial 
for graziers, allowing them to improve management of their animals, particularly in 
extensive farming systems where close observation may be limited. There is an obvious 
opportunity to move on from this basic heuristic modelling process to more advanced 
machine learning and time series analysis, and this will be explored in future work.
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Abstract

The global population of 10 billion expected by 2050 will require an increase in food 
production of approximately 70%. Increasing productivity, sustainability, decreasing 
ecological footprint of agriculture, and improving health (animal, human, plant) are 
some challenges faced by agriculture today. Approaches such as precision livestock 
farming (PLF) are required to meet growing demands for animal products. Successful 
implementation of PLF requires a multidisciplinary approach from experts in academia, 
industry, government and nongovernmental sectors. Governments play an essential role 
by establishing policies, supporting precompetitive research, spurring innovation through 
translation of research by industry, and facilitating adoption of research findings by users 
such as farmers, ranchers, processors and consumers. The U.S. Department of Agriculture 
National Institute of Food and Agriculture (USDA-NIFA) is the USDA’s primary extramural 
science agency that administers funding for programs to advance agriculture-related 
sciences. The goal of this study was to characterise the agency’s past contributions in PLF 
research and education, and to define key challenge areas and opportunities. To date, U.S. 
investments in precision agriculture have focused on crops rather than animals. NIFA has 
invested 14 million USD in 50 competitively funded projects over the last decade. Of these, 
the major concepts include diseases, emissions and tool development. As USDA moves 
forward with a focus on new technologies to increase profitability in American agriculture, 
it anticipates that there will be opportunities for collaborations in PLF. The results of this 
study may help chart the future directions in supporting PLF research at the federal and 
global level.

Keywords: Federal research investments, international collaborations, National Institute 
of Food and Agriculture, precision livestock farming

Introduction

The global population of 10 billion expected by 2050 will require an increase in food 
production of approximately 70% (FAO, 2009). Animals supply 43% of total protein in 
human diets world-wide (FAO, 2010) and the demand for animal products will double 
by 2050 (Figure 1) (Alexandratos & Bruinsma, 2012; Chan et al., 2017). To meet future 
demands, animal agriculture will need to boost production and do so while maintaining or 
reducing its requirements for land, water and feed. Moreover, adjustments to fluctuating 
production factors associated with climate change and consumer preference shifts must 
be made. Additionally, decreasing ecological footprints and improving health of animals, 
humans and plants are some grand challenges faced by agriculture today.
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Figure 1. Global demand for animal products is expected to dramatically increase
Source: Alexandratos & Bruinsma, 2012; Chan et al., 2017

Animal production approaches that better utilize technologic innovation, such as precision 
livestock farming (PLF), are required to meet growing demands for animal products. We 
encompass traditional livestock species along with poultry, bees, and aquaculture species 
when referring to PLF. Defined as the continuous real-time monitoring of individual 
animals for health, welfare, production/reproduction, and environmental impact to 
improve management (Berckmans, 2017), PLF has potential to dramatically transform the 
animal agricultural industry. Technologies utilised in PLF have tremendous potential to 
increase farm profitability, reduce labour needs, and create higher paying jobs in rural 
areas. Three main components encompass PLF activities:

1) machinery, equipment, and instrumentation (including drones, robots, sensors);

2) digital tools: data analytics, databases, and decision support systems;

3) and social and economic factors, including technology adoption, education, economics 
and workforce development.

Successful development and implementation of PLF technologies require a 
multidisciplinary approach involving experts in academia, industry, government and 
nongovernmental sectors. Governments play an essential role by establishing policies, 
supporting precompetitive research and facilitating translation of research by industry. 
To chart future investment opportunities in PLF from federal sources it is important to 
understand the role of government in R&D. Global spending on R&D has reached an 
all-time high with investments of 1.7 trillion USD (Unesco, 2019). The top 10 investing 
countries all have a high percentage (average 66%) of total R&D investments from the 
private business sector. Moreover, about 80 cents per dollar of private sector investment 
targets development to minimise risk (Hourihan & Parkes, 2016). The private sector 
performed 53% food and agriculture research in the U.S. in 2007 (USDA-ERS, 2012), and 
the economic return of public federal investments is estimated at 45% (USDA-ERS, 2008). 
High risk public investments are successful. For example, federally funded university 
researchers produce more high impact breakthroughs compared to projects funded from 
non-federal sources (Corredoira et al., 2018). To maximise the impact of limited resources, 
federal investments must complement those of the private sector.

The United States maintains a robust federal agricultural research enterprise and 
educational programs through the U.S. Department of Agriculture’s (USDA) intramural and 
extramural science, which helps to protect, secure and improve U.S. food, agricultural and 
natural resources systems. The USDA National Institute of Food and Agriculture (NIFA) is 
the USDA’s primary extramural science agency that administers funding for programs to 
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advance agriculture-related sciences. NIFA is increasing its investment across precision 
agriculture disciplines through many programs. The goal of this study was to characterise 
the agency’s contributions in PLF research and education and highlight potential areas of 
international collaboration. The results of this study may help chart the future directions 
in supporting PLF research and education at the federal and global level.

Materials and methods

U.S. federal landscape in precision agriculture

The U.S. federal investment in precision agriculture was characterised across various 
funding agencies using Federal RePORTER (https://federalreporter.nih.gov/), a U.S. federal 
repository that includes award information on more than one million projects funded 
by 18 federal science agencies between years 2006-2018, with the search term precision 
agriculture. A topic model is automatically generated based on word frequency in results.

NIFA investments and focus in PLF

The Cooperative Research Education & Extension Management System (CREEMS) internal 
NIFA database of competitively-funded projects was manually curated to identify PLF projects 
funded between years 2008-2018. The number of projects and total funding are reported. 
From projects, concepts were identified using a knowledge-discovery tool, Pushgraph®, 
(https://chalklabs.com/pushgraph/) (Herr II et al., 2009). To generate the base map of NIFA-
funded research reported in its Current Research Information System, the content of each 
grant was assessed using topic modeling, an unsupervised machine-learning method based 
on a modified latent Dirichlet allocation algorithm that uses statistics of co-occurring words 
in the grants’ titles, keywords, and abstracts. Co-occurrence network relationships among 
terms in the corpus of analysed abstracts were constructed and visualised from text mining 
using VOSviewer (http://www.vosviewer.com/) (Van Eck & Waltman, 2011).

Opportunities in PLF at NIFA

The competitive grant programs at NIFA that represent opportunities for funding PLF 
science are summarised for the agency’s Agriculture and Food Research Initiative 
(AFRI). Finally, current international partnerships are summarised to highlight potential 
collaborative opportunities between U.S. researchers and those around the world.

Results and discussion

U.S. federal landscape in precision agriculture

The U.S. federal investment in precision agriculture as reported by 18 science agencies in 
Federal RePORTER is over 106 million USD across 294 projects (Figure 2a,b). NIFA accounts 
for over 50% of the total awards (151/294) totalling 34 million USD with investments 
focused largely on crops and management systems (Figure 2a,b).

It is important to note that traditionally precision agriculture has referred to crops. Most 
scientific gatherings on PLF have taken place outside of the United States, with two recent 
events held here. A symposium entitled, ‘Precision Livestock Farming to increase producers’ 
profitability’ was held at the American Association of Animal Science conference on 06 
July 2018 (Moroto et al., 2018) and another at Iowa State University entitled, ‘Precision 
Livestock Farming Workshop’ on 06 December 2018. One limitation in identifying relevant 
activity in PLF research is that researchers do not consistently use the same terminology. 
For example, researchers often use the term high-throughput phenotyping to describe 
technologies that take many measurements that could be used in management decisions 
such as breeding. One recommendation is for researchers to start using the term PLF 
more consistently. This would reduce duplication, allow effective portfolio analyses of 
investments and impacts, and help chart future directions in PLF effectively.
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Figure 2. U.S. federal landscape in precision agriculture. a) A visualisation of data from Federal RePORTER 
indicates the precision agriculture topic themes across the top 3,500 relevant projects funded by 18 U.S. 
federal science agencies; b) A bar graph shows the number of funded projects in precision agriculture 
across six federal science agencies with data labels indicating the total investment in millions of U.S. 
dollars from 2006-2018. (NSF: National Science Foundation. ARS: Agricultural Research Service. CDC: 
Centers for Disease Control. FS: Forest Service. NIH: National Institutes of Health)

NIFA investments and focus in PLF

Manual curation of the CREEMS internal NIFA database revealed 50 projects funded in PLF 
totaling over 14 million USD from 2008-2018. The project titles, abstracts, and keywords 
were analysed using Pushgraph and VOS Viewer for concepts and terms to develop co-
occurrence networks (Figure 3a,b) revealing disease/welfare was the major concept 
addressed in precision agriculture projects constituting 43% of the total. The co-occurrence 
networks revealed four major term clusters focused on health, emissions, detection methods 
and producers. The results focused on health is in alignment with EU-PLF efforts. Some 
examples of projects include dairy cattle lameness detection, pestiferous fly infestation 
modelling, and goat rumen bolus monitoring. Furthermore, emission/environment was 
the second largest concept area constituting 20% of funded projects, mainly ammonia 
sensors in the Small Business Innovation Research (SBIR) program. Recently, a grant in 
the Education and Workforce Development (EWD) program funded a project entitled 
‘Mentoring undergraduate students in precision livestock production for the 21st century.’

Figure 3. Concepts and network of NIFA’s investments in PLF: a) Relative per cent effort in topics in 
PLF projects; b) Term map depicting relationships among topics in PLF projects. The size of circles 
indicates relative importance, colours indicate clusters of related terms, and the distance between 
two terms can be interpreted as an indication of the relatedness of the terms
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Return on investments and new U.S. initiatives in PLF

The return on public investments in specific areas of research, education, and extension is 
difficult to quantify because of the diversity of funding sources, complex paths of innovation, 
and long timelines for most of applications. Across all agricultural fields the economic return 
of public federal investments is estimated at 45% (USDA-ERS, 2008). A 2017 report on NIFA-wide 
competitive grant funding illustrates impacts at the project level (https://nifa.usda.gov/sites/
default/files/resource/NIFA-2017-Annual-Report.pdf). The adoption rates and U.S. federal 
investment of precision ag technologies are highest in cash crops (e.g. corn and soybean) with 
large acreages compared to livestock and specialty crops. This difference can be explained 
because of potential for high rates on return despite the substantial investments needed in 
the beginning. This presents an opportunity for high return on investments in PLF because 
public investments at this early stage of development and adoption may lower the risk for 
the industrial development of PLF technologies for the marketplace. New U.S. initiatives and 
programs may support future investments in PLF. For example, the recent U.S. Presidential 
Executive Order on Maintaining American Leadership on Artificial Intelligence (https://www.
whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-
artificial-intelligence/) highlights the opportunities for AI in applications. The USDA recently 
launched the ReConnect program (https://www.usda.gov/reconnect/program-overview), and 
anticipates connectivity will be dramatically improved in rural areas of the U.S., including 
farmland. Finally, the USDA released the Animal Genome Blueprint for 2018-2027 (Rexroad, 
2019) that includes goals focused on advancing PLF research.

Opportunities in PLF at NIFA

Numerous programs invest in or could potentially fund PLF research and education at 
NIFA mainly in AFRI (Table 1), NIFA’s flagship extramural grants program.

Data, digital agriculture and artificial intelligence: NIFA has invested a significant amount 
in PLF disease and emissions work, however, the data generated by this work has yet to 
realise its full potential. Based on extensive engagement and stakeholder input, NIFA is 
increasing investments in data analytics and digital agriculture. To address the needs, 
NIFA launched the Food and Agriculture Cyberinformatics and Tools (FACT) program in 
2017. Through the FACT initiative NIFA is investing 21 million USD across AFRI programs 
in FY2018. Decision tools for PLF and much-needed curated data for building those tools 
can be supported through the FACT program area.

Specialty products and livestock: NIFA invests in special commodity crops/animals that 
require new solutions and tools that industry has little incentive to tackle (e.g. fruits and 
vegetables, goats, and bees). Based on our analysis, most prior PLF work has focused on 
plants, revealing a critical need to invest in animal PLF.

Social, economic, educational, and workforce factors: NIFA is well equipped to fund efforts 
in the socio-economic realm (impacts, unintended consequences, perceptions, markets), 
including the impact of automation on labor needs. NIFA training programs span from 
informal methods (e.g. 4-H) to formal training at K-20 to Beginning Farmer & Rancher 
Development program. Training and workforce development are needed to move PLF 
innovations through the pipeline to the farmer.

The Department of Homeland Security reported only a few countries (China, Brazil, 
U.S., Australia, and those in the E.U.) currently have commercial facilities that use PLF 
(DHS, 2018). To make real progress in PLF global partnerships are required to leverage 
investments. Table 2 lists current international partnerships that could fund PLF efforts. 
These partnerships require contribution from both the U.S. and the other countries to 
fund scientists working outside the U.S.
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Table 1. Main programs supporting precision livestock farming at the U.S. Department of 
Agriculture’s National Institute of Food and Agriculture

Agriculture and Food Research 
Initiative* program area Description

Machinery, 
Equipment, and 
Instrumentation

Agriculture Systems and Technology
Blending of biological, physical, and 
social sciences to improve agriculture.

Cyber-Physical Systems

Partnership with U.S. National 
Science Foundation that integrates 
computational algorithms and 
physical components.

National Robotics Initiative
Partnership with multiple agencies to 
develop robots that work cooperatively 
with humans.

Digital

Critical Agricultural Research and 
Extension

Addresses critical challenges and 
opportunities that combine research 
and extension to improve agriculture.

Critical Techniques, Technologies 
and Methodologies for Advancing 
Foundations and Applications of Big 
Data Sciences and Engineering

Partnership with NSF that funds novel 
approaches to further develop the 
interdisciplinary field of data science.

Food and Agriculture Cyberinformatics 
Tools Initiative

Cross-cutting big data, analytics, and 
tool development.

Social, Economic, 
Education, 
and Workforce 
Factors

Agriculture Economics and Rural 
Communities

Promotes economically, socially, 
and environmentally sustainable 
agriculture and resilient rural 
communities.

Education and Workforce 
Development

Addresses projected shortfalls in our 
agricultural graduates.

Table 2. International partnerships that could fund PLF at NIFA

Name Country Description

Partnerships for Enhanced 
Engagement in Research 
(PEER)

Multiple

Partnership between U.S. researchers with 
eligible NIFA awards can opt to partner with 
developing country scientists seeking to be 
funded by USAID.

Binational Agricultural 
Research and Development 
Fund (BARD)

Israel
Partnership between U.S. and Israeli scientists 
and engineers.

Ecology and Evolution of 
Infectious Disease (EEID)

U.K
Interagency program to address transmission 
dynamics of infectious diseases.

U.S.-Ireland Research and 
Development Partnership 
(Tripartite)

Ireland and 
Northern Ireland

Partnership to collaborate in developing 
solutions to priority challenges in agriculture.

Joint Programming Initiative 
on Antimicrobial Resistance 
(JPIAMR)

European 
consortium

Supports research projects and networks that 
enable U.S. and European researchers to tackle 
the global challenge of antimicrobial resistance.
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Conclusions

In conclusion, USDA-NIFA is the primary federal agency supporting precision agriculture 
science activities in the United States. Traditionally, the primary focus of these activities 
was technologies associated with economically important crops, with relatively little 
investment in animal-related precision agriculture.

NIFA invested 14 million USD in 50 competitively-funded projects over the last decade. Of 
these, the major foci were concepts of health and disease, emissions, and tool development. 
More recently, significant needs were identified in collaboration with stakeholders to 
increase data analytics. Therefore, NIFA will be strategically investing in these efforts 
along with other relevant PLF needs. Most scientific gatherings on PLF have been held 
outside of the U.S., indicating a need for international collaborations.

As USDA moves forward with a focus on new technologies to increase profitability in 
American agriculture, it anticipates that there will be opportunities for collaborations in 
PLF. The work presented here is intended to help chart the future directions in supporting 
PLF research and education at the federal and global level.
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Abstract

This paper summarises the results of sensor technology status survey and questionnaire 
among medium and large dairy farms of Finland (N = 192). The purpose of the study 
was also to define specific needs and challenges related to on-farm milk fat/protein and 
on-farm silage composition analysers. Findings showed that responded Finnish medium-
size dairy farms have high utilization rate of various on-farm sensor technologies. The 
importance vs present performance gap was high for the silage measurement solution 
and especially its response speed and accuracy. Similarly, the need is for accurate and fast 
milk fat/protein sensors, although the importance -performance gap depends significantly 
on the type of milking system used in the farm.

Keywords: sensor, milk composition, silage composition, analyser, automated milking 
system, milking parlour

Introduction

In modern dairy farms, sensors are key elements to control and monitor production in 
real-time for optimizing farm processes effectively. Sensors are primary data sources and 
enablers of modern data-based farm management and precision farming, in general. 
For the sensor development, it is vital to understand what dairy farmers want and what 
factors contribute to the market success. However, only few studies have been reported, 
such as a survey of sensor systems in Dutch dairy farms (Steeneveld & Hogeveen, 2015). 
In this study we conducted an overview of the sensor technology utilisation in large and 
medium-size dairy farms (> 50 cows) in Finland.

The sensors in dairy farms include e.g. mastitis, ketose, estrus, progesterone, milk physical 
properties and composition, somatic cell counters as well as wearable activity sensors 
such as for heat, movement and rumination. In addition to overview of sensor utilisation 
in Finland, our emphasis in this study is to understand farmers needs related to on-farm 
sensor technologies for feed and milk composition.

Namely, today in Finland, the milk and feed composition analyses rely predominantly on 
laboratory services and not on farm deployable sensors nor real-time data. The laboratory 
analyses requires sampling and sending the samples to the laboratories causing labour 
and other costs, time delays and potentially unrepresentative sampling. Many of these 
challenges could be overcome by on-farm measurements.

The commercial laboratories conduct the feed and milk analyses using typically Near-
infrared spectroscopy (NIRS) with laboratory validated methodology of quantitative 
analyses (e.g. Nousiainen et al., 2004). The recent development of miniaturised NIRS 
components and instrumentation technology has facilitated low cost sensors with 
continuously improved accuracy for field deployable and on-farm use scenarios (e.g. 
Malinen et al., 2014). Therefore, in this study, we focused on identifying market success 
factors for the on-farm NIRS sensor development for milk and feed composition.
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Material and methods

Data collection

Data collection method was a web-based survey and questionnaire executed in spring 
2018 and targeted to 1,000 randomly chosen Finnish dairy farms with > 50 cows. The 
mailing list was generated from Faba (cooperative corporation, livestock owner’s breeding 
service provider in Finland) customer base which covers > 90% dairy farms in Finland. By 
narrowing the target group by herd size, the survey consciously aimed at reaching modern 
and developing farms.

Responder statistics (compared to average Finnish dairy farms)

The responded farms (N = 192) represented geographical distribution of Finnish dairy 
farms i.e. were predominantly located in Central and Eastern Finland. Responded farms 
had < 70 cows (45%), 70 - 120 cows (31%) and > 120 cows (23%), while national average 
is 36.8 cows (Luke, 2019). The annual energy corrected milk production was 8,000–10,000 
(38%), 10,000–12,000 (56%) and > 12,000 (6%) kg, while national statistics average was 9,239 
kg ECM per year in 2017. Organic milk producers were not distinguished in this survey (c. 
3% of cows in Finland, 2017).

Official lab-service based milk yield recording was utilised by 93% of responders (81% 
on average in Finland, Nokka, 2018). The responders stated that 70% of them had an 
automated milking system (AMS) and 20% had a milking parlour. Survey also identified 
the AMS supplier and shared by Lely (55%), DeLaval (40%) and others (4%). In addition, 
73% of responders stated they produced silage by themselves, while contracting in various 
ways employed 42%.

Importance - Performance gap analysis

As a special questionnaire methodology we used importance - performance gap analysis 
(IPA), introduced originally by Martilla and James (1977) for market research. The method is 
initially developed to identify which attributes of any product or service should be improved 
to become more competitive in the market. Although it is widely usable method, it has not 
been employed much to evaluate market needs for new technological opportunities. In 
this study, the IPA method was carried out to identify farmer needs separately for milk fat/
protein and for silage dry matter and protein analysis. The asked attributes also contained 
speed and accuracy of these measurements. The responders were asked to score the 
attributes separately for importance and performance. The importance-performance gap 
is determined as X = Y - Z, where X is the gap, Y is importance and Z is performance. The 
higher the gap value, in the relative data set, the higher is the need.

Results and discussion

Sensor utilisation status

Table 1 summarises the result of sensor use on dairy farms. Of the responders, 97% used 
at least one sensor from the given options. The highest overall sensor utilisation was with 
milk physical properties (conductance, colour, temperature), somatic cell count and cow 
activity. The segmented comparison between AMS and milking parlour is illustrated in 
Figure 1. The AMS users dominate the sensor utilisation, especially when it comes to milk 
property related sensors. Notable is that in the cases of silage moisture and composition 
measurements, rapid tests and activity meters, also milking parlour system users appeared 
to be active.
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Table 1. Data from survey responses to the question: What sensors and measurement devices are in 
use on the farm? Responder chose from the given options as listed

Sensor item Number of farms (N =192) Percentage of farms (%)

Milk conductance 143 75.0

Activity meter (incl. heat) 140 73.4

Milk temperature 137 71.4

Milk colour 111 58.3

Somatic cell count 100 52.6

Rapid tests (progesterone, etc.) 76 39.6

Milk fat/protein 70 36.5

Rumination measurement 67 34.9

Animal weight 67 34.9

Eating time 20 10.4

Silage moisture 10 5.2

Silage composition (NIR, etc) 6 3.1

HerdNavigator (DeLaval) 5 2.6

Automated body condition 
score

2 1.0

The responses to the question “What has been the most important reason to invest in 
sensor or measurement device?” is illustrated in Figure 2. The most important reason to 
invest had been to improve the detection of cow disorders and heat and secondly to help 
in optimising the production. Multiple choices were allowed, and milking parlour users 
found less attributes in general than AMS users.

Economical impact expectations

We asked how satisfied the responder was for the profitability of the farm (scale ranging 
from 1–5, where 1 = not at all satisfied, 2 = not much satisfied, 3 = to some extent satisfied, 
4 = satisfied and 5 = very satisfied). Of all responders, only 25% were satisfied (considering 
answers four and five). We compared the profitability satisfaction to other survey questions. 
Any specific sensor uses were not related to profitability satisfaction. Satisfaction was also 
not related to the milking system type, herd size or any other asked practices, like silage 
production. However, the relation was clear with average annual milk production.
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Figure 1. Graphical comparison of the sensor use on Finnish dairy farms with AMS and milking 
parlour system and all responders

Figure 2. Percentages of farms responding to the question: What has been the most important 
reason to invest in sensors? (Data from all responders, AMS users and milking parlour system users 
illustrated separately)

We continued by asking what responders considered to be the most important ways to 
improve profitability by proposing options which are related to certain sensing needs. This 
result is given in Table 2.

As shown, the highest expectations to improve profitability were based on improving 
protein and fat content in milk. On the other hand, it is notable that the milk fat/protein 
sensors were in use only in 36.5% of the farms (Table 1).
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Table 2. Data from survey responses to the question: What are the four most important ways to 
improve profitability? Responders chose from the given options as listed

Proposed way to improve profitability Number of farms 
(N = 192)

Percentage of farms 
(%)

Increase fat and protein content in milk 125 65

Increase amount of milk 116 61

More effective preventive animal healthcare 96 50

Improve animal wellbeing 92 48

Improve silage energy content 86 45

Better udder health 80 42

Better foot health 47 25

Increase voluntary feed intake 42 22

Avoid ketosis 36 19

Better control of silage dry-matter content 33 17

Better access to advisor services 8 5

Those who had the milk fat/protein sensor (36.5%, N = 70, Table 1) were predominantly 
using AMS (88%, N = 62) and especially Lely system (81%, N = 57). The Lely AMS has an 
accessory of an optical sensor that measures milk fat/protein on-line. In the free word 
part, the Lely AMS users comments were as follows:

•	 ‘There are no problems with the sensors, but in the official milk recording practices. 
The robot and milk tank analyses are in line with each other, but official milk recording 
shows lower milk fat content and nobody knows why.’

•	 ‘Official milk recording system should use the information from the robot. The amount 
of samples beats the quality of analysis. One sample vs 180 samples!’

The silage moisture and composition sensing was used quite rarely on farms (8%, N = 
16) and contrary to milk fat/protein sensors, did not indicate any relation to any specific 
milking system (AMS or parlour).

Importance - performance gap analysis for milk and silage sensors

The last part of the study focused on specific needs and challenges related to milk fat/
protein sensors and silage moisture and protein sensors. This was performed by using 
importance - performance gap analysis. At first, we asked responders to score from one to 
five the importance of the given attributes and right after that, to score the same attributes, 
to the question: how satisfied was the responder with the present performance on the farm.

The asked attributes and the gap analysis results are summarised in Tables 3 and 4. The 
higher the number, the higher the gap, meaning the higher the need to solve that particular 
attribute and perform development actions.

In the case of milk fat/protein sensors, clear differences can be seen between Lely and 
DeLaval AMS users. Lely AMS users have less overall need for milk fat/protein sensor than 
DeLaval AMS or milking parlour users. Of the specific attributes, Lely AMS users express a 
high need for better accuracy for the milk composition measurement.

Overall, the silage dry matter and protein content measurement needs (Table 4) are higher 
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than for milk composition (Table 3), reflecting the challenges in present laboratory services 
and/or lack of compelling, usable or affordable silage composition sensor solutions for on-
farm use.

Table 3. Importance-performance gap values for milk composition measurement attributes for all 
responses and for various milking system users

Milk composition 
sensor

All 
(N=192)

AMS 
(N=135)

Milking 
parlour 
(N=38)

AMS Lely 
(N=78)

AMS 
DeLaval 
(N=54)

Measuring fat and 
protein content in milk

0.38 0.38 0.45 0.22 0.56

Speed to gain the 
measurement data

0.40 0.44 0.34 0.17 0.86

Accuracy of the 
measurement data

0.57 0.60 0.52 0.49 0.72

Total Average 0.45 0.47 0.44 0.29 0.71

Table 4. Importance - performance gap values for silage composition measurement attributes for 
all responses and for various milking system users

Silage composition 
sensor

All

(N=192)
AMS 

(N=135)

Milking 
parlour 
(N=38)

AMS Lely 
(N=78)

AMS 
DeLaval 
(N=54)

Measuring dry matter 
content of silage

0.55 0.59 0.45 0.71 0.42

Measuring protein 
content of silage

0.54 0.61 0.37 0.58 0.64

Speed to gain the 
measurement data

0.86 1.01 0.63 1.08 0.95

Accuracy of the 
measurement data

0.80 0.87 0.71 0.88 0.83

Total Average 0.69 0.77 0.54 0.82 0.71

Manual operations for the measurements

Many optical spectrometry based sensors, which can be useful in silage and milk composition 
measurements, often require maintenance such as calibration. Also, sampling is crucial to 
gain high accuracy. Namely, silage is heterogeneous material and quantitative accuracy 
will depend on e.g. sample quality and sample amount. Sampling is also important in the 
case of milk samples, e.g. temperature and time can influence the accuracy of the results. 
The usability of the sensor can be significantly improved by automating such practices. 
However, in the sensor development point of view, such automated operations on farms 
can be challenging to implement and therefore we asked whether the user is willing to 
perform manual operations to gain more accurate and faster results. The answers were:

   YES: 58% (N = 122) 
   NO: 30% (N = 55) 
   YES, if: 12%, (N = 15)
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where yes, if -answers emphasised the ease of such operations including frequency (less 
than once a week), clear instructions and reminders sent automatically to phone by e.g. 
text messages. Since 70% of responders were willing to perform manual operations, this 
result also reflects the need for real-time information of silage composition.

Conclusions

Finnish dairy farms have high utilisation rate of sensors and awareness of technical 
opportunities to improve farm productivity.

AMS supplier was an important factor when defining specific sensor needs on farms, as 
shown in this survey especially through milk fat/protein sensors comparison between Lely 
and DeLaval AMS users.

The purpose of the study was also to define specific needs and challenges related to on-farm 
milk fat/protein and silage dry matter and protein sensor development The importance 
-performance gap analysis clearly indicated the need for accurate, fast response and on-
farm usable sensor solutions for milk and feed composition control and monitoring.
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Abstract

Monitoring the feed efficiency of grazing dairy cows is currently restricted by lack of a quick, 
cost effective and accurate method to estimate dry matter intake (DMI). The aim of this 
study was to compare Near Infrared Reflectance Spectroscopy (NIRS) analysis of faeces and 
Mid Infrared Reflectance Spectroscopy (MIRS) analysis of milk to predict the DMI of lactating 
grazing dairy cows. Faecal samples were obtained from four different grazing experiments 
where DMI had been estimated using the n-alkane technique resulting in a dataset of 1,083 
cows. Equations were developed using the following variables; 1) milk yield (MY), fat %, protein 
%, body weight (BW), stage of lactation (SOL) and parity, which was used as a benchmark 
to which the following could be compared; 2) MIRS wavelengths, 3) MIRS wavelengths, MY, 
fat %, protein %, BW, SOL and parity, 4) NIRS wavelengths, 5) NIRS wavelengths, MY, fat %, 
protein %, BW, SOL and parity. The benchmark equation was more accurate (coefficient of 
determination (R²) = 0.61; root mean square error (RMSE) = 1.68 kg) than MIRS wavelengths 
alone (R² = 0.28; RMSE = 2.27 kg) or NIRS wavelengths alone (R² = 0.15; RMSE = 2.45 kg). The 
combination of the benchmark equation with MIRS wavelengths (R² = 0.64; RMSE = 1.58 
kg) resulted in slightly more accurate predictions than the benchmark equation alone. The 
combination of the benchmark equation with NIRS wavelengths (R² = 0.59; RMSE = 1.48 kg) 
did not result in more accurate predictions than the benchmark equation.

Key words: dry matter intake, near-infrared reflectance spectroscopy, mid-infrared 
reflectance spectroscopy, grazing dairy cows

Introduction

Feed efficiency is an important component of dairy systems (Berry and Crowley, 2013; 
Connor, 2014). A major obstacle to the inclusion of feed efficiency as a component in dairy 
breeding programmes is routine access to individual animal feed intake data (Connor, 
2014). In grazing systems, the measurement of individual animal feed intake is a difficult 
task (Coleman, 2005). The n-alkane technique (Mayes et al., 1986; Dillon and Stakelum, 
1989) is commonly used to estimate dietary dry matter intake (DMI) in grazing dairy cows 
(Hurley et al., 2017). However, this method is expensive to employ and labour intensive, 
thus is only applicable under research conditions.

The ability of MIRS analysis of milk to estimate the intake of dairy cows has recently been 
documented (McParland et al., 2014; Shetty et al., 2016). Similarly, NIRS analysis of faeces 
has been reported as a potentially useful method of estimating intake (Boval et al., 2004). 
A direct comparison among these methods to predict the DMI of grazing dairy cows would 
elucidate their accuracy, robustness and applicability for use on commercial dairy farms.

The objective of this study was to evaluate the ability of MIRS of milk compared with NIRS 
of faeces and in combination with one another, to predict the DMI of grazing dairy cows.

Materials and methods

A faecal sample set comprising 1,083 samples with corresponding DMI values from 449 
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individual spring calving Holstein-Friesian and Holstein-Friesian × Jersey cross bred cows 
were available from four grazing research experiments (Kennedy et al., 2015; McCarthy et al., 
2015; Coffey et al., 2017; O’Sullivan et al., 2019) conducted by Teagasc, Animal & Grassland 
Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland. Individual herbage DMI was 
estimated within each experiment using the n-alkane technique and faecal grab samples 
(Mayes et al., 1986) as modified by Dillon and Stakelum (1989). The diet of the cows during the 
n-alkane measurement period consisted predominantly of grazed pasture (Lolium perenne L.).

Near infrared reflectance values of the bulked faecal samples from each intake estimation period 
were gathered using a FOSS-NIRSystem 6500 SYII scanning monochromator (FOSS-NIRSystems, 
Silver spring, MD, USA). Rectangular quartz cells (4.6 cm wide and 5.7 cm long) were used to 
scan each faecal sample. The spectral absorbance value of each faecal sample was recorded as 
log/reflectance values over the wavelength range of 1,100-2,496 nm giving 699 individual data 
points. The spectral data points between 1,200-2,496 nm were retained for analysis.

Throughout each DMI estimation period, body weight (BW) was recorded once following 
morning milking using calibrated weighing scales. Individual cow milk yield (MY) was 
recorded twice daily throughout the intake estimation period using electronic milk meters 
(Dairymaster, Causeway, Co. Kerry, Ireland). Milk was sampled from consecutive evening 
and morning milking’s once weekly during each intake estimation period. These samples 
were analysed using a FOSS Milkoscan FT6000 spectrometer (Foss Electric A/S, Hillerød, 
Denmark) to determine fat and protein content. The milk mid-infrared spectral data were 
subsequently stored for further analysis. The spectral data points between 925-1,620 and 
1,727-3,043 cm-¹ were retained for analysis.

Animals of third parity plus were grouped together. Additionally, stage of lactation (SOL) 
was defined as: 1) < 49, 2) 50-99, 3) 100-189, and 4) > 190 days in milk.

Prediction Equations

Equations to predict DMI were developed using the following variables; 1) MY, fat %, 
protein %, BW, SOL and parity, which was used as a benchmark to which the following 
could be compared: 2) MIRS wavelengths, 3) MIRS wavelengths, MY, fat %, protein %, BW, 
SOL and parity, 4) NIRS wavelengths, 5) NIRS wavelengths, MY, fat %, protein %, BW, SOL 
and parity. Linear regression was used to develop equation 1 while partial least squares 
regression (PLS; PROC PLS; SAS Institute Inc., Cary NC) was used to develop all other 
equations. Split-sample cross-validation was initially undertaken on all PLS models and 
involved removing every 20th sample from the data set and predicting it using data from 
the remaining data set. This was repeated until every sample had been predicted once. 
Equations were subsequently validated across herds.

Across herd validation was undertaken to assess if equations could predict the DMI of an 
independent group of experimental animals. This was undertaken by using three out of 
the four experiments to develop the models, while the remaining experiment was used 
for external validation. This was iterated until each herd had been predicted once. The 
following metrics were used to assess the accuracy and robustness of the models; the 
coefficient of determination (R²), the root mean square error (RMSE), the mean bias of 
prediction, the regression coefficient (slope), the mean R² and RMSE factors were reported 
as the average of the four iterations of across herd validation, the mean bias and slope 
were reported as the range of values across the four iterations.

Results and discussion

Mean values (± SD in parenthesis) of DMI, MY, fat %, protein %, lactose %, BW, parity and 
DIM across the data set were 15.6 kg/d (3.1), 20.4 kg/day (5.4), 4.5% (0.7), 3.7% (0.4), 4.8 (0.2) 
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498 kg (69), 2.0 (0.8) and 123 (64), respectively.

Table 1 presents the fitting statistics for all five equations to predict DMI upon across herd 
validation. The benchmark equation resulted in an R² of 0.61, and a RMSE of 1.68 kg. The 
strong prediction by the benchmark equation is supported by previous studies (O’Neill et 
al., 2013; McCarthy et al., 2014).

Table 1. Fitting statistics¹ of cross- and across herd validation prediction equations to predict dry 
matter intake

Cross-validation Across herd validation

Variables² RMSE R² Bias RMSE Slope (SE) R²

MY F% P % BW parity 
SOL³

1.63 0.72
0.49 to 
-0.67

1.68
1.11* (0.04) to 

0.69* (0.04)
0.61

MIRS 2.06 0.56
1.71 to 
-0.43

2.27
0.73* (0.06) to 

0.51* (0.13)
0.28

MIRS F% P % MY BW 
parity SOL

1.40 0.79
0.44 to 
-0.52

1.58
1.01 (0.03) to 
0.65* (0.12)

0.64

NIRS 1.92 0.61
2.57 to 
-1.61

2.45
0.64* (0.12) to 
-0.06* (0.04)

0.15

NIRS MY F% P % BW 
parity SOL

1.42 0.79
1.36 to 
-0.50

1.71
1.08* (0.04) to 

0.75* (0.04)
0.59

¹RMSE = average root mean square error from the four iterations of cross and across herd validation; R²= average 
coefficient of determination from the four iterations of cross and across herd validation; RPD = average ratio 
performance deviation from the four iterations of across herd validation; Bias = range of highest to lowest values 
from the four iterations across herd validation; Slope = range of highest to lowest value from the four iterations of 
across herd validation; ²MY = Milk yield; F% = fat %; P% = protein %; SOL = Stage of lactation; BW = body weight; 
MIRS = Mid-infrared reflectance spectroscopy analysis of milk; NIRS = Near-infrared reflectance spectroscopy 
analysis of faeces; ³Developed using linear regression; *Slope test (b ≠ 1; P <0.05)

The use of MIRS wavelengths alone to predict DMI resulted in inferior fitting statistics 
compared to the benchmark equation, with an R² of 0.28 and a RMSE of 2.27 kg. Combining 
MIRS wavelengths with the variables in the benchmark equation resulted in slightly 
superior fitting statistics compared to the benchmark equation alone, with an R² of 0.64 
and a RMSE of 1.58 kg. The use of NIRS wavelengths alone to predict DMI resulted in a 
mean R² of 0.15 and a RMSE of 2.45 kg. The combination of NIRS wavelengths with the 
variables in the benchmark equation did not result in superior fitting statistics than the 
benchmark equation, with an R² of 0.59 and a RMSE of 1.71 kg.

Methods of predicting DMI for the purposes of improving feed efficiency must be easily 
deployed in commercial settings. Milk samples from commercial farms are currently 
analysed using MIRS to determine milk constituents (McParland et al., 2014). Therefore, 
the combination of MIRS wavelengths with the variables in the benchmark equation is 
suitable for predicting DMI in grazing dairy cows to improve feed efficiency.

Conclusions

This study confirms the potential that exists for both MIRS and NIRS analysis to predict the 
DMI of lactating dairy cows under grazing conditions. The two methods provide additional 
information relating to feed intake over and above the benchmark equation. The use of 
MIRS analysis of milk in combination with the variables MY, fat %, protein %, BW, SOL and 
parity is the most accurate method for the collection of phenotypic feed intake data.



108      Precision Livestock Farming ’19

Ackowledgements

The authors gratefully acknowledge funding by the Irish Government under the National 
Development Plan 2007-2013 through the Department of Agriculture Food and the Marine 
Research Stimulus Fund 13/S/496 RAPIDFEED.

References
Berry, D.P. and J.J. Crowley. (2013). Genetics of feed efficiency in dairy and beef cattle. J Anim. Sci., 91(4): 

1594–1613.

Boval, M., D.B. Coates, P. Lecomte, V. Decruyenaere, and H. Archimède. (2004). Faecal near infrared 
reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake 
of tropical grass by Creole cattle. Anim. Feed Sci. Tech., 114(1): 19–29.

Coffey, E.L., L. Delaby, S. Fitzgerald, N. Galvin, K.M. Pierce, and B. Horan. (2017). Effect of stocking rate 
and animal genotype on dry matter intake, milk production, body weight, and body condition 
score in spring-calving, grass-fed dairy cows. Journal of Dairy Science, 100(9): 7556–7568.

Coleman, S.W. (2005). Predicting forage intake by grazing ruminants. Pages 72-90 in Proceedings of 
2005 ruminanat nutrition symposium, Florida.

Connor, E.E. (2014). Invited review: Improving feed efficiency in dairy production: challenges and 
possibilities. Animal, 9(3): 395–408.

Dillon, P. and G. Stakelum. (1989). Herbage and dosed alkanes as a grass management technique for 
dairy cows. Irish J Agric. Res., 8: 104.

Hurley, A.M., N. López-Villalobos, S. McParland, E. Lewis, E. Kennedy, M. O’Donovan, J.L. Burke, and D.P. 
Berry. (2017). Genetics of alternative definitions of feed efficiency in grazing lactating dairy cows. 
Journal of Dairy Science, 100(7): 5501–5514.

Kennedy, E., L. Delaby, B. Horan, J. Roche, and E. Lewis. (2015). Duration is important in the effect 
of pasture allowance restriction on subsequent milk production, in early lactation. Grassland 
and forages in high output dairy farming syatems, 2015 Wagenignen, the Netherlands. European 
Grassland Federation EGF, 110–112.

Mayes, R., C. Lamb, and P.M. Colgrove. (1986). The use of dosed and herbage n-alkanes as markers for 
the determination of herbage intake. J Agric. Sci., 107(01): 161–170.

McCarthy, B., M. Dineen, C. Guy, F. Coughlan, and T. Gilliland. (2015) The effect of tetraploid and 
diploid perennial ryegrass swards sown with and without clover on milk and herbage production. 
Grassland and forages in high output dairy farming systems, 2015 Wagenignen, the Netherlands. 
European Grassland Federation EGF, 259–261.

McCarthy, J., B. McCarthy, B. Horan, K. Pierce, N. Galvin, A. Brennan, and L. Delaby. (2014). Effect of 
stocking rate and calving date on dry matter intake, milk production, body weight, and body 
condition score in spring-calving, grass-fed dairy cows. Journal of Dairy Science, 97(3): 1693–1706.

McParland, S., E. Lewis, E. Kennedy, S.G. Moore, B. McCarthy, M. O’Donovan, S.T. Butler, J.E. Pryce, and 
D.P. Berry. (2014). Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency 
in lactating dairy cows. Journal of Dairy Science, 97(9): 5863–5871.

O’Neill, B.F., E. Lewis, M. O’Donovan, L. Shalloo, F.J. Mulligan, T.M. Boland, and R. Delagarde. (2013). 
Evaluation of the GrazeIn model of grass dry-matter intake and milk production prediction for 
dairy cows in temperate grass-based production systems. 2 – Animal characteristics. Grass For. 
Sci., 68(4): 524–536.

O’Sullivan, M., Horan, B., Pierce, K.M., McParland, S., O’Sullivan, K. & Buckley, F. (in press). Milk production 
of Holstein-Friesian cows of divergent Economic Breeding Index evaluated under seasonal pasture-
based management. Journal of Dairy Science In Press. https://doi.org/10.3168/jds.2018–15559.

Shetty, N., P. Løvendahl, M.S. Lund, and A.J. Buitenhuis. (2016). Prediction and validation of residual 
feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy 
of milk. Journal of Dairy Science, 100(1): 253–264.

Soyeurt, H., F. Dehareng, N. Gengler, S. McParland, E. Wall, D.P. Berry, M. Coffey, and P. Dardenne. (2011). 
Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, 
and countries. Journal of Dairy Science, 94(4): 1657–1667.



Precision Livestock Farming ’19      109

Monitoring enteric methane emissions and intake dynamic in grazing 
ruminants

J.F. Ramirez-Agudelo1,2, J.R. Rosero-Noguera2 and S.L. Posada-Ochoa2

1Universidad de Antioquia; 2Grupo de Investigación en Ciencias Agrarias - GRICA. Universidad de Antioquia - 
UdeA, Facultad de Ciencias Agrarias. Ciudadela de Robledo, Carrera 75 Nº 65·87, Medellín, Colombia.
Corresponding author: framirez161@yahoo.com

Abstract

Livestock is a significant source of anthropogenic greenhouse gasses (GHG) emissions. 
Enteric methane (CH4) from ruminants is one of the most relevant sources of GHG in 
this sector. There are several methods to measure CH4 emissions in ruminants, but these 
methods are expensive and demand highly skilled labour which limits its utilisation, 
especially in developing countries. Alternatively, less accurate but inexpensive and easy to 
implement methods can be used. We developed a sensor-based device for studying enteric 
CH4 emissions and intake dynamics in grazing ruminants. The principle behind our device 
is a constant data recording from two sensors, a three-axis accelerometer which detects 
animal’s head positions, and a semiconductor which detects CH4 concentration changes 
in ruminants’ breath. A three-dimensional accelerometer (MPU6050), is used to detect if 
the animal bowed its head to eat or not, and a CH4 gas sensor (MQ4) was connected to an 
Arduino board. To guarantee that the MQ4 sensor can detect CH4 concentration changes in 
animals’ breath, an air sampler system was added. A halter was used to place the device 
at the back side of the animal’s head and to place the air collector near to the animal’s 
mouth. For 24 hours of uninterrupted recordings, the device was powered by a rechargeable 
5V, 50000 mAh lithium-ion battery. Our device shows that the CH4 concentration in 
ruminant’s breath increases when animals are eating. This result probably means that 
intake behaviour, measured with accelerometers, can be used to estimate CH4 emissions 
in grazing ruminants.

Keywords: Arduino, MQ4, accelerometer, grazing cattle

Introduction

Enteric methane (CH4), generated in the gastrointestinal tract of domestic animals, is the 
single largest source of anthropogenic CH4 emissions (Knapp et al., 2014). Methane is mainly 
produced in the rumen by Archaea microorganisms as a by-product of fermentation. 
Methane emission results in 3 - 14% loss in gross energy intake (Hellwing et al., 2016), 
and increases atmospheric GHG concentrations, which causes global climate changes and 
adverse phenomena such as floods and droughts, modifications in level and patterns of 
precipitation, and heat waves in cities (La Notte et al., 2018).

Open-circuit respiration chambers (Waghorn, 2014) are recognised as the most accurate 
method to measure enteric CH4 emissions whereas the sulfur hexafluoride tracer 
technique (SF6, Johnson et al., 2007) and the automated head-chamber system (GreenFeed, 
Zimmerman & Zimmerman, 2012) are accepted as methods to estimate CH4 emission. 
The use of these methods is expensive and demands highly skilled labour which limits 
utilisation, especially in developing countries. Alternatively, less accurate and certain 
methods have been developed. One approach uses CO2 emission and CO2:CH4 ratio 
in exhaled air by animals to estimate CH4 (Madsen et al., 2010). Another method is the 
Laser CH4 Detector (Chagunda & Yan, 2011), in which CH4 concentration in the air between 
the device and the animal is measured.
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Accelerometers are useful tools to measure animal behaviour. Accelerometers are 
electronic sensors used to monitoring animal movement, such as feeding behaviour 
(Mattachini, 2016). Because of the operational utility of accelerometers and given that 
enteric CH4 emissions have a clear dynamic related to intake pattern, with a rapid 
increase in emissions after feeding followed by a gradual decline (Noguera & Posada, 
2017), accelerometers could also be used to estimate enteric CH4 emissions. The aim of 
this work was to develop a low-cost, sensor-based device to study the daily dynamic of 
enteric CH4 emission and intake in grazing ruminants.

Materials and methods

The device

The device was developed as a non-invasive, sensor-based system for monitoring intake 
behaviour and enteric CH4 emissions. The principle behind the device is constant data 
recording from two sensors, which determine the animal’s head position and CH4 
concentration changes in ruminant’s breath. The head position analysis is used to 
establish feeding behaviour.

Electronic components and connections

A CH4 gas sensor (MQ4) and a three-dimensional accelerometer (MPU6050) was connected 
to an Arduino board (Figure 1). The MQ4 sensor was connected to analogue pin A0 and 
the accelerometer was connected to A4 and A5 pins. To store sensors data in a text file, a 
micro SD card module was also connected (MOSI in pin 11, MISO in pin 12, CLK-SLK in pin 
13, and CS in pin 10).

A

B

C

D

E

Figure 1. Device components and connections 
(A) MQ4 sensor, (B) Accelerometer, (C) Arduino board, (D) SD card module, and (E) SD card

MQ4 sensors are composed by micro-ceramic tube, Tin Dioxide (SnO2) sensitive layer, 
measuring electrode and heater, are all fixed into a crust made by plastic and stainless 
steel net. Every MQ4 sensor has six pins, two of them are used to provide heating current 
and the remaining four used in signal fetching (Vinaya et al., 2017). MPU6050 is a compact 
motion processing technology. It consists of a 3-axis gyroscope and a 3-axis accelerometer. 
The three axes are present to acquire the magnitude and direction of acceleration and 
orientation. Accelerometer and Gyroscope are combined on a single silicon chip with an 
onboard digital processor (Prince et al., 2014).
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Assembly

The electronic components were placed inside a plastic box (Figure 2A). The accelerometer 
was fixed inside the box. To guarantee that the MQ4 sensor can detect CH4 concentration 
changes in ruminant’s breath, an air sampler system was added. An electric air pump 
and a plastic tube create a constant airflow from the animal’s muzzle area to the plastic 
box. The MQ4 sensor, hermetically placed on a plastic capsule, comes in contact with 
the airflow (Figure 2B) before that air sample leaves the device. A halter, which does not 
affect the ruminant’s well-being, was used to place the device at the back side of animal’s 
head and to place the air collector near to the animal’s mouth (Figure 2C). The device was 
powered by a rechargeable 5V, 50000 mAh lithium-ion battery which allows up to 24 hours 
of uninterrupted recordings.

A

B C

Figure 2. (A) The Device (Electronic components inside a 100x68x50mm box), (B) Air sampler system, 
and (C) A cow wearing the device

Coding

The device executes a code written in the Arduino IDE (Appendix 1). TimeLib, MPU60580 
and SD libraries were included to set time, read raw data from the accelerometer and store 
information in the SD card, respectively. In the Setup function, the port for storing data 
and the accelerometer are initialized and a text file, with each variables name, is created. 
In the Loop function, time and sensors data are written in the text file as a new line every 
second. Time is reset every time the device is restarted. To keep time and date after device 
restart, a Real Time Clock Module is required.

Results and discussion

Both the accelerometer position inside the device and the device position on the 
animal, allows the ruminant’s feeding behaviour to be studied using changes in just one 
accelerometer axis. The plot of the CH4 concentration in the animal’s breath (Figure 3A) 
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and the accelerometer changes related to eating activity (Figure 3B) showed that there is 
a high concordance between both dynamics across time. It means that our device allows 
corroborating that CH4 concentration in ruminant’s breath increases when the animals 
are eating.

A

B

Figure 3. (A) CH4 concentration (ppm) in ruminant’s breath, and (B) Intake behavior across time

There is significant uncertainty associated with enteric CH4 measurement techniques. 
Analysis of the database of the GLOBAL NETWORK project (Hristov et al., 2018) showed that 
the coefficient of variation for CH4 emission rate averaged 30, 28, and 18% for respiration 
chambers, SF6 and GreenFeed technique, respectively. Respiration chambers have been 
considered as the most accurate methodology to measure CH4 emissions. But as Hristov 
et al. (2018) have pointed, even this method has critical sources of measurement variation 
(e.g. airflow rate through the chamber and the dynamics of air mixing in the chamber). 
Additionally, respiration chambers potentially inhibit animal behaviour and affect feed 
intake, especially when animals from grazing systems are driven and enclosed in these 
chambers.

Even if the limitations pointed by Berends et al. (2014) in the SF6 technique (e.g. the 
proportions of exhaled and eructated air in the air samples collected, or the distance of 
sampling point) are overcome, probably the SF6 technique will not be adequate to estimate 
enteric CH4 emissions in the near future because of the high SF6 Global Warming Potential 
(24,000 CO2-eq) and its long life in the atmosphere (over 3,000 years). In the GreenFeed 
technique, the number and timing of animal’s visits to the unit are the most relevant 
sources of error, because these variables depend on the type of animal, the diet fed, and 
the level of dry matter intake (Hammond et al., 2016).

In comparison with respiration chambers, our device cannot measure the total enteric 
CH4 emissions. But our device could be used to find a mathematical relationship between 
changes in CH4 concentration in ruminant’s breath and CH4 emissions, in a similar way 
to accepted methods (i.e. SF6 and GreenFeed). Taking into account the device usage in 
grazing animals, the SF6 technique could be used to find this mathematical relationship. 
Given that factors such as wind speed, the proximity of other animals, rain, and other 
environmental factors are not considered in respiration chambers.
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On the other hand, the qualitative relationship between intake dynamics and CH4 emissions 
established by our device is a relevant fact, because it probably means that alternative 
variables (e.g. Intake time) can be used in GHG inventories. The relationship between intake 
dynamic and enteric CH4 emissions (Crompton et al., 2011) and between intake time and 
enteric CH4 emissions (Munoz-Tamayo et al., 2018) have been previously established. In 
line with Munoz-Tamayo et al. (2018), who suggest that intake time is a good predictor 
to estimate enteric CH4 emissions, and given the increasing usage of accelerometers in 
livestock, probably the intake dynamic recorded by accelerometers can be a method to 
estimate CH4 emissions in on-farm conditions and from a large number of animals.

Conclusions

Our device can be a useful tool for studying the daily pattern of CH4 emissions and feeding 
behaviour in ruminants. The feeding activity, measured by accelerometers, can be used 
to estimate enteric CH4 emissions in grazing ruminants. However, further research is 
necessary to develop equations which include variables as live weight, milk yield or feed 
digestibility.
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Appendix 1. Device code
#include <TimeLib.h> 
#include “MPU6050.h” 
#include <SD.h>

 
const int chipSelect = 10; 
MPU6050 accelgyro; 
int16_t ax, ay, az; 
int16_t gx, gy, gz;

void setup() { 
Serial.begin (9600); 
setTime (00,00,00,00,00,0000); 
pinMode (chipSelect,OUTPUT); 
if (!SD.begin (chipSelect)){ 
Serial.print (“SD card error”); 
return; 
}

File dafile = SD.open (“Sensor.txt”, FILE_WRITE); // Create a txt file 
String dataString = “”; 
dataString += String (“Time  CH4_ppm ax  ay  az  gx  gy  gz”); // Variables order in txt file 
if (dafile){ 
dafile.println (dataString); 
dafile.close(); 
Serial.println (dataString); 
}

else{ 
Serial.println (“ERROR”); 
} 
accelgyro.initialize(); 
}

// storing data in SD card 
void loop() { 
// Read raw accel/gyro data 
accelgyro.getMotion6 (&ax, &ay, &az, &gx, &gy, &gz); 
String dataString = “”; 
time_t t = now(); 
dataString += String(hour(t)); 
dataString += String(“:”); 
dataString += String(minute(t)); 
dataString += String(“:”); 
dataString += String(second(t)); 
dataString += “ “; 
// Read MQ4 
dataString += String (analogRead(A0)); 
dataString += “ “; 
// Read Accelerometer 
dataString += String(ax); 
dataString += “ “; 
dataString += String(ay); 
dataString += “ “; 
dataString += String(az); 
dataString += “ “; 
dataString += String(gx); 
dataString += “ “; 
dataString += String(gy); 
dataString += “ “; 
dataString += String(gz); 
dataString += “ “;

File dafile = SD.open(“Sensor.txt”, FILE_WRITE); // Open txt file 
if (dafile){ 
dafile.println(dataString); 
dafile.close(); 
Serial.println(dataString); 
}

else{ 
Serial.println(“ERROR”); 
} 
delay(1000); // Time interval 
}
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Abstract

The aim of this study was to develop and implement machine vision techniques to 
measure heart rate (HR), respiratory rate (RR), and eye temperature in cattle. The sensors 
used in this study were thermal infrared cameras and RGB video cameras, with the aim of 
simultaneously recording thermal and RGB (Red, Green and Blue) images of the cows face 
while each cow was individually confined in a crush. Suitable images were manually selected 
and subsequently processed using customised algorithms. This research compared the 
vaginal temperature, heart rate and respiration rate obtained from conventional methods 
(intravaginal loggers, heart rate Polar monitor and visual observations respectively) with 
the eye temperature, heart rate and respiration rate obtained from the non-invasive 
techniques (thermal images, RGB videos and Infrared videos respectively). The results of 
this study showed high correlations between the data obtained from conventional methods 
and the data obtained from these non-invasive methods. The correlations between the 
vaginal temperature obtained from the vaginal loggers and the eye temperature obtained 
from thermal images, between the heart rates from the Polar monitor and the analysis 
of RGB videos, and between the respiration rate from visual observations and the image 
processing ranged between r = 0.78 and r = 0.88. These results suggest that machine vision 
techniques could be useful non-invasive methods able to assess changes in physiological 
parameters, such as HR, RR and skin temperature in cattle.

Keywords: remote-sensing, animal monitoring, physiological changes, imagery

Introduction

As livestock farming becomes more intensive, more sustainable systems and new 
technologies are required to improve animal management (Tullo et al., 2018). Therefore, 
Precision Livestock Farming (PLF) can contribute to improving animal management and 
production (Berckmans, 2014; Van Hertem et al., 2016). For instance, the robotic-milking 
system (RMS) has been one of the new technologies that has assisted in the improvement 
of management and productivity in dairy farms (Hyde & Engel, 2002). This system not only 
allows the voluntary approach of cows to the milking robot, but also allows the monitoring 
of parameters such as frequency of milking, amount of milk produced and food intake, 
to name a few (Jacobs & Siegford, 2012). Also, as part of the growth in PLF, sound and 
optical sensors have started to be researched and implemented in order to develop new 
technologies able to assist in animal monitoring (Van Hertem et al., 2016).

Optical sensors and machine vision (MV) techniques are increasingly being used in research 
related to human and animal monitoring (Tscharke & Banhazi, 2016). For example, Guo et 
al. (2015) and Wang et al. (2008) implemented MV techniques to monitor animal behaviour. 
Moreover, other studies have used this technology to identify health problems such as foot 
disease (Poursaberi et al., 2010).

As MV techniques have shown to be useful tools to remotely monitor animal and humans, 
several researchers have studied image-based techniques which can measure physiological 
parameters, which can be used to indicate health, emotions and wellbeing assessment 
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(Gómez et al., 2018; Wu et al., 2012).The aim is to reduce the need for contact techniques for 
the assessment of physiological changes (Lee et al., 2018). For instance, thermal imaging 
has widely been studied to measure skin temperature in humans and animals. In the 
case of cattle and other animals, this technology has been implemented to measure eye 
temperature, as an indicator of core body temperature (George et al., 2014). Researchers 
such as Schaefer et al. (2007) and Unruh et al. (2017) have shown the promising capability 
of thermal-imaging techniques to detect temperature changes in animals, which could 
assist animal monitoring on farms.

Scientists and producers have also put effort into developing contactless techniques 
able to measure parameters such as heart rate (HR) and respiration rate (RR), in order to 
avoid the contact needed by the most commonly used methods (e.g. stethoscope). In this 
matter, MV techniques have been used in studies relating to humans, which lead to the 
investigations aimed at remotely measuring HR and RR in animals (Jukan et al., 2017; Zhao 
et al., 2013). HR measured through MV techniques has mainly been studied in humans 
by researchers such as Poh et al. (2010) and Balakrishnan et al. (2013), who analysed 
videos of people’s faces, obtained with commercial RGB (red, green and blue) cameras, in 
order to detect heart beats and determine HR of people. In addition, some scientists who 
developed algorithms for detecting HR in humans attempted to apply them to animals. 
However, animals need to be anesthetized during the recording (Barbosa Pereira et al., 
2018). This indicates the opportunity for further research relating to the development and 
implementation of MV techniques that are able to measure HR of animals on a farm in a 
less invasive manner.

Similarly, some research has focused on the use of MV technology to determine RR. For 
example, Stewart et al. (2017) showed positive results when using infrared thermography 
to detect RR in dairy cows. However, their method required observation of the images and 
manually counting of the air movements, which is impractical for large scale monitoring.

This pilot study aimed to identify the potential for the proposed MV techniques to remotely 
measure eye temperature, HR and RR in dairy cows.

Material and methods

Data acquisition

The protocol of this study was approved by The University of Melbourne’s Animal Ethics 
Committee. This experiment was conducted on a robotic dairy farm, where ten cows were 
randomly selected from the herd. The participating cows were separated from the group 
the night before and kept in a holding yard overnight during the days of the study. The 
experiment was conducted over three consecutive days, during the morning.

Each parameter included in the study was measured with two methods; one conventional 
and one video-computer-based method. Body temperature was measured by vaginal 
temperature loggers (Thermochron® attached to a CIDR), which were placed in each 
cow the night before the experiment started and were removed the third day after the 
experiment finished. The optical sensors used in this study were a thermal camera (FLIR AX8 
Thermal Imaging Camera) and an RGB video camera (Raspberry Pi Cameras Module V2). Eye 
temperature was analysed from the thermal images obtained. HR was obtained by a heart 
rate monitor (Polar WearLink®), fitted to the animals during the time of the experiment, 
and by the processing of the RGB videos obtained. Finally, the RR of cows was determined by 
visual observation from video recordings and by the analysis of infrared images.

As part of the procedure, animals were individually placed in the crush two times each 
morning (once before their morning milking and then again immediately after the 
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milking). When the cow was in the crush for first time, the heart rate monitor was fitted 
on the thorax with an elastic band. After this procedure, the animal’s head was captured 
with the head bail of the crush in order to record videos and images of the face during 
three minutes. During this recording, a technician held the cameras in front of the cow’s 
face, at a distance of 1.5 metres. As soon as the recording was finished, the crush was 
opened and the cow was allowed to go to the milking robot. After the milking, the cow was 
again drafted to the crush, its head was positioned in a similar manner to the first time, 
and the face was recorded for an additional three minutes. After this period, the heart rate 
monitor was removed and the animals were released, allowing them to return to pasture 
with the herd during the afternoon.

Data analysis

Infrared (IR) images (radiometric and non-radiometric) and RGB videos were processed 
with customised algorithms written in Matlab® R2016a (Mathworks Inc. Matick, MA, USA). 
For eye temperature, the eye area was manually selected as the region of interest (ROI), 
from which the temperature was extracted for each image. In the case of RGB videos, each 
recording was reviewed, divided into 30 second videos, and the 30 second video with better 
quality was selected to be processed. For this analysis, the eye area was manually selected 
as ROI and this was then processed with the customized algorithm, which determines 
HR from the changes of luminosity detected within the ROI. Finally, non-radiometric IR 
videos were processed using a customized algorithm to measure RR. The first step for this 
analysis was to evaluate the collected footage and select the videos that presented the 
slightest motion. After that, the ROI (nose) was selected on the footage and processed to 
determine RR from the change in pixel intensity values within the ROI.

After the data was obtained from the image processing, this data was compared with 
the data obtained from temperature loggers, HR Polar monitors and visual observations 
respectively. Correlation was analysed between temperature obtained from thermal 
images and temperature loggers, between HR obtained from RGB videos and HR monitors, 
and between RR obtained from non-radiometric videos and visual observations. This 
analysis was performed in SAS® 9.4.

Results and discussion

In order to identify the accuracy of the proposed technique in measuring eye temperature 
as an index of core body temperature, the data obtained from this technique were compared 
with the vaginal temperature obtained from the logger during the same time-period. The eye 
temperature obtained from the thermal images ranged from 34.5–37.4 ºC, showing a similar 
range to the eye temperature previously observed in cattle (Gómez et al., 2018). The vaginal 
temperature ranged between 38.2–39.2 ºC, similar to the values obtained by Suthar et al. (2013) 
when measuring vaginal temperature with temperature loggers in cattle. As shown in Table 1, 
the correlation coefficient (r) was calculated in order to compare both methods.

Table 1. Pearson correlation coefficients (r) between measurements acquired from conventional and 
proposed techniques

Physiological parameter Correlation between 
methods (r) p-Value

Temperature 0.88 P < 0.001

Heart rate 0.81 P < 0.001

Respiration rate 0.77 P < 0.001
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In order to evaluate the performance of the proposed MV technique for HR measurement, 
the data collected by this technique were compared to the data obtained using the HR 
monitor. As Figure 1 shows, the set of data was obtained through Polar® ProTrainer 5™ 
software and Matlab® R2016a respectively, and the two periods when cows were recorded 
in the crush were identified. The values of BPM (beats per minute) of the same time-period 
were extracted and a correlation test was performed. This analysis showed a positive 
correlation between the BPM obtained using both methods (Table 1). These results are 
similar to what was observed by Poh et al. (2010), who obtained a r = 0.89 when comparing 
the output of HR in people from webcam videos and a finger blood volume pulse (BVP) 
sensor.

A B

Figure 1. Example of HR output from (A) HR POLAR monitors and (B) RGB video recording, where it is 
possible to observe the two periods of recording when the animal was in the crush

Similarly, RR was evaluated by the visual observation process and by the image processing, 
followed by the comparison between both outputs. Table 1 shows that there was a 
moderate correlation between these two methods, with r = 0.77 (P < 0.001). The results 
obtained for this and the other parameters were promising, however, the motion of cows 
and / or cameras made the selection of images more laborious and resulted in some noise 
that needs to be considered. These observations have led to further research in order to 
improve the practicability and accuracy of the method for the analysis of these parameters.

Conclusions

This pilot study examined machine vision techniques to remotely assess eye temperature, 
HR and RR in dairy cattle. Based on good correlations with physical measures, these 
methods could potentially be used in practical applications in the livestock industries 
through measuring physiological parameters and improving the assessment of emotional 
and physical state of farm animals. However, manually selection of images is a limitation 
for practical use, indicating the need for research that aims to increase the accuracy and 
automatization of the proposed techniques.
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Abstract

Health events can be detected by monitoring the behaviour of dairy cows with an 
accelerometer. To our knowledge, there is no study on the steps preceding the classification, 
namely accelerometer signal pre-processing in dairy cows. Using accelerometer data, the 
present study aimed to (i) evaluate the impact of the most commonly used pre-processing 
methods on the performance of predictions achieved with a classifier and (ii) evaluate 
whether this impact is related to changes in the relative importance of features used by 
the classifier. Ten dairy cows were equipped with a three-dimensional accelerometer fixed 
on a collar and were observed simultaneously. Several methods of pre-processing were 
combined, including different filters (high-pass filter and low-pass filter), window sizes 
and overlapping percentages. A decision tree was applied to classify the behaviours. The 
F-score was computed for each combination and an analysis of variance was applied to 
compare each effect. The relative importance of features was evaluated using the Gini index 
provided with the random forest algorithm output. The F-score decreased significantly 
(P < 0.001) when a high-pass filter was applied and the relative importance of features was 
modified, suggesting that the continuous component is essential for the classification. The 
increase of window size and percentage of overlap improved the classification (P < 0.001) 
but it was not explained by a change in the relative importance of features. No impact was 
found for the low-pass filter and normalization. Finally, the optimal setting includes no 
high-pass filter, a window size of 20 s and 30 s, and an overlap of 90%.

Keywords: Accelerometer signal pre-processing, dairy cow, behaviour classification, 
relative feature importance

Introduction

Monitoring livestock behaviour can be a useful way to detect health events (Chapinal et 
al., 2009). However, observation of animals is time consuming and labour-intensive. For 
these reasons, accelerometers that automatically monitor the behaviour of livestock can 
be a good solution (Rushen et al., 2012). The critical point for the development of sensors 
for their use on farm is the accurate prediction of specific animal behaviours from raw 
acceleration data.

Two main steps are usually undertaken to predict behaviours from raw data acceleration 
(Brown et al., 2013): first the raw data are pre-processed (pre-processing step) and then 
the pre-processed data are used as input for a prediction algorithm (classification step). 
The step of the pre-processing consists of processing the raw accelerometer data to get 
a suitable dataset for the prediction algorithm. Signal is filtered at first to remove the 
noise and possibly to discard the static component of the acceleration. Then, signal is 
segmented into different windows of the same size with or without overlap. Features are 
extracted to summarise the signal windows. These features can then be normalized in 
order to reduce the variability between individuals.
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Once the data have been pre-processed, the classification step is applied to predict 
behaviours by applying an appropriate classifier on the extracted features. The performance 
of the prediction is evaluated by comparing observed and predicted behaviours.

Most of the previous studies on the prediction of livestock behaviour from sensor data 
have focused on the classifier rather than on the pre-processing. Several authors have 
compared the performance of different datamining methods to discriminate behaviours, 
with some methods appearing clearly more effective than others (Nathan et al., 2012).

Different pre-processing methods have been used in livestock behaviour monitoring but 
their impact on the prediction of behaviours has never been evaluated, except for the 
comparison of different window sizes (Vázquez Diosdado et al., 2015; Smith et al., 2016). 
However, in other classification problem based on accelerometer data, such as in human 
activity recognition, the impact of pre-processing on the classification step has already 
been shown (Bersch et al., 2014). Pre-processing could also impact the predictive ability 
of some extracted features, partially explaining the difference in predictive performance.

The aims of this study were to evaluate the effect of commonly used pre-processing methods 
on the performance of accelerometer data for the prediction of cattle behaviour and to 
quantify the relative importance of the features used by the classifier in the prediction. 
To this end, different parameters for the following pre-processing steps were investigated: 
filtering (low-pass filter and high-pass filter), window sizes, percentage of overlapping 
between windows and feature normalization (yes/no). All possible combinations of pre-
processing steps were carried out and decision trees were used to predict observed cow 
behaviours. The F-score metric was computed to compare the performance. The Gini 
indexes returned by the random forest algorithm were used to compare the relative 
importance of the features between each pre-processing method.

Material and methods

Experimental data

The study was conducted in a 71 Holstein (milk yield: 10,000 kg per year) commercial farm 
based in Lion d’Angers (France) in July 2017. Cows were milked every day at 9 am and 6 pm 
and a supplement was distributed after each milking. The cows grazed day and night on 
temporary pasture, sown with a mixture of perennial ryegrass (Lolium perenne L.) and white 
clover (Trifolium repens L.). For the experiment, ten dairy cows ranging between 60–300 days 
in milk and representative of the herd in terms of parity were selected.

A RF-Track datalogger (RF-Track, Rennes, France) with a LSM9DS1, a three-axis 
accelerometer from STMicroelectronics, Geneva, Switzerland) was used. The dataloggers 
were 98.2 x 51.60 x 36.0 mm in size and weighed 250 g. Data were collected at 59.5 Hz. They 
were stored on a SD card and downloaded after the experiment.

Data collection

The three-axis accelerometer was fixed on a collar and positioned on the right side of the 
neck. A 500 g counterweight was added to prevent them from turning around. Collars were 
tightly adjusted. The x-axis detected the down-up direction, the y-axis detected the left-
right direction and the z-axis detected the backward-forward direction. The ten cows were 
fitted with this collar during grazing from 11 am to 5 pm.

Cow behaviours were also recorded by two observers simultaneously. Observers tracked 
each equipped animal in turn continuously during 15 minute periods. This resulted in 
five hours of observations available for the 10 cows. The four behaviours recorded were 
“Grazing”, “Walking”, “Lying” and “Standing”. All other observed behaviours were classified 
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as “Other”. After data collection, accelerometers and observations were time synchronized 
to ensure that the sequences of accelerometer signal were correctly associated with the 
respective observed behaviours.

Data pre-processing

All the pre-processing steps were performed in Matlab R2017a software. Pre-processing 
was applied on the three axis of the 3D-accelerometer and on the magnitude of the signal, 
considered as orientation independent.

Several levels of filtering, segmentation and feature normalization were investigated. For 
the filtering, a low-pass filter with 5 Hz and 10 Hz cut-off frequencies were applied to 
evaluate the impact of the reduction in signal noise (Lee and Kwan, 2018). A z high-pass 
filter with 0.3 Hz cut-off frequency was sometimes used to remove the static component 
of the acceleration (Benaissa et al., 2018). A segmentation was considered for different 
window sizes (3 s, 5 s, 10 s, 20 s and 30 s) and for percentages of overlap between consecutive 
windows (0%, 25%, 50%, 75% and 90%). The same 61 features were then extracted from the 
segmented signal, including position parameters such as mean and median. Dispersion 
parameters such as variance, standard deviation, minimum, maximum and interquartile 
range were also calculated. Other features commonly used were also extracted, including 
the Signal Magnitude Area (Barwick et al., 2018) and the Movement Variation (Barwick et al., 
2018). Spectral entropy was extracted from the frequency domain (Zaccarelli et al., 2013). 
Lastly, a normalization step was either applied or not on these features. As a result, 300 
different datasets representing 300 combinations of pre-processing steps were obtained.

Data processing

The study of the relative importance of the features and the classification step were 
both performed with R 3.4.0 software (R Core Team, 2017). A decision tree using the 61 
extracted features from each pre-processed configuration as inputs was used to predict 
the observed behaviours with the rpart package (Therneau & Atkinson, 2018). For each 
combination, the random forest algorithm was applied with the randomForest package 
(Liaw & Wiener, 2002). Once the random forest algorithm had been calibrated for each 
pre-processing combination, the relative importance of each feature was estimated by the 
mean decrease in the Gini index. The higher the mean decrease in the Gini index, the more 
the feature was important in the prediction of cow behaviours.

Evaluation of the impact of the pre-processing steps

A 10-fold cross-validation procedure was applied to evaluate the performance of each of 
the 300 models obtained with decision trees. The confusion matrix was obtained at the end 
on the procedure and the F-score metric was computed based on this confusion matrix. 
The F-score metric is the harmonic mean of precision and recall, ranging between 0–1. The 
better the model is performing, the closer the F-score will be to 1. The relation between 
indicators of predictive performance and pre-processing parameters was evaluated using 
linear models, leading to the following initial model:

Fscore ~ α + β1HPF + β2LPF + β3WS + β4
 POV+ β5

 NORM + β6
 WS:POV + ε      (1) 

where the outcome was the F-score. High-pass filter (HPF), low-pass filter (LPF), window 
size (WS), percentage overlap (POV), normalization (NORM) and the interaction between 
window size and percentage of overlap (WS : POV) were the explanatory variables. Finally 
α was the overall mean, β1, …, β5

 were the coefficients to estimate and ε was the residual 
error. A backward procedure was adopted to get the final model with only significant 
parameters. ANOVA of type III was carried out with car package (Fox & Weisberg, 2011) 
in R. A Tukey test was finally applied on each explicative parameter to identify the levels 
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which were significantly different from each other. The Tukey test was carried out in R, 
with the lsmeans package (Lenth, 2016).

For each parameter of pre-processing, the mean decrease in Gini index associated with 
each feature was expressed as a percentage of the total mean decrease in Gini index for 
the corresponding parameter level. A heatmap was plotted for each parameter to quickly 
determine whether the relative importance of each feature depended on the chosen level 
for the parameter.

Results and discussion

The impact of each pre-processing step on the prediction of cow behaviours and on the 
relative importance of features were explained in each following section. Results from the 
ANOVA for each parameter are presented in Table. 1.

Impact of filtering

No significant effect was found for the low-pass filter (Table 1), suggesting that removing 
signal noise did not improve the prediction in this study. The relative importance of 
features was not influenced by the chosen level for the low-pass filter (data not shown).

The F-score was decreased by the use of a high-pass filter (- 0.06; P < 0.001; Table 1), which 
is in agreement with Erdaş et al. (2016). Furthermore, the relative importance of features 
was strongly affected by the use of the high-pass filter (Figure 1). High-pass filtering at 
0.3 Hz cut-off frequency removes the continuous component of each axis, which is similar 
to substract the average value from the raw signal. Position parameters like the mean are 
greatly affected by the high-pass filtering and become irrelevant for the classification step, 
in particular the mean on the y-axis (Figure 1: “mean_accy”). Simultaneously, the relative 
importance of features which were not affected by the filter, like variations of movement 
(Figure 1: “MV_accx”, “MV_accy”, “MV_accz” and “MV”), were increased. Based on the 
prediction results (Table 1.), this suggests that the static component of the acceleration is 
essential to discriminate cow behaviours.

Figure 1. Relative importance of features in the classification procedure of cow behavious by the 
random forest algorithm, with a high-pass filter at 0.3 Hz cut-off frequency (a) and without high-pass 
filter (b)
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Table 1. ANOVA results: evaluation of the pre-processing effect on the F-score

F-score

Effect Significance levels1 mean ± sd

LPF

None

0.39

0.87a ± 0.06

10 Hz 0.87a ± 0.07

5 Hz 0.87a± 0.07

HPF
None

***
0.93b ± 0.05

0.3 Hz 0.82a ± 0.02

WS

3

***

0.84a ± 0.08

5 0.86b ± 0.07

10 0.88c ± 0.06

20 0.90d ± 0.05

30 0.90d ± 0.04

POV

0

***

0.86a ± 0.07

25 0.86b ± 0.06

50 0.87b ± 0.06

75 0.88c ± 0.07

90 0.89c ± 0.07

NORM
None

0.45
0.87a ± 0.07

With 0.87a ± 0.07

WS x POV ***

adjusted R2 0.88

Significant levels: *** P <0.001; ** P <0.01; * P <0.05; † P <0.1
1 Effects of high-pass filter (HPF), low-pass filter (LPF), window size (WS), percentage of overlapping (POV), 
normalization (NORM), window size*percentage of overlapping (WS x POV)
a - d distinguish adjusted means that are different for high-pass filter, low-pass filter, window size, percentage of 
overlapping and normalization (P < 0.05, Tukey’s pairwise comparison)

Impact of segmentation

The F-score increased with the window size until a threshold of 20 s (P < 0.001; Table 1) 
and was significantly lower when the window size of 3 s (- 0.04; P < 0.001; Table 1) and 5 s 
were applied (- 0.02; P < 0.001; Table 1). The window sizes of 20 s and 30 s led to a higher 
F-score (respectively: + 0.02; P < 0.001; Table 1 and + 0.03; P < 0.001; Table 1), as already 
shown in similar studies (Smith et al., 2016). The relative importance of features was not 
influenced by the size of the window (data not shown). Wide windows are certainly more 
representative of the signal sequences than the short windows, explaining why the F-score 
are better (Vázquez Diosdado et al., 2015).

Concerning overlapping, the F-score was also improved with the percentage of overlap 
until 75% (P  <  0.001; Table 1). The F-score was decreased with the percentages of 0% 
(- 0.015; P < 0.001; Table 1) and 25% (- 0.012; P < 0.001; Table 1). Percentages of 75% and 
90% led to the higher F-score (respectively: + 0.01; P < 0.001; Table 1 and + 0.02; P < 0.001; 
Table 1), in agreement with Bersch et al. (2014). The relative importance of features was 
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not affected by overlapping. The more the percentage of overlap increased, the more the 
number of signal windows used by the decision tree rose. This is probably why the results 
are better with high percentages of overlap.

Impact of normalization

Normalizing data was not associated with changes in F-score. The relative importance of 
features was also the same for each level of the low-pass filter.

The importance to consider the whole combination of the pre-processing steps

Two out of 300 combinations of pre-processing led to the best performance (F-score: 0.97). 
Both combinations included no high-pass filter, wide window size (20 s and 30 s), an overlap 
of 90% and feature normalization. Four combinations led to the lowest performance (F-score: 
0.74). These combinations involved the low-pass filter at 5 Hz and 10 Hz, included the high-
pass filter, the window size of 3 s with 0%, 25%, 50% and 75% percentages of overlap and with 
normalization. This result shows the importance of considering pre-processing step as a whole.

Conclusion

This study aimed to evaluate the effect of different approaches commonly used to pre-
process three-dimensional accelerometer data on the prediction of the main behaviours 
of dairy cows. The impact of pre-processing steps on the relative importance of extracted 
features was also evaluated to better understand the prediction results. A decrease of 
performance was systematically observed when the high-pass filter was applied. The 
relative importance was also modified, as the high-pass filter directly impacts some 
features in removing the continuous component of the acceleration. This suggests that 
it is essential to keep this component for the prediction. The F-score was significantly 
improved with wide window sizes without changes in relative importance of features. The 
F-score was also increased with high overlaps without changes in the relative importance 
of features. Low-pass filter and normalization did not affect the classification in this 
study. The substantial difference obtained with the best and worst configurations of pre-
processing shows the importance of considering each pre-processing step both separately 
as well as in combination. In particular, the best configurations were obtained without 
high-pass filter, with window sizes of 20 s and 30 s and with an overlap of 90%. Finally, 
features were extracted in this study without comparing the relevance of each of them 
in the classification process of each behaviour. Still focused on the impact of the pre-
processing step, the evaluation of the prediction with different subsets of features deserves 
to be explored. It should be an interesting way to identify the best features to extract to 
optimise the prediction, depending on the considered behaviours.
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Abstract

Monitoring of body weight variation, body condition and/or morphological changes 
allows optimal management of animal health, production and reproduction performance. 
However, due to implementation difficulties (handling, time consumption, investments) 
this type of monitoring is not very common on commercial farms. The development of 
three-dimensional imaging technologies is an interesting solution to meet these needs. 
The purpose of this study was to develop, test and validate a device (Morpho3D) offering 
the possibility of recording and analysing complete 3D forms of dairy cattle. To evaluate 
the performance of this tool, manual measurements were performed on 30 Holstein dairy 
cows: wither height (WH), heart girth (HG), chest depth (CD), hip width (HW), thirl width 
(TW) and ischium width (IW). They were compared to those measured from the Morpho3D 
device. Correlations between Morpho3D measurements and manual measurements were 
0.89 for CD, 0.80 for HW, 0.78 for HG, 0.76 for TW, 0.63 for IW and 0.62 for WH. For the 
Morpho3D system, the repeatability standard deviation ranged from 0.34–1.89 (coefficient 
of variation (CV) from 0.26–9.81) and the reproducibility standard deviation ranged from 
0.55–5.87 (CV from 0.94–7.34). These values are close to those obtained with manual 
measurements. This new device offers the possibility of measuring new phenotypes 
such as the total volume of the animal or the body surface and thus offers new research 
opportunities.

Keywords: dairy cattle, 3D imaging, morphology

Introduction

Monitoring the evolution of the morphology of dairy cattle through the measurement of 
live weight (LW), morphological change (chest circumference, height at withers, etc.) or 
body condition score (BCS), allows to the adaptation of feeding, reproduction and general 
management for optimal operation of the farm. Currently, with the exception of weight, 
most measurements are done manually (tape, measuring rod) or visually (Heinrichs & 
Hardgrove, 1987). These measures are time-consuming, and are sources of stress and 
accidents for farmers and animals. As a result, and despite their value, this information 
is not available on the farm. Developing precise, automatic and easy-to-use tools to 
overcome these problems is therefore of interest. Imaging techniques offer interesting 
alternatives to manual measurements and/or costly methods (Pezzulo et al., 2018). 2D 
imaging approaches, used in pork with some success (Marchant et al., 1993, Schofield et al., 
1998), do not allow users to approach the third dimension. In addition, distortion problems, 
the calibration procedure, the need for multiple cameras and finally 3D reconstruction 
models have reduced their use. The development and commercialization of 3D cameras 
at a relatively low cost has reduced the interest in this 2D technology in favour of 3D 
cameras. These new imaging technologies have thus been used successfully to analyse 
the BCS of dairy cattle (Bercovich et al., 2013, Fischer et al., 2015, Kuzuhara et al., 2015). 
Negretti et al. (2008), Buranakarl et al. (2012), Guo et al. (2017) and Pezzuolo et al. (2018) 
have also developed 3D image technologies with the aim of obtaining a 3D image of the 
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whole animal, but many problems remain. Pezzuolo et al. (2018), with low-cost portable 
equipment based on the Microsoft Kinect v 1 sensor, concluded that their method still 
requires a lot of engineering to enable the automatic collection and extraction of data 
satisfactorily. A new device (called “Morpho3D”) has been developed to easily capture the 
complete shape of cows and measure their morphological traits. Measurements obtained 
with this device were compared with values collected directly from live animals. To 
validate the method, repeatability and reproducibility were also analysed.

Materials and methods

Device

The device tested was installed in the dairy experimental farm of INRA-UMR PEGASE 
located in Le Rheu (France). This system comprises a total of five camera sensors, each 
in combination with a laser projector 650 nm wavelength to limit the risks to humans 
and animals. The pairs ‘camera-laser’ are installed on a mobile portico (Figure 1), set at 
0.40 and 1.77 m above the ground on both sides and a fifth in the middle of the top of 
the portico. It moves at an average speed of 0.5 m s-1 from back to front and returns to its 
original position at an average speed of 0.3 m s-1. The images are recorded during Phase 
1: 80 photos per second and per camera. To secure the entire device, four stainless steel 
cables mark the movement of the cows. Animals can also be blocked by a self-locking 
head door if necessary.

Figure 1. The Morpho3D scanning system

The images of the laser bands projected on the animal are captured by their corresponding 
camera and sent to a computer to reconstruct the 3D information. The images of each 
camera are first processed to build point clouds and the complete 3D reconstruction of the 
animal is performed by recording and merging the multiple views of the 3D data from the 
point clouds of the five camera-laser pairs (Figure 2). A distance threshold is set to ignore 
points too far from the camera and not belonging to the animal. An example of the living 
animal process is available at https://vimeo.com/219370900.
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Figure 2. Point cloud reconstruction

Free software for processing and editing 3D triangular meshes was then used to clean 
the data (Meshlab et al, 2008). A Poisson surface reconstruction algorithm was applied 
to construct a triangulated mesh and shape smoothing (Kazhdan and Hoppe, 2013). The 
different stages of the treatment are shown in Figure 3.

Figure 3. From Acquisition to Final Data: Image 1: Data Acquisition. Image 2: Raw cloud. Image 3: 
Cloud after Cleaning. Image 4: Final Image after Normalization and Poisson Reconstruction
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Animals and measures

Data were collected between May and June 2017 on 30 Holstein dairy cows, aged 3.0 (+1.2) 
years on average, producing 25.5 (+3.6) kg of milk per day. These 30 cows were used to 
estimate the accuracy and correlations between the measurements made on the images 
of the new device (‘Morpho3D’) and those collected directly on the animals (‘Manual’). 
For both methods (‘Morpho3D’ and ‘Manual’), six of these 30 cows underwent a series of 
repeated measurements of the same indicators (six times each), in order to estimate the 
reproducibility of the methods. For the estimation of repeatability, a plastic cow model 
was used. The indicators measured on live animals and images included wither height 
(WH), heart girth (HG), chest depth (CD), hip width (HW), thirl width (TW) and ischium 
width (IW). For manual measurements, a tape and a measuring rod were used. In the 
reconstructed images, measurements were made using dedicated software (Metrux2α®, 
3D Ouest).

Data analysis

To characterise the properties of the device and validate it, the measurements collected 
on the device were compared with those made manually. Repeatability and reproducibility 
of the methods were evaluated. Repeatability makes it possible to evaluate the error 
generated when estimating an indicator several times on the same sample with the same 
methodology, in the same environment, over a short period of time. It was estimated 
by making measurements six times the same day, from the same 3D scan of the same 
animal (plastic model cow). Reproducibility evaluates the same error but under varying 
environmental conditions. It was estimated with six cows scanned six times each the 
same day, with only one measurement per 3D image. The 3D variations were corrected 
to account for the effect of animals in extracting ANOVA model residues. The coefficients 
of variation for repeatability (CVr) and reproducibility (CVR) were evaluated as CVr = 
(σr / μr) * 100 and CVR = (σR / μR) * 100, where σr and σR are, respectively, the standard 
deviations of the corrected 3D measurement for the repeatability and reproducibility 
datasets, and μr and μR are, respectively, the average 3D measure of the repeatability 
and reproducibility data. Similarly, the repeatability and reproducibility of manual 
measurements were estimated by correcting the variability of the measures for the effect 
of cows and operators (two operators performed the same measures). The Anova 1 model 
then included “cow identity” as a factor in case of repeatability, and the Anova 2 model 
includes “cow identity” and “expert identity” as explanatory factors of the measure for 
reproducibility. The correlation analysis between the 3D image measurements and the 
reference values was performed using the statistical software R, version 3.0.2 (2013) and 
the analyses concerning repeatability and reproducibility were carried out with the SAS 
software (SAS Institute, 2016).

Results and discussion

Comparison of measurements manually performed on 30 cows or made from 3D images 
shows that most manual measurements have values lower than those obtained from 
3D images (Table 1). The highest difference was observed for the ischium (difference of 
11.2%), while the lowest was noted for the withers height (1.3%).
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Table 1. Comparison of measurements manually performed on 30 cows or made from 3D images

Measure, cm Manual Morpho3D P value

Heart girth (HG), 207.5 221.5 < 0.0001

Chest depth (CD) 79.4 83.8 < 0.0001

Wither height (WH) 146.9 148.8 < 0.003

Hip width (HW) 55.5 54.4 < 0.02

Thirl width (TW) 51.9 54.4 < 0.008

Ischium width (IW) 17.4 19.6 < 0.02

The correlation between the two types of measurements made is also very good (Table 2). 
The highest values are observed for chest depth (0.89) and the lowest values for ischium 
width (0.63). The prominent bones at the hips certainly explain the small differences 
observed between manual measurements and Morpho3D, as noted by Pezzulo et al. (2018). 
On the contrary, the prominent bones are less visible for the ischium, which may explain 
the meagre performance at this level. For some measurements (heart girth or chest depth), 
an overestimation exists because in some cases, the position of the front leg on the image 
did not allow a satisfactory access. The correlation values between the two approaches 
are generally lower than those reported by Buranarkal et al. (2012) and Pezzulo et al. (2018). 
Buranarkal et al. (2012) performed their measurements under laboratory conditions and 
used visual markings stuck on animals, unusable under commercial conditions. Pezzulo 
et al. (2018) performed their analyses on mean values.

Table 2. Coefficient of correlation and P-value, between manual measurements and those obtained 
on 3D images

Measure, cm Coefficient of correlation P value*

Heart girth (HG) 0.78 < 0.001

Chest depth (CD) 0.89 < 0.001

Wither height (WH) 0.62 < 0.001

Hip width (HW) 0.80 < 0.001

Thirl width (TW) 0.76 < 0.01

Ischium width (IW) 0.63 < 0.01

* test of Student

The repeatability and reproducibility values are quite similar between methods (Table 
3). For data from 3D images, the σr ranged from 0.34–1.89 (CV 0.26–9.81) and σR from 
0.55–5.87 (CV from 0.94–7.34). Using manual measurements, the σr ranged from 0.21–1.32 
(CV 0.11–10.30) and σR ranged from 0.49–1.19 (CV 0.42–4.46). According to Fischer et al. 
(2015), measurement methods with repeatability and reproducibility CVs below 4% can be 
considered as interesting methods, which is the case in this study. Many authors stress the 
important effect of the animal’s position on the fluctuations of the measurements made 
and the importance of selecting, often manually, the best images to limit undesirable 
variations (Kmet et al., 2000; Stajnko et al., 2008). Fischer et al. (2015) also showed that 
among the work done on BCS imaging estimation. But only a few authors went so far as 
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to qualify (repeatability, reproducibility) the method tested. These values are not generally 
available in most published studies.

Another important point that can change the quality of the images, and therefore 
ultimately the repeatability and reproducibility of measurements, is the environment 
(Tscharke & Banhazi, 2013). Indeed, most technologies are sensitive to daylight and are 
conducted in controlled light conditions. Similarly, the control of animal movements to 
obtain exploitable images is a crucial point. Work is still needed to ensure that devices 
developed under controlled conditions can be used in the ‘aggressive’ environment of a 
commercial farm, or at least an experimental farm.

An estimate of the time spent per method to obtain all the values of the indicators used 
was carried out and corresponded to 2.5 and 15 minutes for the manual and automatic 
systems. In the second case, the acquisition is fast (6 s on average) but the time needed to 
analyse and get the final results was about 14 min. It is clearly possible to reduce this time 
in the future through the optimization of models and equations.

Table 3. Repeatability and reproducibility of body measurements obtained directly from animals 
(Manual) or 3D images (Morpho3D). A plastic cow model was used for the repeatability study and six 
cows were used for the reproducibility study

Measure 
µr (cm)

Repeatability Reproducibility

σr CVr (%) µR (cm) σR CVR (%)

Heart girth (HG)
Manual 194.2 0.21 0.11 204.2 0.86 0.42

Morpho3D 195.8 1.89 0.97 221.1 5.87 2.63

Chest depth (CD)
Manual 75.1 0.42 0.56 79.1 0.49 0.62

Morpho3D 76.5 0.44 0.58 84.4 0.92 1.09

Wither height (WH)
Manual 129.1 1.04 0.80 148.9 1.07 0.72

Morpho3D 131.1 0.34 0.26 148.6 2.12 1.42

Hip width (HW)
Manual 39.8 0.35 0.88 55.5 1.01 1.82

Morpho3D 39.9 0.67 1.68 58.6 0.55 0.94

Thirl width (TW)
Manual 50.9 0.36 0.71 50.8 1.19 1.82

Morpho3D 52.6 0.34 0.64 55.5 1.82 3.28

Ischium width (IW)
Manual 12.8 1.32 10.30 17.3 0.77 4.46

Morpho3D 17.5 1.78 9.81 15.4 1.13 7.34

CVr and CVR are respectively the coefficients of variation for repeatability (CVr) and reproducibility (CVR), σr and 

σR the standard deviations of the corrected 3D measurement for the repeatability and reproducibility datasets 
and μr and μR the average 3D measurement of the repeatability and reproducibility data

Conclusion

This new technology is very promising. Despite a longer time of obtaining the final result, the 
‘animal handling’ part is very short, and therefore can limit the risk of accidents for humans 
and animals, which is interesting for other production systems where the handling of 
animals is more delicate (suckler cattle, for example). The automation of the various phases 
of the acquisition process (cleaning, reconstruction and automatic measurement) will allow 
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to consider in the long term a use on a larger scale, as well as for the development of a new 
technology based on a ‘one shot’ image, where moving animals is no longer a problem. The 
possibility of obtaining a 3D image of the whole animal makes it possible to consider many 
valuations: automatic BCS, automated morphological score for animal selection, estimation 
of body weight, measurement of the surface and / or the volume of the animal.
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Abstract

The ability to accurately identify cows with the highest future profit potential has become 
more difficult in larger dairy herds which has amplified the need for precision-based 
technologies. The Cow’s Own Worth (C.O.W.) is a new decision support tool, available 
through the HerdPlus web application or online account, to aid herdowners in making 
informed decisions on dairy females for culling and retention. C.O.W. ranks dairy females 
on expected profit for the remainder of their lifetime, specifically considering the genetic 
merit, permanent environmental effects, current states of the individual (i.e. calving date 
and parity), as well as predicting future performance in fertility, survival and somatic cell 
count. The theoretical framework of C.O.W. has been described previously by Kelleher et 
al. (2015). C.O.W. generates real-time rankings of each cow within the herd using the Irish 
Cattle Breeding Federation Oracle Exadata database. Each procedure is executed based on 
the most up-to-date information stored within the database. The objective of this study 
was to validate the performance of C.O.W. using herds that have actively logged onto 
the online service in 2018. Phenotypic performance records were used from 1,528 herds 
and 175,695 cows which accounts for 25% of the national milk recorded herd. Cows were 
stratified per quartile on C.O.W. value within herd. The top 20% on C.O.W. yielded 1,133 kg 
more milk and 124 kg more milk solids compared to the bottom 20% contemporaries. The 
quality and timely entry of data is crucial for the precision and accuracy of C.O.W. and 
benefits the industry by offering added value to existing services and increasing accuracy 
of genetic evaluations and key performance indicators.

Keywords: culling, genetics, database, decision support

Introduction

The accurate identification of the highest profit potential dairy cows within herd 
has become increasingly more difficult due to the expansion of herd size in Ireland in 
recent years. The decision to cull cows that are no longer profitable from the herd has 
a substantial impact on the herd profitability. This has amplified the need for precision-
based technologies to aid herdowners in choosing the most optimal strategy to identify 
culling candidates within their herd.

The Irish Cattle Breeding Federation (ICBF) operates a centralised database for all cattle 
herds in Ireland for the provision of running the national genetic evaluations and providing 
cattle breeding services. The Cow’s Own Worth (C.O.W.) is a decision support tool available 
to herdowners through the ICBF’s subscription service, HerdPlus, through web application 
and subscriber’s online account with the purpose of ranking dairy cows on expected 
profitability using multiple sources of live data stored in the database. Herdowners make 
significant investments in animal events data recording (e.g. milk recording, pregnancy 
diagnosis and genotyping) but collating all these data sources into one value per animal is 
key to aid decision making. The C.O.W. generates an expected profitability value for every 
cow for the remainder of every dairy female’s life within a herd and ranks cows using 
additive genetic merit (estimated breeding values), non-additive genetic merit, permanent 
environment effects and current states of the cow (i.e. lactation number, calving date, 
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and predicted calving date from available inseminations or pregnancy diagnosis). The 
C.O.W. profile runs instantly, combining all information and executing each procedure on 
the most up-to-date information to generate a ranking for the dairy cows within herd, 
allowing the herdowner to quickly identify under-performing dairy females to cull, thereby 
retaining only the most profitable females. Other benefits of this management tool are the 
reductions in time, effort and resources farmers spend on culling and retention decisions 
while getting more value from their data recording strategies.

The C.O.W. has been in operation since October 2017 and an opportunity exists to validate 
the accuracy and usefulness of such a precision tool by analysing the herds that have 
used the C.O.W. over a period of 12 months. The objective of this study was to validate 
the performance of C.O.W. using herds that have actively logged onto the online service 
in 2018.

Material and methods

Data

A sample of herds that had accessed C.O.W. during a 12-month period since the launch of 
C.O.W. were extracted from the ICBF database. Phenotypes for milk production, SCC and 
calving records were also extracted for 2018. Individual animal EBV for traits included 
in the EBI, from the domestic genetic evaluations were used. Permanent environmental 
effects were available from the genetic evaluations for test-day milk, fat and protein field, 
as well as SCS (natural logarithm of SCC). Heterosis and recombination loss coefficients 
for each animal and their respective regression coefficients associated with each of the 
performance traits were also available for all traits included in the national genetic 
evaluation. Economic values were taken from the Moorepark Dairy Systems Model 
(MDSM; Shalloo et al., 2004) and updated for a prevailing milk price (30.5c/l) and future 
price scenario (30.5c/l).

Index evaluation

Individual cow EBI values and C.O.W. values from the national genetic evaluations were 
analysed from cows that were ranked on the C.O.W. Cows were categorised, within herd, 
into five groups based on their value for either the C.O.W. or EBI index. Only cows that had 
phenotypic performance data for milk production traits (milk yield, fat yield, protein yield, 
and SCC) were retained. After editing, C.O.W. values and EBI values, as well as phenotypic 
performance data, were available on 175,695 cows in 1,528 herds which accounts for 25% 
of the national milk recorded herd.

Results and discussion

The top 20% on C.O.W. yielded 1,133 kg more milk and 124 kg more milk solids compared 
to the bottom 20% contemporaries on C.O.W. (Figure 1). The relative differences for the 
respective traits, between the top and bottom 20% stratified on EBI were less compared to 
when stratified on C.O.W. The top 20% on EBI yielded 386 kg more milk and 67 kg more milk 
solids compared to the bottom 20% contemporaries on EBI. The C.O.W. is not a proposed 
replacement for the EBI. The relative differences in Figure 1 reflects the efficient precision 
of the C.O.W. in ranking cows on expected performance due to considering not only additive 
genetic merit but also additional factors that impact on animal performance, for example, 
non-additive genetic merit, permanent environmental effects and transition probabilities 
for fertility performance (Kelleher et al., 2015). Cows that rank lower on C.O.W. have lower 
production and therefore have a lower expected profitability, all else being equal, within 
the herd.
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Figure 1. Least squares means for 305D milk (blue), fat (green) and protein (red) yield for the bottom 
20%, average 20% and top 20% of animals ranked on C.O.W. (solid line) or EBI (dash line)

Figure 2. Least squares means for SCC for parity 1 (blue), 3 (red) and 5+ (green) for the bottom 20%, 
average 20% and top 20% of animals ranked on C.O.W. (solid line)

Furthermore, a similar trend is illustrated in Figure 2 where average SCC is higher in cows 
ranked lower on the C.O.W. in all parities. Finally, cows calving earlier in the spring were 
more likely to rank higher on the C.O.W. Therefore, the stratification of the C.O.W. has 
highlighted the significant differences in cow performance in terms of production, fertility 
and health traits. Cows ranking higher on C.O.W. have more milk yield and solids, calve 
earlier in the season and have lower SCC.
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Figure 3. Month of calving frequencies for the top 20% (blue), average 20% (green) and bottom 20% 
(red) on the C.O.W.

Conclusions

Tools already exist to identify dairy females as suitable parents of the next generation. The 
C.O.W. is a new precision management tool to rank dairy females for culling decisions. The 
C.O.W. has been available for commercial use since October 2017. C.O.W. integrates multiple 
sources of available data, and critically, is complementary to the EBI (Ireland’s national 
breeding index) which identifies the most suitable females for breeding replacements. The 
C.O.W. offers future prospects to improve herd profitability by efficiently and scientifically 
identifying the least profitable cows to remove from the herd. The web application and 
online C.O.W. service thereby adds value to existing services such as milk recording and 
genotyping of dairy females and provides additional information to herdowners to aid in 
informed management decisions in real-time.
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Abstract

In the livestock domain, Big Data is becoming more common and is being anchored into 
the mind-set of researchers. With the increasing availability of large amounts of data of 
varying nature, there is the challenge of how to store, combine, and analyse these data 
efficiently. With this study, we explored the possibility of using a data lake for storing and 
analysing sensor data, using an animal experiment as the use case, to improve scalability 
and interoperability. The use case was an experiment within Breed4Food (a public-private 
partnership), in which the gait score of 200 turkeys was determined. In the experiment, 
a gait score was traditionally assigned to each animal by a highly-skilled person who 
visually inspected them walking. Next to it, a set of sensor data streams was recorded 
for each animal, specifically inertial measurement units (IMUs), a 3D-video camera, and 
a force plate, with the ambition to explore the effectiveness of these data streams as 
predictors for estimating the gait score. The resulting sensor output, i.e. raw data, were 
successfully stored in its original format in the data lake. Subsequently, for each sensor 
output we performed extract, transform, and load activities, by executing custom-made 
scripts to generate tab or comma separated files. Lastly, by using Apache Spark it was 
possible to easily perform parallel processing of the data, allowing for fast computing. In 
conclusion, we managed to set up a data lake, load animal experimental data and run 
preliminary analyses. The data lake allowed for easy scale up of both data loading and 
analyses, which is desired for dynamic analyses pipelines, especially when more data are 
collected in the future.

Keywords: data lake, sensor data, animal experiment, scalability

Introduction

Traditionally, animal scientists work with structured relational databases to store data used 
in their research. However, ongoing technological innovations and their implementation 
results in a whole generation of unstructured non-relational data, i.e. camera or video 
images, and the quantity of data is increasing simultaneously too. With the increasing 
availability of large amounts of data with varying nature, there is the challenge of how 
to store, combine, and analyse these data efficiently. In the information computation 
technology world there seems to be a move from structured relational databases to 
schema-less databases (commonly referred to as NoSQL databases) for management 
and storage of data; and from data warehouses to data lakes. The key driver behind this 
transition is that we need to store the source data and handle ever increasing datasets, 
varying data structures, as well as heterogeneous and multimodal data. To this end, 
the process of data pre-processing, i.e. the extract, transform, and load (ETL) procedure 
becomes more demanding.

With this study, we explored the possibility of using a data lake for storing and analysing 
sensor data, using an animal experiment as use case, to have improved scalability and 
interoperability. In this experiment, three different sensors were used to capture (indices) 
of the gait score of turkeys. The three sensors used were 1) inertial measurement units 
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(IMUs), 2) a 3D-video camera, and 3) a force plate. The raw output of these three sensors 
were stored in the data lake and the ETL procedure was applied by employing custom 
scripts to make the data more aligned with FAIR-principles.

Material and methods

Data lake

The deployment of a data lake involves the installation and management of several big data 
software tools, including reliable distributed file systems, cluster resource management 
and execution environments for map reduce, data flows, SQL, such as Apache Spark. To 
avoid the overheads of this task, we reused a predefined software stack, available as a 
Docker container. This involved three major steps: First, we installed Docker, which is 
a computer program supporting operating-system-level virtualization, also known as 
containerization. A container consists of a standard unit of software and its dependencies 
so the application can run quickly and reliably from one computing environment to 
another. Second, we downloaded an image from Docker (https://hub.docker.com/r/
jupyter/all-spark-notebook/), here we selected the ‘jupyter/all-spark-notebook’. This 
notebook includes Python, R, and Scala support for Apache Spark. By doing so, we ensured 
a flexibility to employ different scripting languages, and not to limit ourselves to one 
scripting language. Third, we developed and executed custom scripts (in Python and C++) 
via Jupyter Notebook (http://jupyter.org/) and for visualization we used IBM PixieDust. An 
overview of the software used is given in Figure 1.

Figure 1. Overview of the software used in our data lake

Case study

Within the Breed4Food-Locomotion project, data from several sensors were collected 
during an animal experiment investigating the gait score of turkeys. These sensors 
included camera depth images (Intel Realsense D415), one force plate (Kistler), and three 
Inertial Measurement Units (Xsense MTw Awinda). These three IMUs were placed at the 
bird’s legs (one each), and one IMU was placed on the bird’s torso. Sensor-borne data 
were ingested to the data lake in raw format and stored using a Hadoop Distributed File 
System (HDFS). Sensor data of two selected sensors were binary data, i.e. force plate data 
(.tdms) and accelerometers (.mtb). In contrast, the raw output of the 3D-cameras was a 
bag file, this is a file format in Robot Operating System (ROS) for storing a sequence of 
records. Here we used the Melodic Meriona version of ROS to extract the data we needed 
for further processing.

ETL (Pre-processing and storage)

We generated customised scripts to convert the raw formats of each sensor to prepare these 
files for downstream analyses, see also Figure 2. For the force plate data, the technical data 
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management solution (.tdms) files were converted to comma separated values (.csv) files 
via the cross-platform Python package npTDMS. The npTDMS package is created to read 
and write TDMS files as produced by LabVIEW. For the extraction of the accelerometer files 
(.mtb files), a C++ script was used to automatically extract the information and convert 
this to a .csv file. Lastly, the information from the 3D-cameras (.bag files) were extracted 
by using a custom-made Python script that links to the ROS.

Figure 2. Flow diagram of the ‘Extract, Transform, and Load’ procedure of the data lake

Results and discussion

Data lake

In animal sciences a plethora of data are generated and is expected to continue in the 
(near) future. Important aspects to take into account include how to ingest (the process 
of moving data into a distributed file system), store, process, and access these data. In 
the current study, we explored a data lake in which raw sensor data were collected and 
ingested, and subsequently transformed and visualised to investigate the benefits of a 
data lake approach, and to identify possible caveats of this approach compared to the 
more traditionally used structured and relational data bases.

Building and managing

Before starting to work with a data lake, some prerequisites are needed, like virtualization 
on your computer should be allowed. The advantage of building a data lake is that it can 
be exploited, for example, when an (animal) experiment encompasses large volumes of 
data and it is necessary to scale-up the data ingestion. To this end, we built a customised 
data lake, designed to ingest the three types of sensor data, i.e. force plate, accelerometers 
(IMU), and 3D-video. The final deployable container image, an executable package 
including all necessary files, of the data lake was generated after multiple iterations. These 
iterations, although a labour intensive job, are of great importance because for scaling up 
this image needs to be deployed to many machines with no margin of error. The final 
image contained all necessary software and applications, as well as their dependencies, 
which was needed for transforming the animal experimental data that subsequently could 
be loaded in different programming languages, like Python and R. We could ingest and 
perform the ETL procedure for all animals at once and pre-process these data for further 
applications, analyses, and visualization. For example, all data was stored in its original 
format, allowing for extraction of alternative features in the future. Processing after a 
series of commands has been optimised and parallelised by the Apache Spark engine 
in the background. Another example is the possibility to link the different sensors, i.e. 
feature extraction of interest, in an analysis pipeline and subsequently perform statistical 
methods, e.g. linear regression.
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Another important aspect associated to deploying a data lake that we encountered was the 
possible skills gap. For building and managing a container image, knowledge is required 
about command line code (such as Linux and/or Bash) and other programming languages 
(including Julia, Perl, and Python). This skills gap in people has already been identified 
(Gesing et al., 2015, Connor et al., 2016, Gibert et al., 2018) and finding and maintaining 
people with the proper skill set is often more difficult in organisations compared to 
‘processes’ and ‘technology’. In practice, this means that there is a shortage of persons 
with the necessary skills, this is also observed within the animal sciences domain, where 
to our knowledge not much effort is (yet) put into data lakes, and big data technologies, 
in general. Thus, to adopt such approaches, investments need to be made, especially in 
acquiring the skills. Simultaneously, a start needs to be made by translating and adopting 
today’s challenges in the data lake approach. For example, by initiation of embedding 
this data lake approach into education of (MSc and) PhD students, and especially into 
animal experimentation. For the latter, it is expected that in the near future, data from 
animal experimentation will become larger in volume and more complex. Compared to 
data warehouses, data lakes have a flexible configuration and high agility, as well as up to 
10–100 times less expensive to deploy compared to conventional data warehousing (Stein 
& Morrison 2014, Khine & Wang 2018). Moreover, for precision livestock farming where it is 
expected that sensor data will become real-time in the (near) future, ingestion and storage 
of large volumes of data, can be performed immediately by a data lake approach. In our 
case study, the biggest challenges were the data transformations, due to the encrypted 
raw file formats from the different sensors. Nevertheless, we managed to overcome this 
by branching out to domain experts.

Metadata

Metadata is exceptionally important for managing your data lake. This encompasses both 
the earlier mentioned versioning of software and packages, as well as the description of 
the different data types, how these data were measured and under which circumstances. 
Generating such metadata is essential, as without effective metadata, data that streams 
into a data lake may never be seen again. Another important aspect getting more attention 
lately, is the Findable, Accessible, Interoperable and Reusable (FAIR) Guiding Principles 
(Wilkinson et al., 2016). For our data lake, we primarily focused on the accessibility of the 
data, using open source scripts and customise them to our data lake. By generating Jupyter 
Notebooks with extensive descriptions of the various commands, it will be possible for 
other persons to reuse the data and scripts. However, more importantly, the various scripts 
could be read and executed by linking to other computers. In the current case study, we 
have generated a ‘closed’, IP-protected, FAIR data point, because we collaborate with an 
industry partner in the breeding sector.

Conclusions

The main lesson learned was that with a data lake approach it is possible to capture 
and maintain the entire universe of data from, e.g. an animal experiment in one virtual 
location (i.e. a container image). In addition, there is no data loss and the data are stored 
in raw format. This opens the possibilities to revisit the data and perform alternative pre-
processing fitting novel or different hypotheses to the original stated hypothesis. Lastly, 
the whole procedure to extract, transform, and load (ETL-procedure) is scalable and could 
therefore reduce computing time, which is desired for dynamic analyses pipelines.
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Abstract

The vast amount of livestock (sensor) data collected everyday, offers a huge potential 
to improve model prediction and therefore decision support for farmers. However, the 
prediction performance of these models depends highly on the availability and quality 
of the data. Careful dataset preparation is therefore important. Nowadays, selecting and 
understanding the data becomes increasingly more difficult as the data grows in size and 
complexity. In our study we provide data providers within the livestock farming industry 
with guidelines to describe their data sets more accurately and provide model developers 
useful techniques to compose a good quality subset of the data to form the base for their 
model development. This all comes together into our Interactive Visualization tool which 
allows model developers to explore the data and select, visually or with the use of familiar 
programming languages, subsets of good quality data for modelling. By using state-of-
the-art distributed computing frameworks, our prototype solution can scale as the size of 
the data grows to terabytes or even petabytes. We use operational (sensor) data from the 
Dutch smart dairy farming project to illustrate our solution.

Keywords: big data, dairy farming, interactive insight, dataset preparation, data quality

Introduction

Since as early as the 1980’s, data acquisition and analysis has improved the health 
management of cows in the dairy industry with the use of a variety of sensors (Rutten 
et al., 2013). However, young animals before their productive life (young stock rearing) 
have largely been excluded from the use of these IT techniques (Bahr et al., 2016). With 
the project called ‘Precision feeding of young calves facilitated by IoT and Big Data 
technologies’, funded by the Dutch TKI program HTSM, researchers look how data-driven 
models can support the development of young stock rearing and thereby improve the 
future lifetime production of dairy cows. In the same project, we developed a tool to 
support these researchers in their development of data-driven models.

Figure 1. Raw sensor data is often noisy and imperfect. The data might contain gaps or invalid values 
as a result of malfunctioning sensors. Furthermore, different timelines often need to be realigned in 
time in order for them to be comparable

The prediction performance of data-driven models depends highly on the quality and 
availability of the data. Raw sensor information can be incomplete or invalid and data 



146      Precision Livestock Farming ’19

from multiple sensors can be misaligned in time (see Figure 1) possibly resulting in a 
biased or poorly trained model. Datasets used for fitting or training the models therefore 
need to be selected with care, manually.

This careful dataset selection and preparation typically takes a large amount of time 
during model development (see Figure 2). This becomes increasingly more difficult and 
time consuming as the complexity and size of the data grows (e.g. dealing with Big Data).

Figure 2. Dealing with large amounts of raw data and selecting and processing into a suitable subset 
typically takes a lot of time during the model development life cycle

In this article we present an Interactive Visualisation tool for model makers to reduce the 
time it takes to select an appropriate subset out of a raw dataset suitable for their data-
driven modelling. As selection support we developed Quality Metrics and Data Summaries.

Figure 3. Typical usage workflow of our Interactive Visualization tool for the purpose of dataset 
preparation. See text for more details

Our tool assists the model developer in selecting a suitable subset of the raw dataset for 
modelling (see Figure 3). This typically involves two steps; a) selection and manipulation 
(either visually or using program code) of the dataset and b) exploration and validation of 
the selected subset using a visual front-end.

State of the Art

Solutions in dealing with the visualization of large amounts of data exist in current 
literature (Gorodov, Evgeniy Yur’evich Gubarev, 2013; Wang et al., 2015). However, many 
implementations are very application specific or limited to the processing power of a 
single node (Liu et al., 2013) and the more generic visualizations tools have their own 
limitations in terms of the amount of data they support (Ali et al., 2016).
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Methods

Design Criteria

For the purpose of our research and its aimed application (exploration and selection of 
promising datasets for developing a model), we defined the following design criteria:

•	 Scalability: the tool should be able to distribute its processing over the browser (thus 
providing visual interactivity) and on one or more servers which intelligently reduces 
the size of (too) large datasets into data summaries.

•	 Data quality and availability: the tool should provide insight into the quality (e.g. mean 
and standard deviation) and availability (e.g. frequency and time interval) of the data 
in a comparative way between different data subsets.

•	 Time realignment: the tool should be able to realign data subsets relative to a new time 
offset (such as the birthdate of an animal) or set of time offsets (such as the calving 
dates of a cow).

Quality Metrics and Data Summaries

Different aspects of the data can be visualised with the tool. We consider two groups of 
aspects: those describing the values in the dataset (e.g. count, mean, standard deviation, 
minimum/maximum value, etc.) and those describing the time distribution of the dataset 
(e.g. mean absolute deviation of time interval, minimum/maximum data point time interval, 
etc.). These aspects are called quality metrics and are an aggregation of the original larger 
dataset. We collect and store these different aggregations as data summaries.

The data summary can store quality metrics aggregated over different periods of time (e.g. 
hours, days, weeks, years, etc.) This is the resolution of the data summary. Next to this, 
the data summary also describes alignments. This could be either the absolute time of the 
measurement or relative to a specific time offset (e.g. birthdate) or a repeating timeline 
(e.g. multiple calving dates of a single cow).

The developed tool loads and visualizes the data summary. Since the data summary is 
based on aggregations, it typically contains less data compared to the original dataset and 
therefore is easier to store and faster to transfer to the dashboard and visualise.

System Overview

A system overview of the tool is shown in Figure 4 and consists of a distributed storage 
component, a processing component, an interface and two possible data refinement 
options. Raw data stored in storage is processed in a distributed way into sufficiently small 
data summaries (the contents of which depends on the selection made by the user) so that 
they can be visualised in the user interface.

Figure 4. Overall architecture of the complete system. The solid lines indicate the order in which 
the different components are used during selection and manipulation of the data. The dashed lines 
indicate the way the data summaries are transferred. The technology used is shown within brackets. 
The user typically is a data scientist or model developer
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Results

Dataset Used

During the Smart Dairy Farming (SDF) project, real-time operational sensor data from 
dairy cows was collected for several years and processed with models in order to develop 
work instructions for the seven farmers in the SDF project (Lokhorst & Wulfse, 2015). From 
two of these farmers we received consent to use their data for the development of the 
tool presented in this paper. To be precise: we used the data from farm three and seven 
as described in (Vonder et al., 2015), containing sensor data for activity, water intake, milk 
intake, milk production, food intake and weight, for 359 animals in total.

Setup

During experimentation, the following configuration was used for the different elements 
described in the System Overview (see Figure 4). Both the storage and processing layers 
were distributed over four different machines.

•	 Storage: the original file-based data, as retrieved from the InfoBroker (Vonder et al., 
2015), is stored on a HDFS cluster (Borthakur et al., 2008). This InfoBroker has been 
developed to provide interoperability and ease of data exchange among different 
existing (proprietary) sensor systems.

•	 Processing: to aggregate and process the data, Apache Spark (Zaharia et al., 2016) is 
used as the processing framework on top of YARN (Vavilapalli et al., 2013) for cluster 
resource management. Our custom library to create the data summaries was written 
in Scala. Apache Livy is used to support multitenancy for the same Spark Session.

•	 Datasummary Interface: a custom REST interface was made in Node.js (Tilkov & Verivue, 
2010) to create and retrieve the data summaries.

•	 Notebook: Apache Zeppelin allows to select and manipulate the data directly using the 
Scala programming language.

Use-case Description

The benefit of using the tool is illustrated using the following use-case: A researcher in 
precision dairy farming (the user) is particularly interested in the development of young 
stock in the pre-weaning period. He wants to have a clear insight into the availability, 
amount and quality of all available data, in order to compose the best/biggest training set 
for his machine learning methods. In Figure 5 some of the available sensors are shown: 
‘milk intake’, ‘water intake’, ‘weight’ (from two types of sensors) and ‘activity’.

We can immediately see in Figure 5 (a) that there is data available for all four sensors, and 
also that we only have data for all five sensors at the same time in the period of January 
2014 until July 2015.

The user (a researcher in precision dairy farming) aligns the data to the birthdate of each 
individual animal, as depicted in Figure 5 (b). As the researcher is interested in young stock 
rearing, he looks at first 125 days since birth of the animals. As can be seen in Figure 5 
(b) for this period of time there is only data available for the sensors ‘water intake’, ‘milk 
intake’ and ‘weight’.

Since that is the data the user could use for his research, he selects the first 125 days in 
the graph (see Figure 6). After this selection, the tool shows the remaining data for the 
four sensors on the left side (and only ‘water intake’, ‘milk intake’ and ‘weight’ have actual 
data). By pressing the download symbol (2nd symbol from the upper right corner in Figure 
6), the actual datasets are selected and prepared for the user (for only these animals that 
have ‘water intake’, ‘milk intake’ and ‘weight’ data: 119 animals).
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Figure 5. A screenshot of the interactive dashboard before selection. (a) The available data shown in 
absolute measurement time. The horizontal axis describes the absolute time (on a daily basis) and 
the vertical axis describes the number of measured values of each specific sensor (for all animals 
together). (b) The available data shown in relative time. The horizontal axis describes relative time (in 
days since birth of the animals) and the vertical axis describes again the number of measured values 
of each specific sensor (for all animals together) in the specific day since birth of the animals

In only a few mouse clicks the researcher was able to narrow down the complete data set 
of 359 animals to 119 calves with the relevant amount of data for his model development.

Figure 6. A screenshot of the interactive dashboard after selection. The available data shown in 
absolute measurement time (a), based on the selection (b) of the first 125 days since birth of the 
animals
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Conclusions

Using our Interactive Visualization tool presented in this article, the user can aggregate 
(very) large datasets into small interpretable data summaries using quality metrics. The 
tool allows users to visualise, realign and select relevant parts of the complete dataset. 
This enables model makers to quickly narrow down their search in finding useful relevant 
sub selections of datasets that can be used in statistical modelling and machine learning. 
Using the tool allows model makers to save a lot of time and hassle by avoiding the need 
for manual selection and inspection of large quantities of data.

Future Work

To include better mechanisms to evaluate the quality of the data in large datasets, the tool 
could be extended with a set of more advanced statistical and machine learning methods, 
for example, to test the normality of the data or test for anomalies.

For our research, we created the data summaries directly from the raw data. We are 
currently working on a cookbook with guidelines for data providers to better describe their 
data and create the data summaries themselves. This could benefit the data providers in 
advertising the availability of the data while making it easier for the model developers to 
start their dataset selection.

There is a shift going on from traditional databases, to data warehouses, to data lakes 
and finally, to data spaces (Jarke & Quix, 2017) in which the actual location of the data 
becomes more fluid and data sovereignty becomes more important. This requires a 
different approach in the way data is accessed and represented. Although already quite 
flexible, the Interactive Visualization tool presented in this article should better meet the 
requirements of these data spaces in future research.
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Abstract

The aim of this study was to identify a set of feeding behaviour and activity related 
variables that could potentially detect a shortage of available feed for the individual cow 
on pasture. A group of lactating cows was offered 100% of their intake capacity as herbage 
allowance throughout a 10-week experimental period, while another group was offered 
60% of their intake allowance, either for a two week or six week period in springtime. Each 
cow was equipped with an automated noseband sensor. The data were analysed by using 
a binomial generalized lineal model (GLM). The GLM was examined for the classification 
of full or restricted herbage allowance as a function of a previously identified set of 
characteristics. The model was further refined by including additional characteristics, 
which achieved higher prediction performance. For the combined data, the refined model 
achieved 77% accuracy, 75% sensitivity, 78% specificity and F-score 0.76 towards a decision 
support system for grass utilisation in pasture based milk production.

Keywords: feeding behaviour, generalized linear model, classification performance

Introduction

In precision dairy farming, one of the key factors for farmers to recognise biosensor 
technologies is the scope of utilising biosensor data to develop a reliable pasture-based 
grazing system (French et al., 2015). In this context, the current study aims to identify a set 
of feeding behaviour and activity related characteristics of milking cows recorded by the 
RumiWatchSystem (Alsaaod et al., 2015) and quantify their relationship with insufficient 
grass allowance, so that the study findings can be further used as guidance for developing 
a decision support system. The efficacy of such a support system depends mainly on its 
ability to identify the correct grass allowance per cow. This study, therefore, considered 
the association between grazing behaviour and activity with grass allowance as means 
of identifying one of the groups for grazing cows: access to sufficient or insufficient grass.

Werner et al. (2019) suggested that bite frequency (BITEFREQ), rumination time per day 
(RUMINATETIME), rumination chews per bolus (RUMICHEWBOLUS) and frequency of 
standing or laying (STANDLAY) were significantly affected by restricted grass allowance. 
Therefore, this study first considered only these variables to examine their predictive 
performance using a GLM with logit link, i.e. logistic regression (LR) model. The model 
was further refined by incorporating additional characteristics using a stepwise method 
(Efroymson, 1960). Thus, a refined set of feeding behaviour and activity related variables 
was proposed for which the LR model increased the classification performance indices.

Material and methods

Data collection and cleaning

Data for this study came from a larger overall experiment at Teagasc, Moorepark Dairy 
Research Farm, Animal & Grassland Research and Innovation Centre, Fermoy, Co. 
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Cork, Ireland (Claffey, 2018). The experiment was conducted in springtime using 105 
calving cows to examine the effects of restricted pasture allowance on milk production, 
immunology and indicators of reproductive health of grazing dairy cows. Ethical approval 
was received from Teagasc Animal Ethics Committee (TAEC; TAEC100/2015) and procedure 
authorisation was granted by the Irish Health Products Regulatory Authority (HPRA).

For the current study, 40 focal cows were selected for recording the feeding behaviour and 
activities using the RumiWatch System. Out of these, 10 cows were randomly assigned to 
a group where cows were offered 100% of their intake allowance and the remaining 30 
cows were assigned to the restricted allowance groups where cows were offered 60% of 
their intake allowance. The 60% group was further divided into six sub-groups based on 
the duration of restriction, i.e. two-week (2) or six-week (6) period and three time points of 
(early) lactation at the commencement of restricted allowance: start (S: restriction starts 
at the beginning of experiment), mid (M: two weeks after the S restriction commenced) or 
late (L: four weeks after the S restriction commenced). The behaviour of the cows in the 
100% group was monitored over 10-week period. The three cow groups on the two-week 
restricted pasture allowance (PA) had their behaviour recoded during the full two-week 
periods whereas the behaviour of the three groups on the six-weeks restricted PA was 
recorded during the last two-week period due to limited sensor device resources (Werner 
et al., 2019). Throughout this paper, the notions S2, M2, L2, S6, M6 and L6 denote the six 
treatment sub-groups as well as the subsets of combined data, which included the records 
of the respective cows from the insufficient and sufficient grass allowance groups.

In total 1,221 records were collected during the experimental period. For the safety and strictness, 
all records with missing values were removed. The combined data included 629 records for cows 
that had 100% intake allowance and 592 records for cows with 60% of the intake allowance. 
However, the subsets of the combined data S2, M2, L2, S6, M6 and L6 were unbalanced.

Research design

The research design comprised three parts for this study. The first part was data exploring, 
and fitting univariate logistic regression models with one exposure variable at a time. 
At this stage, all the feeding and activity related variables recorded by the RumiWatch 
System were considered for screening. Based on the results of univariate analyses, a set 
of nine candidate variables was selected for further analysis using multivariate models.

The candidate set identified in the first part included the four previously identified 
characteristics (Werner et al., 2019). These variables were used in Model 1 as follows.

log (
πi 

1-πi
)=β0+β1BITEFREQi + β2RUMINATETIMEi + β3

 RUMICHEWBOLUSi + β4STANDLAYi  (1)

The second part was data classifications using Model 1. Given the recorded values of the 
predictor variables, the fitted model estimates the log of odds, log (

πi 
1-πi

) where πi=P(Y=1), 
i.e. the probability that the cow had insufficient (60%) PA and (1-πi)=P(Y=0) i.e. the probability 
that it had sufficient (100%) PA. The regression coefficients β's are the instantaneous change 
in log(odds) for one unit change of the independent variable, holding all other variables 
constant (Kabacoff, 2015). For each data set, the estimated coefficients of Model 1 were 
exponentiated to obtain odds ratio (OR) which described the relationship between each 
characteristic and the odds of insufficient grass allowance in a multivariate framework.

The third part of the study was model refinement based on stepwise regression. The 
procedure identified the best set of characteristics from the nine candidates for which the 
exploratory analysis showed significant association with the pasture allowance groups. 
Thus, a refined classification model was proposed. The classification performance of Model 
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1 and the refined models was compared based on accuracy, sensitivity, specificity, and 
F-score. These indices were estimated form the cross validation study as follows. Given 
data, a random sampling divided the rows into a training set and a testing set such that 
each row had 70% chance of being included in the training set and 30% chance of being 
included in the testing set. Both the models were estimated from the training set and 
applied to classify the grass allowance for each cow in the testing set. Based on the true 
and predicted classes, a confusion matrix was created for estimating the classification 
indices. The procedure was repeated 1,000 times and the indices were summarised by the 
means. The statistical analyses were performed by using glm, step, acf (R core Team, 2019) 
and lrm (Frank & Harrell, 2019) functions and the codes for repeated cross validations were 
written in R3.5.3.

Results and discussion

Estimation of Model 1

Table 1 presents the estimated coefficients of Model 1 and the odds ratios (in brackets) 
for the subsets and combined data. While the results for combined data demonstrate 
that each characteristic was significantly associated with the odds of insufficient grass 
allowance, separate analyses show that the magnitude of effects were different for 
different duration of restriction and the stages of lactation. For example, using S2, the 
odds of insufficient grass was expected to increase by a factor of 1.2 for every unit increase 
in the ‘bite-frequency’ (holding other characteristics fixed). The remaining variables had 
insignificant negative effects on the odds.

Table 1. Estimated coefficients with odds ratios (in brackets) for Model 1 based on the subsets and 
combined data

Variables S2 M2 L2 S6 M6 L6 Combined

BITEFREQ
0.18*** 
(1.20)

0.083** 
(1.09)

0.09* 
(1.09)

0.105*** 
(1.11)

0.177*** 
(1.19)

0.094** 
(1.09)

0.12*** 
(1.12)

RUMINATETIME
-0.003 
(0.99)

-0.012*** 
(0.99)

-0.012*** 
(0.99)

-0.012** 
(0.99)

-0.009*** 
(0.99)

-0.009*** 
(0.99)

-0.008*** 
(0.99)

RUMICHEWBOLUS
-0.039 
(0.96)

-0.006 
(0.99)

-0.135** 
(0.87)

-0.317*** 
(0.73)

-0.109** 
(0.90)

-0.14** 
(0.87)

-0.12*** 
(0.89)

STANDLAY
-0.17*** 
(0.84)

-0.25*** 
(0.78)

-0.086 
(0.92)

-0.056 
(0.95)

-0.122*** 
(0.88)

-0.05 
(0.95)

-0.107*** 
(0.87)

P-value: *** < 0.001; ** < 0.01; * < 0.05

However, the magnitude of the effects and corresponding P-values for significance tests were 
different across the data sets, though the direction of effects was the same in all cases. One 
possible reason for the differences in results is that the combined data were obtained from 
the six blocks of cows that were attributed to different level combinations of restriction 
period and lactation stage factors. This implies that the between group variation of each 
characteristics among the treatment cows was not assumed to be equal. As a result, Model 1 
did not fit all data sets equally well. For example, the pseudo R2 for S2 (R2=0.62), M2 (R2=0.51), 
L2 (R2=0.62), S6 (R2=0.87), M6 (R2=0.47), L6 (R2=0.43) and the combined data (R2=0.54) reveal 
that Model 1 best explained the percent of variation in log (odds) for S6 group. Comparing S2 
and S6 this is reasonable since intuitively, cows with longer periods of insufficient feed intake 
are expected to show relatively greater difference in certain behavioural characteristics 
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from the control cows than those with shorter period of insufficient feed intake. Based on 
this assumption, given lactation stage, it was expected that the pseudo would be higher for 
six-week restriction data than two-week restriction data. However, Model 1 achieved lower 
pseudo R2 for six-week restriction for both M and L groups.

Table 2. Estimated coefficients with odds ratios (in brackets) for the refined models based on the 
subsets and combined data

Variables S2 M2 L2 S6 M6 L6 Combined

BITEFREQ
0.20*** 
(1.22)

0.124*** 
(1.13)

0.237*** 
(1.27)

.301***

(1.35)

0.303***

(1.35)

0.514***

(1.67)

0.13*** 
(1.14)

RUMINATETIME
0.004 

(1.004)
-0.009** 
(0.99)

-0.007* 
(0.99)

-0.004

(0.99)

0.002

(1.00)

-0.007

(0.99)

-0.002 
(0.99)

RUMICHEWBOLUS
0.131* 
(1.14)

0.105 
(1.10)

-0.029 
(0.97)

-0.204**

(0.82)

-0.047 
(0.95)

0.158** 
(1.17)

-0.064*** 
(0.94)

STANDLAY
-0.14** 
(0.87)

-0.271*** 
(0.76)

-0.093 
(0.91)

-0.134* 
(0.87)

-0.154***

(0.86)

-0.153** 
(0.86)

-0.12*** 
(0.89)

CHEWPBOLUS
-0.353*** 

(0.70)
-0.118* 
(0.88)

-0.325*** 
(0.72)

-0.312*** 
(0.73)

-0.136** 
(0.87)

-0.595*** 
(0.55)

-0.14*** 
(0.87)

RUMIBOUTLENGTH
-0.091* 
(0.91)

-0.090* 
(0.91)

-0.074* 
(0.93)

-0.126** 
(0.88)

-0.17*** 
(0.84)

-0.109** 
(0.90)

-0.084*** 
(0.92)

HACTIVITY.mean
0.031* 
(1.03)

-0.007 
(0.99)

-0.012 
(0.99)

-0.019 
(0.98)

-0.0002 
(0.99)

0.052** 
(1.05)

0.013*** 
(1.01)

P-value: *** < 0.001; ** < 0.01; * < 0.05

Model refinement

Apart from the four characteristics in Werner et al. (2019), the exploratory analysis of 
this study identified the candidate variables: number of rumination chews per day 
(RUMINATECHEW), number of bolus per day (BOLUS), number of chews per bolus 
(CHEWPBOLUS), mean rumination bout length per day (RUMIBOULENTH) and number of 
head activities (up or down) per hour of the day (HACTIVITY.mean). In order to increase 
the goodness of fit (and classification performance), Model 1 was refined by using the 
additional variables.
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Figure 1. Correlation plots among the feeding behaviour and activity related variables

However, based on the combined data, the correlation plots in Figure 1 indicate that there 
would be a concern with GLM using all (nine) variables since some of the variables were 
highly collinear. As a result, a sequential strategy, i.e. stepwise procedure was adapted, 
through which the less significant variables were trimmed using backward search direction. 
Similarly, a refined set of characteristics was obtained by applying the stepwise regression 
to S2, M2, L2, S6, M6 and L6 data sets. Table 2 presents the estimated coefficients and the 
odds ratios for the refined models. The estimated effects of the common characteristics 
were slightly different from Model 1. For example, unlike Model 1 the effect of ‘rumination, 
time’ was insignificant in most cases. Also, using the combined data, the OR of ‘bite 
frequency’, ‘rumination chews per bolus’ and ‘standing or laying frequency’ in the refined 
model were slightly higher than Model 1. In all cases, bite-frequency had strong positive 
relationship and chews per bolus and rumination bout length had negative relationship 
with the odds of insufficient grass allowance. Conversely, rumination time had significant 
negative effect for S2 and M2 and rumination chew per bolus had significant negative 
effects for S6 and L6 data sets. Head activity per hour had a small effect and the relationship 
was significant for S2, S6 and combined data. The effect of standing or laying frequency 
was highly significant for all cases except L2.

Table 2 further reveals that unlike Model 1, for each lactation stage the OR of bite frequency 
was relatively higher for six-week restriction period than two-week restriction period. 
Similarly, the effects of rumination bought length and chews per bolus had negative 
effects across the subsets and combined data. The pseudo R2 of S2 (R2=0.66), M2 (R2=0.57), 
L2 (R2=0.62), S6 (R2=0.90), M6 (R2=0.61) and L6 (R2=0.80) and combined data (R2=0.60) clearly 
indicate that the refined model achieved higher explanatory power than Model 1 in all 
cases. Moreover, unlike Model 1, the refined model achieved higher explanatory power for 
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M6 than M2 and L6 than L2. Thus, the refined model validates the assumption that the 
characteristics could explain the variation in log(odds) better for longer period of restricted 
PA than shorter period. Thus, the refined model should be preferred to Model 1.

Classification performance

In this section, the predictive performance of Model 1 and the refined models was compared 
separately for S2, M2, L2, S6, M6, L6 and combined data. In each case, the performance 
was evaluated based on accuracy, sensitivity, specificity, and F-score. Table 3 presents the 
estimates of these indices based on the cross validation study.

Clearly, the refined models performed better than Model 1 with respect to all indices. In 
addition, the restriction period affected the predictive performances. Accuracy is a popular 
performance measure of classifiers, since it reflects the overall prediction performance. 
Given lactation stage, estimated accuracy was higher for six-week restriction data than 
two-week restriction data.

For example, Model 1 achieved 77% accuracy for S2 and 84% accuracy for S6 data. The 
corresponding figures for the refined model are 80% and 88%, respectively. This implies 
that in general cows were more apt to be correctly classified in case of longer duration of 
insufficient feed allowance.

Table 3. Performance of Model 1 and the refined models based on cross validation study

Models Indices S2 M2 L2 S6 M6 L6 Combined

Model 1

Accuracy 0.77 0.79 0.75 0.83 0.79 0.84 0.73

Sensitivity 0.62 0.63 0.48 0.72 0.45 0.33 0.74

Specificity 0.85 0.88 0.87 0.89 0.91 0.95 0.73

F-score 0.64 0.67 0.52 0.73 0.49 0.44 0.73

Refined model

Accuracy 0.80 0.82 0.80 0.87 0.81 0.88 0.77

Sensitivity 0.68 0.70 0.61 0.80 0.54 0.63 0.75

Specificity 0.88 0.88 0.88 0.91 0.91 0.94 0.78

F-score 0.70 0.71 0.64 0.81 0.58 0.64 0.76

Since the data were unbalanced, further comparisons based on sensitivity and specificity 
scores suggest that for L6 Model 1 achieved 84% accuracy due to high specificity (0.95). 
Here, specificity refers to the proportion of 100% intake allowances that were correctly 
predicted. However, in this case the rate of correct classification of insufficient grass 
allowance was not reliable due to very low sensitivity (0.33). Conversely, the refined 
model, in this case achieved 60% sensitivity while maintaining specificity at the high level 
(0.94). The refined model had a concern of lower sensitivity (0.54) for M6 data, though the 
estimate was relatively higher than Model 1 (0.45). For the combined data, both models 
maintained a good balance in all indices while refined model having higher scores than 
Model 1.

Since the current study aimed to contribute to the development of a pasture-based decision 
support system, identifying insufficient grass allowance may be often more important 
than full intake allowance. In such cases, the F-score is a better performance measure 



158      Precision Livestock Farming ’19

since it maintains a balance between the precision (proportion of predicted insufficient 
allowance that were actually insufficient) and sensitivity of the classifiers. As with other 
indices, the F-score of the refined models was higher than Model 1 in all cases. However, 
the low sensitivity resulted low F-score for M6. Future studies need to address this issue 
and focus on further improvement of the classification models.

Conclusion

This study explored the performance of a set of previously identified feeding behaviour 
and activity related variables and refined the set in the context of classification. Seven 
characteristics of lactating spring cows were identified which were significantly associated 
with the odds of insufficient grass allowance. No unique set of characteristics was found 
to be the best indicators for all cases. The model adequacy and prediction performance 
depended on the duration of insufficient feeding: in general, cows with longer period of 
insufficient allowance were more apt to be correctly identified than those with shorter 
restriction period. The results of Table 2 can be used as guidance for heuristic estimation 
of the likelihood of insufficient grass allowance, given that other factors are similar to the 
underlying experimental conditions. However, since the sensitivity of the refined model 
was still less than 0.8 in most cases, care should be taken while using the models for 
future prediction. Further study should address this issue and also focus on thresholding 
the important characteristics towards developing a decision support system.
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Abstract

A camera-based PLF monitoring system can be used to identify deviations in broiler flock 
behaviour at an early stage. The goal of this research is to identify management issues in 
the house and relate the outcome of a camera-based monitoring system for bird behaviour 
to key production indices. Three commercial broiler farms in Belgium were equipped with 
the eYeNamicTM camera-based monitoring system. The build-in image analysis software 
analyses automatically the flock behaviour by calculating indices for activity, occupation 
density and distribution of the broilers in the house. Feed Conversion Rate (FCR), Water-
Feed Ratio (WFR) and Average Daily Growth Rate (ADGR) were calculated using production 
data extracted from the available controller units for 14 flocks. Between Sep 2017 and Sep 
2018, several cases affecting bird behaviour were found. Deviations in behaviour were 
automatically identified by an early warning algorithm analysing the recorded activity, 
occupation and distribution indices. The Time Out Of Comfort (TOOC) was defined as the 
cumulative sum of these deviations per round. The correlation r between FCR and TOOC 
was 0.692. Per hour out of comfort, the feed conversion rate increased with 0.0069. Per 
hour out of comfort, the water-feed ratio decreased with 0.0050 (r = -0.537). Per hour out of 
comfort, average daily growth rate decreased with 0.1786 gram (r = -0.513). In conclusion, 
it was demonstrated that a continuous observation of flock behaviour allows the farmer 
to solve management issues as quickly as possible, which will improve the technical and 
economical key production indices on his farm.

Keywords: image analysis, activity, occupation, distribution, poultry, precision livestock farming

Introduction

Worldwide the demand for animal products keeps on rising, a 70% increase is predicted by 2050 
(FAO, 2013). Yearly, already more than 65 billion chickens are slaughtered (FAOSTAT, 2018). To 
produce this amount of animals, farming methods have shifted from extensive to intensive. 
Broilers are today typically housed with thousands together in commercial environments 
making it impossible for the stakeholders to monitor all animals individual and accurate.

Precision Livestock Farming (PLF) gives an answer to these problems by monitoring the animals 
automatically, continuously and in real-time to help the farmer to take management decisions 
based on objective measured parameters (Norton & Berckmans, 2018). Camera technology have 
the advantage that they can measure the animals without imposing additional stress. Previous 
studies show that cameras can be used to observe weight (De Wet et al., 2003; Mortensen et al., 
2016), broiler welfare (Dawkens et al., 2012, 2013), and lameness (Aydin et al., 2010, 2017; Silvera 
et al., 2017; Van Hertem et al., 2018). Kashiha et al. (2013) show that deviations from activity and 
distribution can be used as an early warning monitoring system.

The objective in this study is to identify issues/problems in the broiler house based on 
behavioural changes of the broilers monitored by a camera system and relate the time 
spend during these moments to key performance indices. The total TOOC from the activity, 
distribution and occupation is related to the FCR, WFR, ADGR.
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Material and methods

Experimental data

Data were gathered on three commercial broiler farms in Belgium (Table 1). Water supply, 
feed supply and animal growth were automatically registered by the available control 
units in the farm (Fancom B.V., the Netherlands), and the data were sampled every 
hour and exported to a csv-file on the local farm computer. The number of dead birds 
and culled birds per round was on a daily basis manually entered in the farm control 
units by the farm personnel. The total number of dead birds over the total number of 
birds entering the house accounted for the flock mortality. Bird mass was automatically 
registered by a weighing control unit with weighing platforms in the house (Fancom B.V., 
the Netherlands). These data were sampled every hour from the control unit and exported 
to a csv-file on the local farm computer.

In total, there were 19 fattening rounds of broilers in this period, but due to power outages 
during the fattening rounds, or corrupt data registration in the farm computer, the data 
of five fattening rounds were not available for analysis. For data analysis, 14 complete 
fattening rounds were used.

Table 1. Overview of farm specifications

Farm A Farm B Farm C

Floor area 2,400 m2 1,476 m2 1,280 m2

Max. number of birds 52,000 32,000 28,000

Number of feeder lines 5 4 4

Number of drinker lines 6 6 5

Key Production Indices were calculated from the gathered farm data. The length of the 
fattening period (FP) was determined from the brooding day until the house was cleared 
from all birds. Water Feed Ratio (WFR) was calculated as the ratio of water and feed supply 
of the fattening round at the end of the fattening period. Average Daily Growth Rate (ADGR) 
was calculated from the from the brooding weight of the animals, the end weight of the 
birds at clearance and the length of the fattening period.

The broiler houses were equipped with a camera-based monitoring system for bird 
behaviour analysis (eYeNamic™, Fancom B.V., the Netherlands). The system consisted of 
four cameras that were installed in top down perspective from the house ceiling, approx. 
at a height of 4 m. The cameras were installed in a 2x2 grid in the house at 1/3 and 2/3 of 
the length of the house, and at 1/3 and 2/3 of the width of the house. In this layout, the 
cameras were covering a substantial part of the floor area in the width of the house. Each 
camera covered a 4 m by 10 m area of the floor space. It was advised to cover all water 
and drinker lines in the field of view of the cameras. The system automatically translated 
the recorded images into data on bird activity levels, bird occupation density levels in the 
image and bird distribution in the house. These data were sampled every minute by the 
farm management software program on the local farm computer, and per camera unit 
stored into a csv-file. For the data analysis, the data per camera unit were aggregated on 
house level resulting in the average activity level of the birds in the house per minute, the 
average occupation density of birds in the house per minute and the distribution index of 
birds in the house.
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Extraction time out of comfort

An early warning algorithm was developed and tested in this experiment. The early warning 
algorithm used the average value in the last 48 hours as the norm, and the average value 
in the last 24 hours as the signal. The limits for normal behaviour were calculated from 
the norm values and the standard deviation of the value in the last 24 hours. When the 
signal was out of the limits for normal behaviour, bird behaviour was considered to be out 
of comfort. This procedure was done on all three eyenamic variables (activity, occupation 
and distribution) and with a sliding window procedure of 24 hours that was being updated 
every minute. In the analysis for this work, the total number of minutes out of comfort 
were aggregated per fattening round, and these data are presented in the results section 
and in Table 2.

Results and Discussion

For every individual production round in the experiment the total TOOC was calculated 
(Table 2). For the seven production cycles in farm A, this time ranged between 1,777 
minutes and 3,314 minutes (29.6 h and 55.2 h). Farm B (5 production cycles) showed more 
variation with a minimum TOOC of 955 minutes (15.9 h) and a maximum of 3,474 minutes 
(57.9 h). Farm C, only two production cycles, relative to the other farms a TOOC with 3,193 
minutes (53.2 h) and 4,168 minutes (69.5 h).

Table 2. Overview of the key production data in the three broiler farms gathered during the 
experimental period

Farm TOOC WFR FCR FP ADGR mortality

A 2,239 1.76 1.63 42 57.9 2.14

A 3,314 1.76 1.54 42 62.8 1.55

A 2,465 1.74 1.56 42 60.8 3.18

A 2,309 1.75 1.57 42 60.9 1.70

A 1,777 1.92 1.64 42 58.1 4.03

A 1,798 1.99 1.57 44 57.2 2.58

A 2,109 1.88 1.62 43 56.5 1.99

B 3,474 1.51 1.84 43 53.3 2.63

B 2,048 1.63 1.43 40 64.3 3.83

B 955 1.67 1.47 40 63.9 3.38

B 1,294 1.75 1.47 42 61.2 2.13

B 1,952 1.67 1.51 41 58.9 2.70

C 3,193 1.60 1.83 43 48.7 3.57

C 4,168 1.53 NA 43 NA 3.79

TOOC = Time Out of Comfort [minutes]; WFR = Water-Feed Ratio [-]; FCR = Feed Conversion Rate [-]; FP = Fattening 
Period [days]; ADGR = Average Daily Growth Rate [grams]

All production cycles ranged between 40–43 days. The WFR ranges from 1.51–1.99 and 
is higher in farm A than in farm B and C. The FCR ranged between 1.43–1.84, except for 
an outlier of 1.84 farm B shows the lowest FCR. The ADGR was the lowest in farm C, 48.7 
grams, and the maximum was 64.3 grams measured in farm B. Mortality ranges from 
1.55–4.03. More details can be seen in Table 2.
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This work is an attempt to relate key production indices to the TOOC independent from 
other factors such as broiler quality, farm, and feed diet. Figure 1 shows the positive 
relation between the FCR and the TOOC. A positive correlation (Table 3) of 0.692 is 
calculated between both variables. Indicating that if the birds spend more TOOC, the birds 
have a higher FCR, more feed is needed to grow the birds. Per hour out of comfort the FCR 
increases with 0.0069. Hence, the eYeNamic system can give an indication of the FCR ratio. 
The best fit linear regression model is FCR = 1.16∙10-4 TOOC+1.33 (R2 = 0.479).

Figure 1. Graphical overview of the linear relation between time out of comfort and Feed Conversion 
Rate

Table 3. Correlation coefficient of the three selected production indices in relation to Time Out of 
Comfort and the hourly incremental values

WFR FCR ADGR

Correlation coefficient -0.537 0.692 -0.513

Hourly increment -0.0050 0.0069 -0.1786

Figure 2 shows a negative relation between the WFR and the TOOC. A negative correlation 
of -0.537 (Table 3) is calculated and per hour out of comfort the WFR decreases with 0.0050. 
The best fit linear regression model is WFR= -8.33∙10-5 TOOC+1.92 (R2 = 0.289).

Figure 2. Graphical overview of the linear relation between time out of comfort and Water Feed Ratio
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In Figure 3 a negative relation between the ADGR and the TOOC is shown. Indicating that 
the more time the animals spend out of comfort the lower the growth. A correlation of 
-0.513 (Table 3) is calculated and for every hour out of comfort a decrease of 0.1786 grams 
in growth is calculated. The best fit linear regression model is ADGR= -2.98∙10-3 TOOC+65.4 
(R2 = 0.263).

Figure 3. Graphical overview of the linear relation between time out of comfort and Average Daily 
Growth Rate

Conclusions

Data are gathered from commercial broiler farms. Out of the total 19 fattening rounds in 
the observation period, only 14 fattening rounds (74%) resulted in complete data. Data 
analysis shows that the correlation r between FCR and TOOC is 0.692. Per hour out of 
comfort, the feed conversion rate increases with 0.0069. Per hour out of comfort, the 
water-feed ratio decreases with 0.0050 (r = -0.537). Per hour out of comfort, average daily 
growth rate decreases with 0.1786 gram (r = -0.513). These results demonstrate that a 
continuous observation of flock behaviour allows the farmer to solve management issues 
as quickly as possible, which will improve the technical and economical key production 
indices on his farm.
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Abstract

The pre-slaughter phase involves a number of stress inducing situations including 
transportation, exposure to a novel environment and mixing; an outcome of which can have 
a detrimental effect on meat quality. The occurrence of dark, firm, dry (DFD) beef results 
in substantial economic losses for the red meat industry. Stress-induced hyperthermia is a 
well-documented physiological response to stressful events and may provide an indication 
as to which cattle are at risk of producing DFD meat. However, the continuous, non-invasive 
monitoring of core body temperature has not always been practical. This is now changing 
through the development of new technologies, such as rumen temperature boluses. Thus, 
the objective of this study was to investigate the relationship between pre-slaughter phase 
rumen temperature, existing haematological welfare indicators and instrumental meat 
quality. This study involved 40 Holstein bulls (15.8 ± 0.08 months of age; 575.9 ± 8.84kg 
live weight) which had a rumen temperature bolus (Thermobolus, Medria) administered, 
to record rumen temperature at five minute intervals. Bulls were transported 26 miles 
(42 km) to a commercial abattoir. During the pre-slaughter phase rumen temperature, 
cortisol, CK, and LDH all rose significantly (P < 0.001), in comparison to that recorded 
during the basal period. Bulls with a greater pHult had a significantly greater (P < 0.001) 
maximum rumen temperature during lairage. Instrumental meat quality was strongly 
associated with pre-slaughter rumen temperature and cortisol and CK concentrations at 
slaughter. Therefore, pre-slaughter phase rumen temperature may have the potential to 
act as a predictor for meat quality.

Keywords: Stress-induced hyperthermia, ultimate pH, rumen temperature bolus

Introduction

Meat colour is the primary means by which consumers assess meat quality and therefore 
has a profound impact on consumer purchasing decisions (Ponnampalam et al., 2013). 
Furthermore, dark cutting meat is associated with increased toughness together with a 
reduced shelf-life and flavour (Ponnampalam et al., 2017). Dark cutting meat still remains 
a problem, with incidence rates in Great Britain reported at 8.8% (Warriss and Brown, 
2008) thus, resulting in a significant cost to the red meat industry (Teke et al., 2014). Meat 
quality characteristics (ultimate pH (pHult), tenderness, colour and water holding capacity) 
are determined by the rate at which muscle acidifies post-mortem (Tarrant and Lacourt, 
1984). Anaerobic glycolysis is the process by which muscle glycogen stores are utilised to 
produce lactic acid, which in turn, reduces post-mortem muscle pH to optimum levels. 
Where muscle glycogen stores are insufficient, pH will remain high (> 5.8) (Lister, 1988). 
The depletion of muscle and liver glycogen stores is widely known to occur in response 
to stress (Losada-Espinosa et al., 2018), due to glycogenesis following the activation of 
the sympathetic nervous system (Ponnampalam et al., 2017). The routine components of 
the pre-slaughter phase (transport, mixing and exposure to an unfamiliar environment 
and personnel) will each present a stress risk (Ferguson & Warner, 2008). Thus, good 
management during the pre-slaughter is vital to ensure stress is kept to a minimum and 
meat quality is not negatively impacted.
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A stress response is comprised of a number of physiological and haematological changes, 
one of which is a short-term elevation in core body temperature, known as stress-induced 
hyperthermia (Proctor & Carder, 2015). The most widely researched haematological 
change is the secretion of stress hormones such as cortisol (Burdick et al., 2010). In 
addition, muscle enzymes such as creatine kinease (CK) and lactate dehydrogenase (LDH) 
are released into the serum following vigorous exercise and muscle damage (Chulayo & 
Muchenje, 2017). Many of these physiological changes are considered reliable measures 
of animal welfare, however, the potential for these indicators to be used as predictors of 
meat quality has been overlooked. This is primarily due to the fact that sampling methods 
can be invasive, time-consuming and expensive. Furthermore, data is often discontinuous, 
or not available in real-time. However, rumen temperature boluses are a new technology 
that offer continuous, non-invasive data collection.

Materials and methods

Animal management and experimental design

This study was undertaken at AFBI, Hillsborough in June 2018 and consisted of 40 Holstein 
bulls of 15.8 ± 0.08 months of age and 575.9 ± 8.84kg live weight. Bulls were fed an ad 
libitum diet compromised of grass silage (871 g kg-1 dry matter (DM), 124 g kgDM-1 crude 
protein (CP) and 10.6 MJ kgDM-1 metabolisable energy (ME) and concentrates (150 g kgDM-

1 CP and 11.1 MJ kgDM-1 ME). Bulls were housed on slatted accommodation in groups of 
3.1±0.12 bulls before being transported to a commercial abattoir in a naturally ventilated, 
double decker lorry. The lorry consisted of eight pens and bulls were transported in a mean 
group size of 5.48±0.156 bulls at a space allowance of 1.53m2. Journey time, time waiting 
to unload, and lairage duration were recorded for each animal. The bulls were slaughtered 
using the commercial abattoir procedure and the time of stunning was recorded for each 
animal.

Rumen temperature

Each bull had a rumen temperature bolus (ThermoBolus Small, Medria, France) 
administered which automatically recorded rumen temperature to a tenth of a degree 
Celsius at five minute intervals. The 48 hours prior to the onset of loading was considered 
as the basal period. Rumen temperature during transportation and lairage consisted of 
the durations between loading and unloading; and between unloading and slaughter, 
respectively. For each of these three durations, a mean and maximum rumen temperature 
were calculated.

Blood collection and haematological variables

Bulls were blood sampled at three time points; 24 hours prior to transport (T1), 0 hours 
prior to transport (T2) and at slaughter (T3). The mean of T1 and T2 was considered as an 
individual basal value. T1 and T2 were obtained via tail venipuncture while T3 was taken 
from the jugular vein during exsanguination. Blood (10ml) was collected into evacuated 
tubes (with no additive) at each time point for determination of cortisol, creatine kinase 
(CK) and lactate dehydrogenase (LDH). Blood samples were stored at 4 ºC prior to being 
centrifuged at 3,000 rpm at 4 ºC for 20 minutes. Plasma was collected from each sample and 
stored at -20 ºC until analysis was conducted by NationWide Laboratories (England). Cortisol 
concentration was determined using an Immulite 2000 analyser (Siemens Healthcare 
Diagnostics Inc., Belmont, CA) with a solid-phase competitive chemiluminescent enzyme 
immunoassay. CK and LDH were measured using a clinical chemistry analyser (Model 
AU640; Beckman Coulter, UK).
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Instrumental meat quality

At slaughter, carcass data (weight, fat classification and conformation) were recorded 
according to the EU classification system. Carcass sides were split between the 9th and 
10th rib and subcutaneous fat depth (mm) was measured at three points (0.25, 0.50, 0.75) 
around the longissimus dorsi muscle on both sides of the carcass. The mean of these values 
was taken as the subcutaneous fat depth for each animal (Kirkland et al., 2007).

At four days post-slaughter two samples were taken from the longissimus dorsi muscle 
and aged at 3 ºC, one until D7 and the other until D14 post-slaughter. At D7 pHult and 
colour (L*(lightness), a*(redness) and b*(yellowness)) were assessed using a Jenway 370 pH 
meter and a Chroma Meter CR-400, respectively. Both instruments were calibrated prior to 
measurements being taken. D7 and D14 samples were scored for marbling using the MSA 
scoring system, with the mean of D7 and D14 considered as the marbling score. Vacuum-
packed samples were cooked for 50 minutes in a 70 ºC water bath. Samples were weighed 
pre- and post-cooking, to allow cooking loss to be calculated:

Cooking loss % = ( 
pre cooking weight-post cooking weight  

pre cooking weight  
) 100

Warner Bratzler Shear Force (WBSF) measurements were recorded using an Instron 3366 
Universal Testing Instrument. Samples were cored parallel to the muscle fibres and 10 
cores (sub-samples) of a 12.5 mm diameter were taken from each meat sample. All sub-
samples were sheared perpendicular to the muscle fibres and the mean of the sub-samples 
was considered as the WBSF value for each meat sample.

Statistical analysis

All statistical analysis were completed using Genstat (16th edition). Analysis on rumen 
temperature and haematological variables were carried out using a linear mixed model 
with repeated measures. Animal was fitted as the subject factor and time point as a fixed 
effect. The correlation between time points was accounted for using an antedependence 
model of order 1. A one way ANOVA and Fishers Protected LSD with pHult group as 
treatment factor was used to analyse the data in Table 6. A simple linear regression 
analysis was used to determine correlation coefficients to assess the relationship between 
rumen temperature and haematological variables and instrumental meat quality. The 
models predicting meat quality characteristics (pHult, L*,a*,b*, cooking loss and WBSF) 
were developed using a stepwise multiple regression analysis, both forward and backward 
selection methodologies were employed. Explanatory variables included haematological 
variables (cortisol, CK and LDH) at slaughter (T3), and rumen temperature; combinations 
of these variables were compared to identify the best model. This model was then fitted to 
a multiple linear regression, and evaluated on the basis of residual variance.

Results and discussion

Mean rumen temperature (Table 1) rose significantly during both transport and lairage in 
comparison to that recorded during the basal period, furthermore, rumen temperature 
peaked during lairage, reaching 40.46 ºC. The distance travelled in this study was short 
(42km), with the journey lasting only 46 minutes, followed by a 38 minute stationary 
waiting time prior to unloading. Thus, it is possible that rumen temperature did not have 
sufficient time to recover prior to the introduction of a second stressor (lairage) (Chacon 
et al., 2005). In addition, bulls were all held in one group during lairage, and thus mixing 
occurred. It is likely that this caused social stress, as a result of aggressive behaviour to 
re-establish a social hierarchy (Cafazzo et al., 2012), leading to a cumulative stressor effect 
of transportation and lairage. Lairage duration had no effect on mean or maximum rumen 
temperature.



168      Precision Livestock Farming ’19

Table 1. Mean and maximum rumen temperature during the basal period, transport and lairage

Basal Transport Lairage SED Sig.

Mean 39.25 a 39.72 b 39.79 b 0.0903 <0.001

Maximum 39.93 a 39.98 a 40.46 b 0.0850 <0.001

Basal: 48 hour period prior to loading; Transport: loading to unloading; Lairage: unloading to slaughter

Haematological variables (Table 2) were also significantly elevated at slaughter in 
comparison to basal levels. The two-fold increase in cortisol indicates that a stress 
response was initiated during the pre-slaughter phase. However, the exact stage of the pre-
slaughter phase (transport or lairage) which contributed to the observed rise, is unknown 
due to the sampling procedure. The rise in CK and LDH at slaughter likely occurred due to 
increased physical activity and possible muscle damage, associated with transportation 
and mixing during lairage (Losada-Espinosa et al., 2018). This is further supported by the 
findings in Table 3, where CK concentration increases with increased pHult.

Table 2. Haematological variables of bulls during the basal period and at slaughter

Basal Slaughter SED Sig.

Cortisol (nmol/l) 33.9 68.5 5.74 <0.001

CK (ui/l) 284 900 139.7 <0.001

LDH (ui/l) 3,125 3,748 123.5 <0.001

Basal: mean of T1 & T2; CK: creatine kinase; LDH: lactate dehydrogenase

Carcass characteristics had no effect on pHult and therefore, these results are not shown in 
Table 3. Bulls with a pHult > 6.2 had a significantly greater mean rumen temperature during 
both transport and lairage. Furthermore, maximum rumen temperature during lairage 
was significantly different in each of the three pHult ranges. As expected, the instrumental 
meat quality measures differed according to pHult.

Prior to the pre-slaughter phase, bulls were managed similarly within a small, stable social 
group, and thus were naive to transportation and other stressors associated with the pre-
slaughter phase. Therefore, it could be suggested that this naivety may have magnified the 
individual variability within the group (Stockman et al., 2011), resulting in the wide range 
of pHult values observed in this study. A significantly greater maximum rumen temperature 
during the basal period for bulls with a pHult > 6.2 may indicate that these bulls were 
more easily raised or stressed within an environment in which they were habituated to. 
Therefore, these bulls could be considered to have an excitable temperament, which has 
previously been shown to lead to poorer meat quality (Hall et al., 2011, Ponnampalam et 
al., 2017).

When combined with haematological variables at slaughter, pre-slaughter rumen 
temperature has the ability to be used as an indicator of meat quality. Table 4 shows 
the models that were identified that best quantify the relationship between instrumental 
meat quality, and pre-slaughter welfare indicators. This provides valuable information for 
the red meat industry, which may allow preventative action to be taken prior to slaughter. 
Further research is required to further refine the pre-slaughter prediction of meat quality, 
taking into account animal factors and remedial treatments.
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Table 3. Rumen temperature, haematological variables and instrumental meat quality according to 
ultimate pH

Ultimate pH

<5.8 5.8-6.2 >6.2 SED F pr.

Number of bulls (n) 19 11 10

Basal RT (°C) 39.24 39.24 39.26 0.079 ns

Mean transport RT (°C) 39.65 a 39.64 a 39.94 b 0.103 <0.05

Mean lairage RT (°C) 39.55 a 39.63 a 40.43 b 0.262 <0.01

Maximum basal RT (°C) 39.83 a 39.80 a 40.25 b 0.143 <0.01

Maximum transport RT (°C) 39.87 a 39.90 a 40.28 b 0.132 <0.01

Maximum lairage RT (°C) 40.06 a 40.52 b 41.16 c 0.194 <0.001

Slaughter Cortisol (T3) (nmol/l) 62.1 76.5 72.1 14.15 ns

Slaughter CK (T3) (ui/l) 559 a 982 b 1,458 c 211.0 <0.001

Slaughter LDH (T3) (ui/l) 3,596 3,829 3,949 214.2 ns

L* (Lightness) 39.56 b 36.53 a 35.86 a 1.160 <0.01

a* (redness) 27.04 c 23.60 b 22.27 a 0.569 <0.001

b* (blue/yellow) 10.56 c 8.22 b 6.98 a 0.497 <0.001

Marbling Score (MSA) 718 682 722 50.09 ns

Cooking loss D7 (%) 26.05 c 23.63 b 19.58 a 0.737 <0.001

Cooking loss D14 (%) 25.68 b 24.99 b 19.43 a 1.381 <0.001

WBSF D7 (kg) 4.70 b 5.18 b 3.43 a 0.341 <0.001

WBSF D14 (kg) 4.46 b 4.71 b 2.96 a 0.266 <0.001

RT: Rumen temperature



170      Precision Livestock Farming ’19

Ta
b

le
 4

. P
re

d
ic

ti
on

 o
f 

m
ea

t 
q

u
al

it
y 

b
as

ed
 o

n
 r

u
m

en
 t

em
p

er
at

u
re

 a
n

d
 p

os
t-

sl
au

gh
te

r 
h

ae
m

at
ol

og
ic

al
 v

ar
ia

b
le

s
Y

Model 
(X1+X2+X3)

intercept

s.e.

t pr.

X1

s.e.

t pr.

X2

s.e.

t pr.

X3

s.e.

t pr.

R2

p
H

u
lt

M
ax

LR
T

 
+

 T
3C

or
t 

+
 T

3C
K

-7
.6

9
3.

39
0.

02
9

0.
33

0
0.

08
4

<
0.

00
1

0.
00

16
0.

00
13

0.
22

0
0.

00
01

7
0.

00
00

87
2

1.
95

0
53

.1

L*
M

ax
LR

T
12

0.
5

30
.2

<
0.

00
1

-2
.0

45
0.

74
7

0.
00

9
14

.3

a*
M

ax
LR

T
 

+
 T

3C
K

13
6.

9
18

.4
<

0.
00

1
-2

.7
54

0.
45

4
<

0.
00

1
-0

.0
08

6
0.

00
85

0.
32

0
47

.2

b
*

M
ax

LR
T

 
+

 T
3C

K
67

.4
0

17
.6

<
0.

00
1

-1
.4

22
0.

44
1

0.
00

3
-0

.0
00

9
0.

00
05

0.
04

8
45

.4

C
oo

ki
n

g 
Lo

ss
 D

7
M

ax
LR

T
 

+
 T

3C
K

10
8.

7
31

.6
0.

00
1

-2
.0

72
0.

79
3

0.
01

3
-0

.0
01

3
0.

00
08

0.
12

8
33

.4

C
oo

ki
n

g 
Lo

ss
 D

14
M

ax
LR

T
 

+
 T

3C
or

t
11

2.
1

41
.2

0.
01

0
-2

.1
30

1.
01

0
0.

04
3

-0
.0

28
6

0.
01

90
0.

14
1

9.
2

W
B

SF
 D

7
M

ea
n

LR
T

 
+

 T
3C

K
25

.0
0

10
.0

0.
01

7
-0

.5
07

0.
25

5
0.

05
4

-0
.0

00
4

0.
00

03
0.

20
3

17
.5

W
B

SF
 

D
14

M
ea

n
LR

T
 

+
 T

3C
K

26
.1

2
8.

08
0.

00
3

-0
.5

46
0.

20
5

0.
01

1
-0

.0
00

3
0.

00
02

0.
30

0
23

.2

M
ax

LR
T

 =
 m

ax
im

u
m

 l
ai

ra
ge

 r
u

m
en

 t
em

p
er

at
u

re
; M

ea
n

LR
T

 =
 m

ea
n

 l
ai

ra
ge

 t
em

p
er

at
u

re
; T

3C
K

 =
 c

re
at

iv
e 

ki
n

as
e 

at
 s

la
u

gh
te

r;
 T

3C
or

k 
=

 c
or

ti
so

l 
at

 s
la

u
gh

te
r



Precision Livestock Farming ’19      171

Conclusion

In conclusion, rumen temperature and haematological variables were significantly elevated as 
a result of the stressors associated with the pre-slaughter phase. Therefore, rumen temperature 
can be used as a reliable measure of stress-induced hyperthermia. Furthermore, the observed 
relationship between rumen temperature and meat quality indicate that with further research 
rumen temperature has the potential to be used as predictor of meat quality prior to slaughter.
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Abstract

Monitoring management practices in grasslands such as grazing and silage cutting at 
field scale helps to understand the yield and its carrying capacity. Traditional methods 
for grassland monitoring can be time consuming and labour-intensive. In this study we 
estimate grassland biomass at a farm-level using remote-sensing. For a full understanding 
it is important to monitor the grass growth and utilisation on the farm with a high 
temporal and spatial resolution satellite images which can be used for monitoring 
biomass, phenology and growth rate of a pasture.

The main goal is to determine grass growth rate using satellite and weather data (Moorpark, 
Co. Cork in Ireland is used as an example). Normalised difference vegetation index (NDVI) 
from Landsat-8 satellite, along with weather data such as temperature, rainfall and 
potential evapotranspiration data were used to model grass yield and compared with 
ground measurements and traditional biophysical grass growth model outputs. Adaptive 
neuro-fuzzy inference system (ANFIS) was used to generate models to predict and map 
grass biomass. The models were evaluated using Mean Squared Error, Root Mean Squared 
Error (RMSE) and Symmetric Mean Absolute Percent Error (SMAPE). The final model was 
used to predict the biomass for the subsequent year for validation purpose. The resulting 
grass growth rate will help a farmer in understanding the maximum potential from their 
farm as well as the stocking rate on the farm.

Keywords: ANFIS, Landsat-8, grassland, machine-learning biomass

Introduction

Ireland has an area of 69,798 km², agriculture occupies ~62% of the area of the Republic 
of Ireland (ROI), with grass as the foundation of Irish Agriculture occupying > 80% of that 
and 62% of the land is used for agriculture (O’Mara, 2008). The grasslands are used for 
forage and food production. Improved grazing management on farms leads to greater 
forage production, and enhanced profitability (Dillon et al., 2005). Monitoring grasslands at 
regular intervals leads to improved farm management (Ali, 2016). Monitoring of grassland 
can be undertaken by ground level measurement and using satellite data at different 
scales. Ground level data is collected using a rising plate meter or by manually cutting 
and drying the grass on the farm (Ali, 2015). Satellite data at different spatial resolutions 
can also be used. In this study Landsat-8 30 m resolution data was used to estimate grass 
growth rate using machine learning approach.

Materials and methods

Study area

The study was Moorepark Research Farm (Lat: 50°7N, Long: 8°16W) in Co. Cork in the south 
of the Republic of Ireland. The site contains 136 paddocks for various experiments. The map 
of the farm with paddock names is given in Figure 1. The site covers an area of approximately 
100 hectares. Figure 1 shows the test farm location with the extent of the study area.
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Figure 1. Study area: Moorepark farm

PastureBase Ireland data and pre-processing

The ground level data used for validation of the model was extracted from PatureBase 
Ireland which is a web based grassland management decision support tool collecting 
and storing grassland data from farmers (Hanrahan et al., 2017). It contains information 
on grass cover, grazing dates and residual grazing height, etc. at a paddock level. The 
grass cover data for each paddock and each measurement date was downloaded from 
PastureBase Ireland into Microsoft Excel to form a database for 2017 and 2018. The data 
for Moorepark farm in PBI is available from 2016 onwards. The database contains weekly 
geocoded grass cover yield (kg dry matter (DM)/ha), grazing dates and silage cutting dates.

Satellite data processing

Landsat-8 surface reflectance Level-2 data for the location for 2017 and 2018 was 
downloaded from the USGS Earth Explorer data portal (https://earthexplorer.usgs.gov/). 
The images were inspected visually for clouds and shadow as clouds and shadows 
hinder the satellite to collect the true reflectance from the ground. Normalised difference 
vegetation index (NDVI) was computed using bands 4 (red: 0.64 – 0.67 nm) and 5 (near 
infrared: 0.85 – 0.88 nm). The data were cropped according to the farm boundary. Spatial 
averaging of the pixels of the images for the whole farm was performed. Hence, the 
satellite data is at farm-level.

Meteorological data

The meteorological data such as minimum temperature (°C), maximum temperature (°C), 
mean temperature (°C), potential evapotranspiration (mm), soil moisture deficit (mm) and 
global radiation (J/cm sq.) was downloaded from Met Éireann - the Irish Meteorological 
Service (https://www.met.ie/climate/available-data/historical-data) for 2017 and 2018. The 
data was downloaded for Moorepark Research Farm (station no. 575).
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Methodology

Landsat-8 daily surface reflectance was converted into vegetation index: NDVI for 2017 
and 2018. There were 91 images for 2017 and 2018 out of which 18 images were selected as 
they were cloud-free images. Linear interpolation was applied to fill the gaps resulting from 
missing data due to clouds and shadows. The dataset was standardised to a zero mean 
and unit variance. Mean NDVI was calculated for the farm using zonal statistics. Time-
series of NDVI was generated for the farm. A time-series for grass cover from PatureBase 
Ireland was also generated for 2017 and 2018. A machine learning model called Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) was developed in R to estimate the grass growth 
rate (kg DM/ha/day). The 2017 data were used for training the model, whereas data for 
2018 were used as testing data. The work-flow of this study is shown in Figure 2.

Figure 2. Methodology

Model development

Adaptive Neuro Fuzzy Inference Systems (ANFIS) model

Adaptive Neuro Fuzzy Inference Systems is a multi-layered neural network with the 
combination of artificial neural network (ANN) and fuzzy logic (Ali I. et al., 2016) as shown 
in Figure 3. The architecture of ANFIS was first introduced by Jang in 1993. It is a five 
layered structure as described below:

Layer 1 Fuzzy layer: Defines the membership function. The parameters in this layer are 
called premise parameters.

Layer 2 Product layer: Multiplies the incoming signals from the layer 1.

Layer 3 Normalised layer: Calculates the ratio of each weight to the sum of all the weights. 
The output of this layer is called normalised firing strength.

Layer 4 Adaptive layer: All the nodes in this layer are adaptive nodes. The parameters in this 
layer are called consequent parameters.

Layer 5 Output layer: Contains a single node which is a fixed node. It computes the 
summation of all the incoming signals.
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The input data for the model was divided into training and testing datasets. The 2017 data 
were used for training the model and the 2018 data were used to test the model developed.

Figure 3. ANFIS architecture

Results and discussion

Machine learning algorithms were compared to estimate grassland biomass (Ali et al., 2016), 
and as a result ANFIS used for modelling outperformed the conventional mathematical 
and statistical (MLR) modelling approaches. Three performance indicators were used for 
this work, i.e. Mean Absolute Error (MSE), Root Mean Squared Error (RMSE) and Symmetric 
Mean Absolute Percent Error (SMAPE). The model successfully identified the seasonal 
phenological curve which matches the curve with the training data with growth peak 
during the growing season and a secondary peak in the autumn as shown in the actual 
and predicted time series of grass growth (kg DM/ha/day) for the Moorepark site (Figure 1). 
The data was normalised before inputting it to the model. The training data were used to 
fit the ANFIS model. Further, training data were also used to predict the grass growth rate. 
The predicted grass growth data using the fitting data along with the actual grass growth 
data is shown in Figure 4. The figure shows that the predicted data is following the actual 
data from the training data, except it under-predicts at some points.

Figure 4. Grass growth: actual and predicted for training data
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The data from 2018 for Moorpark farm was used to test the model. The actual grass growth 
and predicted grass growth data are shown in Figure 5. It can be seen from the Figure 5 
that the model is performing well in the first half of the curve (following the phonological 
curve), which is the first half of the year. During the second half of the year (after June), 
the model over-predicts the grass growth rate. The reason for over-estimating is that the 
year 2018 had extreme weather with a drought in Ireland. The model could not take into 
account the effect of drought in the second half of the year.

Figure 5. Grass growth: actual and predicted for testing data

Figure 6 shows the scatter plots of actual and predicted grass growth. Our study showed 
the grass growth values modelled by ANFIS (MSE = 0.050, RMSE = 0.225, SMAPE= 16.96).

Figure 6. Scatter plot between predicted/simulated and actual grass growth rate for 2018
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Conclusions

The ANFIS model with Landsat-8 data with all other meteorological variables was tested 
using mean square error (MSE), coefficient of determination (R2) and Symmetric Mean 
Absolute Percent Error (SMAPE). The results show low MSE and RMSE for the testing 
data. The prediction using this model was well aligned with the ground level data from 
PastureBase Ireland data. The model over-predicted yield during the second half of 2018. 
This is because 2018 was a drought-affected year which the model is unable to predict. 
Because of this it is important to increase the training data for the model geographically 
as machine learning model needs much wider and deeper training data. Future work aims 
to refine the model for other sites in Ireland and to include the effects of extreme weather 
conditions. Sentinel-2 data will also be incorporated into the model in the future.
References

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M. and Notarnicola, C. (2015). Review of Machine 
Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote 
Sensing, 7: 16398–16421.

Ali, I., Cawkwell, F., Dwyer, E., and Green, S. (2016). Modeling Managed Grassland Biomass Estimation 
by Using Multitemporal Remote Sensing Data—A Machine Learning Approach. IEEE Journal of 
selected topics in applied earth observations and remote sensing, 10: 3254–3264.

Ali, I., Cawkwell, F., Dwyer, E., and Green, S. (2016). Satellite remote sensing of grasslands: from 
observation to management. Journal of Plant Ecology, 9: 649–671.

Dillon, P., Roche, J.R., Shalloo, L. and Horan, B. (2005). Optimising financial return from grazing in 
temperate pastures. Utilisation of grazed grass in temperate animal systems Proceedings of a satellite 
workshop of the XXth International Grassland Congress, Cork, Ireland 131–147.

Hanrahan, L., Geoghegan, A., O’Donovan, M., Griffith, V., Ruelle, E., Wallace, M. and Shalloo, L. (2017). 
PastureBase Ireland: A grassland decision support system and national database. Computers and 
Electronics in Agriculture, 136: 193–201.

O’Mara F (2008). Country Pasture/Forage Resource Profile/Ireland, FAO (2008).



180      Precision Livestock Farming ’19

Kikuyo grass (Cenchrus  clandestinus Hochst. ex Chiov) growth simulation 
using the BASGRA model

J.F. Ramirez-Agudelo1,2, J.R. Rosero-Noguera2, S.L. Posada-Ochoa2, M.F. Cerón-Muñoz3 and 
W. Posada-Asprilla3.
1Universidad de Antioquia; 2Grupo de Investigación en Ciencias Agrarias – GRICA; 3Grupo de Investigación en 
Genética, Mejoramiento y Modelación Animal – GAMMA Universidad de Antioquia - UdeA, Facultad de Ciencias 
Agrarias. Ciudadela de Robledo, Carrera 75 Nº 65·87, Medellín, Colombia.
Corresponding author: framirez161@yahoo.com

Abstract

Mathematical models designed to estimate grass growth are useful tools for short-term 
decision making, and to design strategies for farm adaptation to global climate change. For 
grass growth modeling it is necessary to consider grass growth variability due to soil quality 
differences, grass management, and interactions between grass and animals. The aim of this 
work was to estimate three parameter sets for the BASGRA model, in order to estimate Kikuyo 
grass dry matter (DM) yield (DMY) in a grass-based dairy farm. Between April and October 
2017, 74 grass samples were randomly taken at the Universidad de Antioquia dairy farm 
in North-Antioquia, Colombia. Dry matter yield in each sample was classified into one of 
three DMY categories (High, Medium and Low). Then, the database from each DMY category 
was used to perform Bayesian calibration of BASGRA model. The Concordance Correlation 
Coefficient (CCC) was used to assess the consistency between grass yield predicted and 
observed. The DMY categories distribution was 12, 60 and 28% of total grass samples for 
High, Medium and Low, respectively. The mean grass growth rate was 9.7, 5.6 and 3.1 g of 
DMY / m2 / day for High, Medium and Low, respectively. A high concordance was found (CCC = 
0.91) between the DMY predicted by the calibrated BASGRA model and the DMY observed in 
the grass samples. The results of this work showed that a model’s calibration process which 
takes into account the grass growth heterogeneity allows precise grass growth estimations.

Keywords: BASGRA, Markov Chain - Monte Carlo, Bayesian Calibration.

Introduction

Dairy farms in North-Antioquia, Colombia are grass-based systems where dairy cows 
feed is supplemented with grains. Kikuyo grass (Cenchrus Clandestinus Hochst. Ex Chiov) 
is widely used as feed base on these farms due to its aggressive growth in relation to 
other vegetal species. Kikuyo grass is resistant to trampling and responds positively to 
fertilization. However, its nutritional characteristics (e.g. high crude protein and low non-
fibrous carbohydrate contents) limits milk production (Correa, 2011).

Estimation of the daily grass offered (i.e. the amount of grass per area unit) is a routine 
practice in Colombian dairy farms. Traditionally, grass offered is estimated using the 
grass yield in some quadrants (1 m2) manually cut. This technique, in addition to being 
destructive, consumes a lot of time and requires numerous samples to obtain reliable 
estimations (Catchpole & Wheeler, 1992). Other methods are based on indirect indices 
which represent the relationship, as far as possible linear, between grass biomass and 
some easy-to-measure variables. López & González (2003) compared several non-
destructive methods (i.e. visual estimates, manual and electronic grass meters, and 
remote sensing). López & González (2003) did not identify a most appropriate method and 
concluded that factors such as climate variations, soil characteristics, plant phenology, 
grass management, and species composition should be taken into account to perform 
local calibrations of non-destructive methods.
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The traditional methods and techniques outlined above, whether destructive or not, 
have allowed estimation of grass produced, in the past. But strategic planning, which 
guarantees the farms’ sustainability in the long term, needs tools which help to predict 
future grass yield due to global climate change. To simulate grass growth and quality, 
in a climate change context, several models have been developed: BASGRA (Höglind et 
al., 2016), CATIMO (Bonesmo y Bélanger, 2002), IFSM (Rotz et al., 2015), MCPy (Stilmant et 
al., 2001), PaSim (Graux et al., 2011), QUAL (Gustavsson et al., 1995), SPACSYS (Wu et al., 
2007) and STICS (Jégo et al., 2013), among others. These models represent physiological 
and morphological changes in plants, and their interaction with the environment (Van 
Oijen & Höglind, 2016).

Given soil fertility differences inside a prairie and grass management, localized calibrations 
of a grass growth model are required. In grass-based dairy farms, understanding and 
modeling grass growth is complex, due to the interactions between animals and grass. 
During grazing, the animals transfer significant amounts of nutrients randomly and 
systematically to the prairie, which generates or exacerbates soil variability (Snow et al., 
2014) and grass yield. This complexity constitutes a challenge for grass growth model 
development and calibration. The aim of this work was to calibrate the BASGRA model to 
predict Kikuyo grass yield taking into account the prairie heterogeneity on a dairy farm.

Materials and methods

Location

The data for model calibration were obtained at the Universidad de Antioquia dairy farm. 
This is a grass-based dairy farm located in a low mountain rain forest habitat in North-
Antioquia, Colombia, with a height above sea level between 2,471–2,499 m, an average 
temperature of 16 ºC and coordinates N 6°27’094, W 75°32’678.

Model description

BASGRA is a process-based model that simulates annual pasture processes: growth and 
development, and winter survival. Interactions with the atmospheric and soil environment 
are simulated in some detail. The role of pasture management (i.e. grazing, cutting and 
irrigation) is included. During winter, the model tracks the dynamics of water in its various 
forms: ice formation under and on the ground, snow cover, liquid water storage in the 
snow, and soil and surface pools. Damage by frost and anaerobic conditions under the 
ice, which accelerate senescence according to the level of maturity of the plant, is also 
represented. BASGRA has 23 state variables, 13 of these variables quantify the state of the 
plants, and the others represent the environment above and below the soil in which plants 
grow. Three types of state variables can be distinguished: variables for mass, shape, and 
function. To execute the model, BASGRA requires a time series of the following climatic 
variables: radiation, temperature, precipitation, wind velocity and relative humidity. The 
latter two are only used in calculating the potential rates of evaporation and perspiration. 
In addition, the model requires time series that indicate on which days the grass is cut. 
The atmospheric concentration of CO2 is constant. Soil properties, such as water retention 
parameters, are also provided as constants. BASGRA does not simulate some variables 
that are very important in pasture productivity, such as digestibility and fiber content of 
the harvested material, but these variable are closely related to the leaf/stem ratio, which 
the model can calculate (Van Oijen et al., 2015).
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Calibration

The model calibration process was carried out using the R codes developed by Van Oijen 
& Höglind (2016) in Rstudio software The calibration proposed by Van Oijen & Höglind 
(2016) consists of three steps: 1) definition of ‘a priori’ distributions for each parameter, 
2) definition of likelihood function, and 3) sampling of ‘a posteriori’ distributions of each 
parameter. In the first step, the beta distribution and the mean, minimum and maximum 
parameters values proposed by Van Oijen et al. (2015) were used. In the likelihood function, 
used to quantify the mismatch between model outputs induced by each parameter vector 
and observed data, the grass dry matter yield (DMY) observed and predicted were used. The 
distance between the predicted and observed DMY was calculated with the Normalized 
Root Mean Square Error (NRMSE) as proposed by Van Oijen et al. (2015). In step three, 
samples from ‘a posteriori’ distribution were generated using the Markov Chains - Monte 
Carlo (MCMC) method and the Metropolis algorithm (Metropolis et al., 1953). To ensure 
convergence on all chains, the length of the chains was 200,000.

The grass growth heterogeneity observed at the Universidad de Antioquia dairy farm was 
included in model calibration. The DMY observed in each grass sample from the farm 
were classified into three categories: High (> 8 DMY / day), Medium (between 4 - 8 DMY / 
day) and Low (< 4 DMY / day). These categories ware used to perform three independent 
calibrations of the BASGRA model. In each calibration process, the Kikuyo DMY and the 
climatic conditions observed during grass growth were used. DMY and weather data were 
obtained as follows:

Kikuyo DMY

At 10, 20, 30, and 40 days after grazing, 74 Kikuyo grass samples were randomly cut at 
the Universidad de Antioquia dairy farm. The grass cut area per sample was 1 m2. The 
grass was cut to a height between 10–15 cm above the ground. For DMY (g of DMY / m2) 
determination, a grass sub-samples (200 g) were dried at 70 ºC by 72 hours.

Weather station

Climatic variables were measured using a Vantage Pro2™ (Davis Instruments) 
meteorological station. The data were collected over 111 days between April and October 
2017. In model calibration was taken into account the daily: average, minimum and 
maximum temperatures (ºC), mean relative humidity (%), rainfall (mm), mean wind speed 
(meters per second), and solar radiation (Mega Joules per square meter).

Data analysis

The SAS University Edition (SAS Institute, 2018) software was used in statistical analysis. To 
establish a significant difference among the three grass categories (i.e. High, Medium and 
Low), a completely randomized design model and the Tukey Test were used. To establish 
the concordance between the DMY predicted after calibration and the DMY observed, 
Lin’s Concordance Correlation Coefficient was used (CCC, Lin 1989).

Results and discussion

Weather and DMY

Table 1 shows the climatic conditions during the sampling period. Rainy days corresponded 
to 26% of total sampling time. A positive correlation was observed between DMY and 
rainfall (0.45), and between DMY and solar radiation (0.50). The maximum temperature 
was negatively correlated with DMY (-0.46).
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Table 1. Weather during the sampling period

Variable Days Median Standard 
deviation Minimum Maximum

T 111 14.8 1.1 12.0 17.1

TMMXI 111 19.5 1.1 15.7 21.7

TMMNI 111 9.9 2.0 3.4 14.9

RH 111 85.1 3.8 71.6 92.5

RAINI 111 5.7 10.4 0 75.7

WNI 111 1.3 0.5 0.3 3.4

GR 111 16.4 4.7 3.1 24.1

T = mean temperature (ºC), TMMXI = maximum temperature (ºC), TMMNI = minimum temperature (ºC), RH = 
mean relative humidity (%), RAINI = Rain (mm/day), WNI = mean wind speed (m/sec), GR = Solar radiation (MJ/m2/
day)

Table 2 shows the DMY categories distribution and the grass growth rates in each 
DMY category. The Medium DMY category had a high prevalence in the prairie (60%). A 
significant difference was found for growth rate among the DMY categories.

Table 2. Grass dry matter yield in the three categories

Grass categories N % Grass growth rate 
(g of DMY/m2/day)

Standard 
deviation Minimum Maximum

High 9 12 9.9a 1.54 8.2 12.4

Medium 44 60 5.6b 0.99 4.0 7.9

Low 21 28 3.1c 0.57 2.2 3.9

a, b, c = indicate significant difference (p < 0.05)

Bayesian calibration

Table 3 presents, for each BASGRA model parameter, the estimated value by Bayesian 
calibration in each DMY category (High, Medium and Low). The parameter description was 
presented by Van Oijen et al., 2015.
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Table 3. BASGRA model parameters for three Kikuyo grass dry matter yield categories

Parameter
Categories

Parameter
Categories

High Medium Low High Medium Low

LOG10CLVI 1.2 1.4 1.4 TRANCO 8.2 7.8 8.2

LOG10CRESI 1.02 0.77 0.67 YG 0.85 0.83 0.83

LOG10CRTI 0.7 1.1 1.0 WCI 0.30 0.30 0.30

CSTI 0 0 0 WCAD 0.011 0.011 0.011

LOG10LAII 0 0 0 WCWP 0.09 0.06 0.06

PHENI 0.01 0.01 0.01 WCFC 0.66 0.67 0.66

TILTOTI 1,969 1,696 1,558 WCWET 1.0 1.0 1.0

FRTILGI 0 0 0 WCST 0.44 0.44 0.44

LT50I -4.8 -4.8 -4.8 WpoolMax 50.0 50.0 50.0

CLAIV 0.46 0.43 0.51 Dparam 0.0033 0.0032 0.0031

COCRESMX 0.15 0.15 0.13 FGAS 0.41 0.39 0.40

CSTAVM 1.0 1.0 1.0 FO 2MX 0.20 0.20 0.20

DAYLB 0.35 0.39 0.37 gamma 59.5 58.5 67.3

DAYLP 0.70 0.63 0.64 Hparam 0.01 0.01 0.01

DLMXGE 0.98 0.92 1.00 KRDRANAER 0.22 0.26 0.24

FSLAMIN 0.29 0.44 0.55 KRESPHARD 0.02 0.01 0.01

FSMAX 0.69 0.69 0.69 KRSR3H 0.93 1.00 0.99

HAGERE 0.86 0.79 0.80 KRTOTAER 1.9 2.1 2.1

K 0.47 0.48 0.48 KSNOW 0.03 0.03 0.04

LAICR 4.1 3.6 3.8 LAMBDAsoil 171,600 167,400 178,200

RDRSMX 0.06 0.06 0.06 SWret 0.10 0.10 0.10

RDRTEM 0.00094 0.00097 0.00104 SWrf 0.01 0.01 0.01

RGENMX 0.01 0.01 0.01 THARDMX 14.7 14.7 14.5

ROOTDM 0.84 0.66 0.75 TmeltFreeze 0 0 0

RRDMAX 0.01 0.01 0.01 TrainSnow 0.01 0.01 0.01

RUBISC 6.2 5.1 5.4 TsurfDiff 0.36 0.54 0.56

SHAPE 0.60 0.58 0.50 KLUETILG 0.41 0.62 0.52

SIMAX1T 0.0036 0.0048 0.0045 FRTILGG1I 0.20 0.12 0.08

SLAMAX 0.06 0.06 0.06 DAYLG1G2 0.64 0.58 0.61

TBASE 3.4 3.5 3.6 RGRTG1G2 0.88 0.88 0.91

TCRES 1.6 2.0 2.0 RDRTMIN 0.008 0.010 0.011

TOPTGE 11.0 12.4 12.9 TVERN 20.0 20.0 20.0
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Figure 1 shows the linear relationship between the DMY predicted by the calibrated 
BASGRA model and the DMY observed (CCC = 0.91) at Universidad de Antioquia dairy 
farm.

Figure 1. Concordance between predicted and observed grass dry matter yield (g/day)

The models’ predictive capacity was hampered by incomplete processes representations, 
structural model errors or lack of data for parameterization (Van Oijen et al., 2018). Some 
authors (Van Oijen et al., 2011, 2013) have identified the need to develop and compare 
models in a probabilistic framework, which allows a rigorous quantification of uncertainty. 
In this sense, Van Oijen et al. (2015) propose that the calibration Bayesian is a successful 
method for parameters search in process-based models.

In the present work, the Bayesian calibration results suggest that BASGRA model predicts 
Kikuyo DMY accurately (CCC = 0.91, Figure 1) when the heterogeneity of prairie growth 
is considered in calibration. However, Van Oijen & Höglind (2016) found that BASGRA 
model complies with general applicability requirements, without the need for site-specific 
parameterization, at least for the geographical area and production systems analysed by 
these authors. Probably, the calibrated model performance in this work was due to the use 
of just one variable (i.e. DMY / m2) in the calibration likelihood function. This undemanding 
calibration has been successfully used by some authors (Van Oijen & Höglind, 2016). These 
authors explain that it is a more forgiving calibration that increases the goodness of fit, 
although perhaps the model does not adequately represent some underlying processes. 
Additionally, the grass aerial biomass turns out to be the most relevant variable in a 
productive point of view, and its determination is a routine practice in farms.
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Conclusions

The calibrated BASGRA model performance in this work suggest that process-based models 
are useful to estimate Kikuyo grass yield in Colombian dairy farms. However, in order to 
obtain a better model performance in Kikuyo grass yield estimation, it is important to 
make localized calibrations considering grass management.
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Abstract

The interest in pasture-based dairy systems in Europe increases, as it is a cost-effective 
way to provide feed. The precise estimation of feed on pastures is complex and laborious. 
The Grasshopper® system promises a solution. It is a semi-automated rising plate meter 
to estimate herbage quantity of grasslands. The system measures compressed sward 
height and calculates the available dry matter (DM) ha-1 using a conversion equation. The 
herbage density differs among grassland usage, herbage composition and geographical 
regions. Therefore, we tested the Grasshopper® in Switzerland and Denmark and 
compared the herbage quantity estimations with laboratory results. We collected fresh 
herbage samples at four locations in Switzerland and at three locations in Denmark 
during summer and autumn 2018. The samples were oven-dried at 60 ºC and the quantity 
of DM ha-1 was calculated. The results indicate a more correct herbage quantity estimation 
of the Grasshopper® with its original equation for Danish pastures compared to Swiss 
grassland. As a conclusion, we suggest implementing region-specific herbage density 
estimations and known seasonal quality changes for the Grasshopper®.

Keywords: Grasshopper®, rising plate meter, pasture management, real-time measurement

Introduction

The utilisation of the amount of feed on pastures can only be optimised if it is quantified 
properly. In many countries where pasture-based dairy production is not yet widespread or 
farms have site-specific limits of intensification, farmers usually estimate forage quantity 
by visual observation. This method is prone to error. Moreover, a big challenge is not only 
the sward height estimation but also the constantly changing forage quality within the 
vegetation period. Hence, to be able to manage pasture precisely, we need to automate 
herbage quantity and quality measurements in real-time in the field, at low costs and with 
management tools that support farmers’ decision-making.

Sward height measurements are commonly performed using rising plate meters (RPM, 
e.g. Jenquip, Feilding, New Zealand) in high pasture, grassland-rich countries, such as 
New Zealand and Ireland, and are therefore considered to be the “method of choice”. 
Subsequently, standard equations to convert compressed sward height measurements into 
feed quantity estimates are used. Previous studies have shown that the conversions may 
vary considerably between geographical regions and between seasons (Schori et al., 2013; 
Defrance et al., 2004). MacAdam & Hunt (2015) pointed out that the correct conversion 
is also affected by plant species growing on the pasture. The authors recommend using 
specific conversion factors for different species. This is not always applicable because 
grasslands often consist of mixtures of species. There is the possibility to create one’s own 
conversion equation to determine dry matter quantity within a paddock that represents the 
farm or even field specific conditions. However, this method would be relatively complex 
and laborious for farmers. Furthermore, for intensive grazing systems, determining the 
allocated paddock size is of importance.
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A further development of RPMs is the combination of herbage quantity linked to the 
georeferenced location of compressed sward height (CSH) measurements (Grasshopper®, 
G2 Sensor, TrueNorth Technologies, Shannon, Ireland). The Grasshopper® is able to 
predict the available feed and provides a paddock management tool on a mobile device, 
in combination with a cloud based database that allows farmers in field decision making. 
Additionally, the Grasshopper® acts as a decision support system by using its feed 
calculation tool to reset fences for grass allocation. In this regard, the system has to be 
reliable in estimating herbage quantity on pastures.

While McSweeney et al. (2018) found the ultra-sonic method of the Grasshopper® to 
be accurate in grass height measurement. There is very little research on the accuracy 
of herbage quantity estimations of the Grasshopper® system applicable for Swiss and 
Danish grasslands. Therefore, we evaluated the commercially available system.

Material and methods

Experimental design

Herbage was sampled at four locations in Central Switzerland with three replicates each 
at two observations, counting 24 in total. The same procedure was performed at three 
locations in Denmark with 20 observations in total during summer and autumn 2018. 
Due to a severe drought in Switzerland two observations are missing, leading to a total 
of 42 Grasshopper® observations (Table 1). The locations differed in altitude and herbage 
composition, considering that they represented permanent grassland and temporary ley 
in parts for Switzerland and permanent pastures for Denmark. All experimental plots 
in Switzerland were managed in order to simulate a grazing situation with an average 
pasture growth of two weeks.

In Denmark, the Grasshopper® measurements were performed on six fields with an 
area of 4.2–7.6 ha, whereas the experimental plots in Switzerland had an area of 2.2 m 
times 5 m. An unvegetated border of approximately 15 cm width surrounded these plots 
(Figure 1).

Sensor technology and usage

The Grasshopper® system is a partly automated RPM. It represents an RPM with a 
mounted sensor that recognises the distance of plate lift and is able to georeference each 
measurement with an integrated GNSS-receiver module. The sensor is connected to a 
mobile device via Bluetooth and visualises the measurements in the Grasshopper® App 
(Version 3.03).

Figure 1. The present study is part of a larger experiment in Switzerland. One of the experimental 
plots of interest is shown here (marked plot)
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Table 1. Description of experimental sites, observations, and available Grasshopper® samples

Experimental site & country Altitude 
(m, above sea level) Observation date No. of sampled 

plots / fields

Malters Tal CH 470-480
18 Jul. 2018 3

28 Aug. 2018 3

Malters Berg CH 680-690
6 Aug.2018 1

13 Sept. 2018 3

Schwarzenberg CH 880-910
6 Aug. 2018 3

13 Sept. 2018 3

Sigigen CH 780-800
7 Aug. 2018 3

14 Sept. 2018 3

Farm 40167 DK 25-100

29 Aug. 2018 1

6 Sept. 2018 1

12 Sept. 2018 2

19 Sept. 2018 3

26 Sept. 2018 2

3 Oct. 2018 3

Farm 24029 DK 25-100

29 Aug. 2018 1

6 Sept. 2018 2

12 Sept. 2018 2

Farm 26279 DK 25-100

29 Aug. 2018 1

6 Sept. 2018 1

12 Sept. 2018 1

Using the Grasshopper® system, we measured the geolocation of each corner in order to 
map the experimental plot (Figure 1) and fields. Subsequently, we randomly took samples 
within each area using the Grasshopper®. The system asked to input dry matter (DM) 
content and a value for the post-grazing sward height residual. The pre-settings were 
defined as follows: 25% DM content and 50 mm post-grazing residual for Switzerland, and 
17% DM content and zero mm post-grazing residual for Denmark.

During the sampling, the Grasshopper® App recorded CSH measurements in real-time and 
calculated the available feed quantity within the defined area (DM kg ha-1). To evaluate the 
accuracy of the Grasshopper®, its estimates were compared to laboratory measurements 
that were based on cutting fresh herbage samples in the field.

Fresh herbage sample collection

From each Swiss experimental plot, one square metre was cut at 50 mm above ground. 
In Denmark, three quadrats of herbage were randomly cut in each field at 40 mm above 
ground and fresh weight was determined. Following this, the samples were oven-dried in 
the laboratory at 60 ºC, weighed and the DM content as well as the DM ha-1 was calculated 
and assumed as gold standard method, referred to as laboratory measurements.
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Data analysis

The herbage quantity determination in the laboratory were compared to the Grasshopper® 
estimations for Swiss and Danish grasslands. No conversion calibration was done for the 
system, because we wanted to detect the standard equation of the system. Therefore, the 
measured CSH were plotted against the estimated herbage quantity. Following this, the 
conversion equation was derived through regression analysis.

Results and discussion

The amount of herbage on Danish pastures was generally higher than in Switzerland. Figure 
2 shows that the Grasshopper® detected these differences with its original conversion 
equation for estimating DM ha-1. The system tended to overestimate herbage quantity 
on Swiss grasslands. This could be caused by differences in the herbage composition of 
both countries. Another reason is that for Denmark, laboratory samples were cut at 40 
mm above ground but the post-grazing residual was set to zero mm, because pre-tests on 
Danish pastures showed that the pre-setting of zero mm of post-grazing residual resulted 
in best estimates for herbage quantity during September.

Further, the correlation between the Grasshopper® estimates for herbage quantity and the 
laboratory measurements indicate differing results. The Swiss data resulted in a Pearson 
correlation coefficient of r = 0.57 while the Danish data correlate with r = 0.77. According 
to Taylor (1990), such correlation coefficients can be interpreted as weak for Swiss data 
and moderate for Danish data. The Grasshopper® has a standard error of prediction (SEP) 
of 100.1 DM kg ha-1 for Swiss data and a slightly better SEP of 79.7 DM kg ha-1 for Danish 
data.

Figure 2. Comparison of dry matter quantity (DM kg ha-1) on pastures estimated by Grasshopper® 
and measured by cutting and weighing, referred to as laboratory measurements. Field identifications 
are abbreviated as: Malters Tal, MT; Malters Berg, MB; Schwarzenberg, SB; Sigigen, SI; Farm 40167 
includes Fields 10, 42 and 43; Farm 24029 includes Fields 6 and 20; Farm 26279 includes Field 8

Figure 3 shows compressed sward heights plotted against herbage quantity and the conversion 
equations that have been used by the Grasshopper® and the laboratory. The Grasshopper® 
conversion equations showed a linear relation and differed for Swiss and Danish conditions:

•	 y = 38x – 1765 for Switzerland (1)

•	 y = 27x – 1017 for Denmark (2)
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where y is dry matter in kilograms per hectare and x is CSH in cm.

Contrarily, the laboratory measurements resulted in different equations to explain the 
relation between CSH and the actual amount of DM:

•	 y = 5.9x +59 for Switzerland (3)

•	 y = 24x – 628 for Denmark (4)

Figure 3. Compressed sward height (CSH) plotted against herbage quantity. The regression lines show 
the conversion equations used by the Grasshopper® system (dotted line) and the dashed line that 
explains the laboratory measurements

For Danish grasslands, the Grasshopper® estimate is close to the equation based on 
laboratory measurements. For Switzerland, where we measured lower sward heights, the 
estimation of herbage quantity differed strongly with the laboratory measurements. One 
reason may be that the Irish growth conditions, on which the Grasshopper® is based, 
are more similar to Danish conditions than to Swiss conditions. However, the conversion 
equations could also differ because of the pre-settings that we made in the Grasshopper® 
App before taking the measurements. The equations above are derived from the pre-
setting of 25% and 17% DM content as well as 50 mm and 40 mm post-grazing residual for 
the Swiss and Danish data, respectively. We suggest analysing the data further in order to 
correct the defined value for DM content.

The findings demonstrate the need to adapt the DM quantity estimations for different 
regions. The accuracy of the Grasshopper® system may be better for taller swards or 
grass-rich locations. However, the analysis needs to account for different proportions of 
herbs and clover at different locations. In the field, users of the Grasshopper® should have 
the option to adapt the algorithm according to herbage density and herbage composition. 
For example, Skovsen et al. (2017) developed an App that detects the proportion of clover, 
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grasses and herbs due to image analysis after taking a photo in the field. For Switzerland, 
Schori et al. (2013) developed equations to convert RPM measurements into herbage 
quantity depending on grassland usage and the proportion of herbs. In a next step, we 
should check if the conversion equations of Schori et al. are more accurate than the 
Grasshopper® equations in estimating herbage quantity. Additionally, the Grasshopper® 
has to be evaluated during spring and early summer.

Conclusions

The Grasshopper® estimated the DM quantity more accurately on Danish grasslands 
than on Swiss grasslands. For diverse Swiss grasslands the system is not yet sufficiently 
precise to rely on it for pasture allocation decisions. At this point, it cannot substitute for 
visual observations and experience of farmers to determine the available feed on pastures 
in regions with diverse species composition. In areas with more defined grass-rich species, 
the Grasshopper® has the benefit of being a rapid and user-friendly system.

Hence, there is considerable potential for the Grasshopper® in supporting pasture 
allocation and feed ration balancing if there is a possibility to combine it with farm-specific 
measurements, possibly with implementing clover and herb proportions of pastures and 
areas where feed losses have occurred.
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Abstract

Conventional perennial ryegrass evaluations are conducted under simulated grazing 
studies to identify varieties with the highest dry matter production performance. The 
objective of this study was to evaluate the DM yield performance of a range of perennial 
ryegrass varieties on commercial farms. Monocultures of 11 Irish National Recommended 
List perennial ryegrass varieties were sown on 89 commercial farms throughout Ireland 
where performance was evaluated over a five year period from 2013–2017, inclusive. 
A linear mixed model was used to test variety effects on grassland performance 
characteristics. There was a significant (P < 0.001) effect of variety on total and grazing DM 
yield. The results of this study show that on-farm evaluation can be an effective way to 
evaluate the DM yield performance of varieties in intensive grazing regimes.

Key words: Monocultures, yield, variety, on-farm assessment, DM (dry matter), phenotypic 
performance

Introduction

Grass evaluation programmes capable of identifying superior grazing varieties are essential 
to the success of ruminant production in Ireland. Ireland’s temperate climate gives rise 
to a natural ability to grow grass throughout most of the year. This creates a competitive 
advantage because of relatively low production costs, since ruminant production systems 
are able to utilise high levels of grass. This ability is hugely beneficial as grass, particularly 
grazed grass, is of high nutritive value and is the cheapest feed source available to Irish 
production systems. A 10% increase in the proportion of grazed grass in the overall diet of 
a dairy cow will reduce the cost of milk production by €0.025 per litre (Dillon et al., 2005). 
Irish grasslands have the potential to grow between 12–16 t/ha of grass dry matter (DM) 
annually. The removal of European milk quotas has resulted in the expansion of the Irish 
dairy industry. Increasing grass growth and utilisation at farm level is imperative to the 
success of such developments. With increased market volatility for milk, beef and inputs, 
such as fertilizer and concentrates, the profitability of ruminant grazing will be dependent 
on increasing the proportion of grazed grass in animal’s diet.

An evaluation process to identify and promote the use of new varieties with improved 
on-farm performance in the areas of production, persistence and quality is necessary 
to increase the profitability and due to the economic importance of ruminant grazing 
systems. Since the introduction of Recommended List evaluations to Ireland, the grassland 
demands of farmers have changed. The question remains whether current evaluations 
provide breeders with adequate selection criteria and feedback to develop new grass 
varieties which are consistent with the needs of grassland farmers. To overcome the 
limitations of simulated grazing studies and identify superior grass genotypes suited to 
grazing systems, there is a need to establish trials which better simulate ‘commercial’ farm 
conditions for longer periods than current evaluation protocols. On-farm evaluation has 
the ability to influence and redirect the breeding of the next generation of grass varieties 
suited to intensive grazing regimes. The objective of the current study was to investigate 
the DM production performance of grass varieties on-farm within grazing regimes in 
Ireland. The current study presents results from the first five years of the study.
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Materials and methods

PastureBase Ireland (Hanrahan et al., 2017) is a web-based grassland database which 
has a dual function of providing real time decision support for farmers while acting as 
a national grassland database, capturing information for benchmarking and research 
purposes.  This was a longitudinal study of grass performance on 637 paddocks across 
89 grassland farms during the period January 2013 to December 2017. Farms which 
varied in regions on differing soil types operating grass-based spring calving herds were 
identified and enrolled. Within PBI the drainage characteristics of each paddock were also 
categorised. A range in pH across all farms was noted with a pH average of 6.30 operating 
at between 170–250kg N/ha/yr. across paddocks with an additional allowance of 250kg of 
inorganic N/ha/yr.

PastureBase Ireland (PBI) (Hanrahan et al., 2017) is a web-based grassland database which 
has a dual function of providing real time decision support for farmers while acting as 
a national grassland database, capturing information for benchmarking and research 
purposes. The system operates with the individual farm paddock (experimental unit in the 
current study) as the basic unit of measurement. All grassland information is recorded by 
the farmer through the web interface. Recorded data must satisfy predefined verification 
rules programmed into the system. Such verification checks include restrictions on grass 
cover estimations (0–3,500 kg DM/ha), silage yields (0–10,000 kg DM/ha) and residual 
heights (2.5–9.0 cm). All measurements on PBI are described and calculated on a per 
hectare basis for individual paddocks. The operator builds a profile for each paddock, 
entering background information such as size, distance from parlour (dairy operators 
only), altitude, aspect, drainage status, reseed date and method, sown varieties and soil 
fertility records. Throughout each of the years, all participating farmers were provided with 
grassland management training to ensure data was recorded correctly and coherently and 
that management practices were adhered to, in order to test varieties sufficiently and to 
disseminate new information. All farmers were members of a farmer discussion group, 
which meet on a monthly basis during the main grazing season. The varieties sown were 
all listed on the Department of Agriculture, Food and Marines Recommended grass variety 
list (2015). The varieties Pasture Profit Index values and sub-index values are shown in 
Table 1.

Grass varieties were sown in monoculture in individual paddocks from 2011–2015 on all 
of the 89 commercial farms according to stringent guidelines which ensured successful 
sward establishment. All paddocks for reseeding were sprayed with Glyphosate to ensure 
that all botanical species were removed. Surface trash was removed pre cultivation. A 
range of cultivation methods were used to form a fine and firm seed bed. When a suitable 
seed bed was achieved, varieties were sown at a seeding rate of 34.5kg/ha. Chemical N, 
P and K were applied at the time of sowing. Varieties with a range in heading dates were 
selected and all farms are allocated tetraploid and diploid varieties. Grass DM production 
was measured 1 January to 31 December, annually. Grazing and silage DM yields were 
assessed prior to grazing or harvest and were recorded in PBI. The effect of variety on 
DM production was estimated using a mixed linear model in PROC MIXED (SAS inst. Inc., 
Cary, NC, USA) with paddock nested within farm included as a repeated measure with a 
compound symmetry covariance structure assumed among paddocks within a farm.
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Table 1. Pasture Profit index values (2015) of varieties used on farms

Variety

Details Pasture Profit Index Sub 
Indices
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AberGain T June 5 42 50 43 58 26 -11 208

Dunluce T May 30 43 45 58 35 24 -11 194

AberChoice D June 10 24 52 47 57 9 -5 184

AberMagic D May 30 47 53 78 21 13 -28 184

Kintyre T June 8 29 40 58 25 14 0 166

Astonenergy T June 2 10 41 43 54 12 0 160

Drumbo D June 7 27 35 35 36 -4 -11 118

Majestic D June 2 43 38 43 -23 0 0 101

Glenveagh D June 3 37 39 34 -22 7 0 96

Twymax T June 7 -11 48 20 27 17 -5 95

Tyrella D June 4 41 23 19 -1 0 -11 71

Table 2. DM yield (kg/ha) and Standard error of varieties of perennial ryegrass on commercial farms 
over five years (2013–2017)

Year 2013 Year 2014 Year 2015 Year 2016 Year 2017 Mean

AberChoice 13,450 - 691 12,533 - 590 13,985 - 589 14,431 - 555 14,563 - 498 13,811 - 377

AberGain (T) 12,784 - 716 15,133 - 548 15,422 - 555 15,137 - 405 15,593 - 360 14,846 - 328

AberMagic 11,437 - 887 13,670 - 860 13,180 - 863 16,093 - 937 16,047 - 940 14,081 - 603

Astonenergy (T) 12,822 - 503 14,713 - 496 15,233 - 500 15,077 - 478 14,724 - 448 14,509 - 319

Drumbo 13,096 - 645 15,046 - 591 14,160 - 556 15,124 - 552 15,241 - 526 14,550 - 376

Dunluce (T) 10,951 - 783 13,535 - 618 13,176 - 562 14,204 - 507 16,019 - 513 13,585 - 392

Glenveagh 11,311 - 922 13,876 - 754 13,533 - 686 13,242 - 577 14,813 - 547 13,382 - 444

Kintyre (T) 13,555 - 546 13,428 - 488 14,372 - 505 13,632 - 522 14,342 - 501 13,874 - 336

Majestic 12,036 - 945 13,829 - 733 13,014 - 722 13,608 - 651 15,572 - 632 13,640 - 480

Twymax (T) 12,634 - 647 13,774 - 492 13,498 - 468 14,673 - 471 14,746 - 500 13,869 - 327

Tryella 12,915 - 379 13,204 - 345 13,347 - 343 13,823 - 352 14,422 - 394 13,541 - 236

*(T) – indicates a tetraploid variety. All other varieties are diploid
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Results and discussion

There was a variety × year interaction (P < 0.001) for total and the grazing DM yield. There 
was a significant (P < 0.001) effect of variety on total and grazing DM yield. The highest 
performing variety for total DM yield was AberGain (14,846 kg ± 328kg) and the lowest 
yielding variety was Glenveagh (13,382kg ± 444kg). The highest yielding variety with 
respect to grazing DM was AberGain (12,600 kg ± 394) and the lowest yielding variety 
was Dunluce (10,555 kg ± 476kg). The current study challenges the grassland industry 
to embrace new methodologies to quantify the commercial DM performance of grass 
varieties at industry level. The introduction of PBI (Hanrahan et al., 2017) and the use 
of routine grass measurement at farm level introduces new innovations to grassland 
research, allowing more added value to grassland research benefiting farmers and the 
wider industry. This study presents the first five years of a long-term study assessing the 
performance of varieties on commercial farms. This methodology adds a new dimension to 
grassland research, by determining if the gains in grass breeding have reached farm level. 
The current study investigated a much wider array of environments and included each 
province of Ireland, resulting in a larger production range from approx. 6,500–19,500 kg DM/
ha between paddocks across farms. The wide range in paddock management, soil fertility 
and regional meteorological conditions contributed to the level of variation in on-farm 
herbage production. Grazing DM performance indicate how well a variety performs from 
a grazing perspective, with more frequently grazed swards having greater DM production. 
Previously (Byrne et al., 2017) found grazing yield was to be a reliable indicator of the yield 
advantage of individual grass varieties due to a strong rank correlation between total and 
grazing performance of varieties estimated in the current study. The on-farm evaluated 
varieties were found to produce significantly different yields of grazed herbage. AberGain 
and Astonenergy achieved the highest yield of grazed herbage, combined with recording a 
low silage yield. Varieties such as AberGain, Drumbo, Twymax appeared to have good yield 
stability as their DM production increased year on year and maintained; the remaining 
varieties all experienced fluctuations in annual DM production. Longer time frames which 
allow swards to mature are required to assess DM yield stability.

Conclusion

Variety was found to have a significant effect on total herbage production on-farm, and 
grazing yield also differed by variety, the difference was 1.464 t DM/ha between varieties 
annually. This is important in identifying suitable varieties which will maintain and further 
enhance competitive advantage as a low-cost producer of animal derived proteins. Not 
only does the current study demonstrate the importance of on-farm varietal evaluation, 
but also it examines the value of a variety under an intensive grazing regime. Current 
and future developments in grass evaluations in Ireland need to result in the delivery of 
improved varieties suited to intensive grazing environments.
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Abstract

Near infrared spectroscopy (NIRS) is a well-established method of predicting the chemical 
constituents of a range of dried and milled forages. Limited research has been conducted 
on the application of NIRS to predict un-dried fresh grass quality. The aim of this study 
was to investigate the potential of NIRS to predict quality parameters, dry matter (DM, 
g kg-1) and crude protein (CP, g kg-1DM), in fresh un-dried grass. Knowledge of these 
parameters would enable more precise allocation of quality herbage to grazing livestock. 
Perennial ryegrass samples (n = 1,366) were collected over two grazing seasons at Teagasc 
Moorepark. Samples were scanned using a FOSS 6500 spectrometer at 2 nm intervals in 
the range of 1,100–2,500 nm and absorption was recorded as log 1/Reflectance. Reference 
analyses were carried out for both parameters and combined with the spectral data. A 
validation set (n = 205) was selected randomly and maintained separate from the original 
dataset. The remaining data were used to derive multiple prediction calibrations, by 
means of partial least squares regression using WinISI chemometric modelling software. 
A range of spectral treatments were investigated and calibrations were ranked in order of 
the highest coefficient of determination (R2) and lowest standard error of cross validation 
(SECV). The best performing calibrations (R2 > 0.93, SECV < 9.40 g kg-1 and R2 > 0.89, SECV < 13.1 
g kg-1DM for DM and CP, respectively) were selected for further expansion and validation. 
Results indicate that it is possible to accurately predict fresh grass quality using NIRS.

Keywords: near infrared spectroscopy, fresh grass analysis, grassland management, grass 
quality, feed analysis

Introduction

Near infrared spectroscopy analysis measures the absorption rates of low energy infrared 
light radiation (700 nm – 2,500 nm) within matter, which are then used to quantify its 
chemical constituents by means of empirical modelling. It is a well-established method 
of rapidly analysing forage in the agri-food industry and has been proven to give precise 
predictions of quality parameters in agreement with wet chemistry analysis (de Boever 
et al., 1995; Norris et al., 1976). More recently, NIRS grass quality prediction calibrations 
have been derived for research purposes, such as identifying desired traits for the purpose 
of breeding grass varieties (Burns et al., 2012; Jafari et al., 2003; Wilkinson et al., 2014). 
Conventional NIRS forage and grass analysis requires time consuming pre-processing of 
samples such as grinding and drying, which also can have detrimental effects on sample 
composition prior to analysis (Daniel et al., 2003).

The development of rapid NIRS calibrations to predict quality of unprocessed fresh grass 
would not only significantly reduce laboratory labour, inputs and cost, but would further 
enable more precise grassland and feed management decisions to be made on a daily 
basis. Rapid and precise NIRS analysis of fresh grass would be of considerable practical 
benefit for grass based livestock industries. For example, on grass based dairy farms, the 
quality of grass can vary significantly throughout the year depending on factors such as 
climate, season and sward structure, which can affect milk yield and quality on a daily 
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basis (Dillon, 2006). Wilkinson et al. (2014) recommended that pasture samples should 
be analysed on a weekly basis to adjust feed and management decisions according to 
fluctuations in herbage quality.

Spectroscopic analysis of fresh forages and grasses is largely restricted by the high 
presence of moisture, which results in large spectral peaks that have been found to 
overshadow spectral identifiers for numerous quality traits such as CP (Deaville & Flinn, 
2000; Feuerstein & Paul, 2007). Despite this, breakthroughs have been made with regard 
to NIRS analyses of fresh forage using conventional NIR instruments. A number of studies 
have highlighted the capabilities of NIRS to predict quality parameters of un-dried silage 
(Park et al., 1998; Thomson et al., 2018). Alomar et al. (2009) demonstrated how reflectance 
NIRS can accurately predict the compositional fractions of a variety of grass swards in 
Southern Chile. Dale et al. (2016) developed a NIRS calibration to investigate the impact of 
sampling and storage techniques on fresh grass composition.

The objective of this study was to investigate the potential for developing a NIRS calibration 
to accurately predict quality parameters of fresh grass to within an acceptable agreement 
with gold standard wet chemistry methods. This was to be achieved by developing 
preliminary NIRS calibrations to predict DM and CP, which is a factor of total nitrogen (N) 
content (N × 6.25). The results of this study will be used to justify the continuation of the 
calibration process to develop a robust NIRS grass quality prediction model that could be 
used by researchers and advisors to assist in day to day grassland and feed management 
decision making.

Material and methods

Sward Sampling

Grass samples (n = 1,366) were collected at the Teagasc Animal and Grassland Research 
Institute at Moorepark, Fermoy, Co. Cork, Ireland (50° 7´N, 18° 16´W), on predominately Perennial 
Ryegrass (Lolium perenne) monoculture swards between the period of January 2017 and October 
2018. All swards were sown on free draining acid brown earth soil with a sandy loam texture. 
Herbage cuts were taken from grazed paddocks and controlled trial plots (5 m × 1.5 m) using 
an Etesia mechanical mower (Etesia UK Ltd. Warwick, UK). Sample cuts were typically taken in 
5 m lengths to a height of 4 cm and the harvested herbage was weighed and subsampled (200 
g) as in McEvoy et al. (2011). Sampling was conducted on a weekly basis throughout the typical 
Irish grazing season (late January - early November) to account for variations in climate and 
growth conditions. Cuts were taken prior to grazing on paddocks and typical rotation lengths 
varied from approximately 18–30 days depending on growth and seasonal conditions. Plot cuts 
(n = 16) were taken from four different control groups on a weekly basis with a regrowth period 
of 28 days between groups to simulate grazing conditions. Total annual N fertiliser applied to 
the paddocks was 250 kg N ha-1, whereas the controlled plots were divided into four treatment 
groups, each receiving different N rates ranging from none to high (0, 119, 244, 480 kg N ha-1).

Laboratory Analysis

To determine DM content for reference analysis, 100 g of each collected sample was oven 
dried at 60 oC at Moorepark’s Grassland Research Laboratory. The remainder of each sample 
was then stored in a sealed bag and refrigerated for less than 48 h prior to spectral analysis, 
as recommended by Dale et al. (2016). Each sample was wrapped in cling film and packed 
into a large forage cell with a quartz screen and scanned using a FOSS 6500 spectrometer 
(FOSS-NIR System DK, HillerØid, Denmark). Scanning was carried out at 2 nm intervals in 
the range of 1,100 nm – 2,500 nm. Absorption was recorded as log 1/Reflectance and all data 
was stored in ISI Scan (ISI, Port Matilda, Pennsylvania, USA). Immediately after scanning all 
samples were re-sealed and frozen at -20 oC. Following this, the samples were bowl chopped 
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and then freeze dried over 48 h. All samples were then milled through a 1 mm sieve before 
entering storage. Reference CP figures were determined by further NIRS analysis of the 
dried and milled samples using a calibration developed by Burns et al. (2012).

Calibration Process

Box and whisker analysis was performed using R (R Core Team 2018) on the reference 
dataset along with a visual inspection of the NIR spectra to remove any extreme outliers 
(< 2%). All spectral and reference data was uploaded onto WinISI 4 (ISI, Port Matilda, 
Pennyslvannia, USA) for chemometric modelling. A validation set consisting of 15% (n = 
205) of the original data was selected randomly and removed from the calibration dataset. 
Modified partial least squares was selected as the regression method and numerous 
spectral pre-treatments and mathematical treatments were evaluated on the calibration 
dataset. Principle component analysis was employed to detect outliers, which were 
removed on the basis of significantly high residual prediction values defined by critical 
T values > 2.5 and global H values > 10 as in Burns et al. (2012) and Alomar et al. (2009). 
A number of calibration models were derived and all model iterations were validated by 
means of cross validation using the initial validation set.

Results and discussion

Reference analysis figures for DM averaged 180 g kg-1 (range 95 – 345 g kg-1) ± 38.70 g kg-1 
(SD). Figures for CP averaged 208 g kg-1 DM (range 90 – 325 g kg-1 DM) ± 39.68 g kg-1 DM 
(SD). A partial drought occurred in Moorpark during the months of June and July 2018 (Met 
Éireann, 2018), which led to a number of abnormally high figures for DM, but did not have 
any adverse effect on the overall dataset. Over 20 NIRS model iterations were derived and 
evaluated for fresh grass quality analysis and the best performing models are presented in 
Table 1. Calibrations were ranked in order of the highest coefficient of determination (R2) 
and lowest standard error of cross validation (SEcv), as in similar studies (Alomar et al., 2009; 
Reddersen et al., 2013). All of the calibrations that included the spectral pre-treatments 
standard normal variate (SNV) and detrend performed better than those without. Detrend 
reduces the linear and quadratic curvature of each spectra, while SNV reduces partial 
size noise effects on the model by scaling each spectrum to have a standard deviation 
of 1.0. The effects of both pre-treatments are illustrated in Figure 1. The mathematical 
modelling treatment applied to each calibration, presented in the first column of Table 
1, had the largest influence on performance. Each treatment is listed in the following 
order: derivative, gap, smoothing and second smoothing. Gap refers to the number of 
wavelengths over which the derivative is to be calculated and smoothing refers to level 
of fit of the function line. The second derivative was common amongst all of the best 
performing calibrations, while gaps of 8 nm and 6 nm appeared to give the best results. 
Smoothing applications appeared to have a less significant effect on model performance.

The mathematical treatment 2, 8, 6, 1 with spectral pre-treatments SNV and detrend, 
illustrated in Figure 1 (c) provided the best calibration performance. Results for this 
calibration indicated R2 values of 0.941, 0.906 for DM and CP, respectively. The accuracies 
of these preliminary calibrations are comparable to results found by Alomar et al. (2009). 
With regard to CP, calibration accuracies were less than those found in studies for dried 
and milled grass by Burns et al. (2012) and Jafari et al. (2003). The authors acknowledge 
that prediction accuracy could be increased by creating a standalone calibration tailored 
specifically for CP, but this would further increase analysis time and laboratory labour. 
Furthermore, the authors note that using a NIRS equation for reference analysis of CP is 
not best practice and this was only used to derive the preliminary calibrations presented 
in this paper to determine the overall feasibility of creating a fresh grass quality prediction 
calibration. The inclusion of gold standard reference figures for CP in the reference dataset 
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may further increase prediction accuracies. All of the CP samples used in this study have 
been stored for further reference analysis in accordance with laboratory standards, to 
be used for future calibration work. The findings of this study illustrate that it may be 
possible to accurately predict fresh grass quality using NIRS. The work carried out in this 
study is scheduled to continue for the 2019 grazing season with the aim of completing a 
robust calibration to rapidly predict CP and DM in fresh grass.

Table 1. Best performing fresh grass NIRS calibrations

Math Treatment Constituent R2 SECV

2, 8, 6, 1
DM 0.941 8.93

CP 0.906 12.86

2, 6, 4, 1
DM 0.941 9.12

CP 0.905 12.88

2, 6, 6, 1
DM 0.940 9.16

CP 0.901 13.00

2, 5, 5, 1 DM 0.942 9.08

CP 0.903 13.08

3, 8, 6, 1 DM 0.935 9.35

CP 0.899 13.066

a

b

c

Figure 1. NIRS spectra - light reflectance/absorption vs NIRS wavelength; (a) untreated spectra, (b) 
SNV + Detrend treated spectra, (c) Spectra with mathematical treatment 2, 8, 6, 1 and SNV + Detrend
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Conclusions

Preliminary NIRS calibrations were derived to predict fresh grass quality. Results from 
this study indicate that it is possible to accurately predict the DM and CP composition of 
fresh grass using NIRS, without the need for laboratory pre-treatments. A number of the 
calibrations included in this study were deemed sufficiently accurate to warrant further 
expansion and analysis. An NIRS fresh grass quality prediction equation would aid grass and 
feed management decisions and be highly beneficial to researchers, advisors and farmers.

Acknowledgements

The authors would like to thank all of the staff of the Moorepark Grassland Laboratory 
for their on-going work and commitment as part of the research presented in this paper.

References
Alomar, D., Fuchslocher, R., Cuevas, J., Mardones, R. and Cuevas, E. (2009). Prediction of the composition 

of fresh grass pastures by near infrared reflectance or interactance-reflectance spectroscopy. 
Chilean Jouranl of Agricultural Research, 69: 198–206.

Burns, G., Gilliland, T.J., Grogan, D., Watson, S. and O’ Kiely, P. (2012). Assessment of herbage yield and quality traits of 
perennial ryegrasses from a national variety evaluation scheme. The Journal of Agricultural Science, 151: 331–346.

Dale, A.J., Gordon, A., Archer, J. and Ferris, C. (2016). Impact of sampling and storage technique, and duration of 
storage, on the composition of fresh grass when analysed using near-infrared reflectance spectroscopy, 72: 1–12.

Daniel, A., Rita, F. and Marjorie, D.P. (2003). Effect of preparation method on composition and NIR 
spectra of forage samples. Animal Feed Science and Technology, 107: 191–200.

de Boever, J.L., Cottyn, B.G., Vanacker, J.M. and Boucqué, C.V. (1995). The use of NIRS to predict the chemical 
composition and the energy value of compound feeds for cattle. Animal Feed Science and Technology, 51: 243–253.

Deaville, E. and Flinn, P. (2000). An alternative approach for the estimation of forage quality and 
voluntary intake. In: D.I. Givens, E. Owen, H.M. Omed & R.F.E. Axford (eds) Forage Evaluation in 
Ruminant Nutrition, CAB International, Wallingford, UK, pp. 301–320.

Dillon, P. (2006). Achieving high dry-matter intake from pasture with grazing dairy cow. In: A. Elgersma, 
J. Dijkstra & S. Tamminga (eds) Fresh Herbage for Dairy Cattle, Springer, the Netherlands, pp. 1–26.

Feuerstein, U. and Paul, C. (2007). NIR-spectroscopy of non-dried forages as a tool in breeding for higher 
quality - laboratory tests and online investigations on plot harvesters. Paper presented at the European 
Association for Research on Plant Breeding, Copenhagen, Denmark, pp. 110–114.

Jafari, A., Connolly, V., Frolich, A. and Walsh, E.J. (2003). A Note on Estimation of Quality Parameters in Perennial 
Ryegrass by near InfraredReflectance Spectroscopy. Irish Journal of Agricultural and Food Research, 42: 293–299.

McEvoy M., O’Donovan, M. and Shalloo, L. (2011). Development and application of an economic 
ranking index for perennial ryegrass cultivars. Journal of Dairy Science, 94: 1627–1639.

Met Éireann (2018). Warm Dry Weather of June and July 2018, Met Éireann.

Norris, K.H., Barnes, R.F., Moore, J.E. and Shenk, J.S. (1976). Predicting Forage Quality by Infrared 
Replectance Spectroscopy1. Journal of Animal Science, 43: 889–897.

Park, R.S., Agnew, R.E., J Gordon, F. and Steen, R. (1998). The use of near infrared reflectance 
spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and 
digestibility parameters. Animal Feed Science and Technology, 72: 155–167.

Reddersen, B., Fricke, T. and Wachendorf, M. (2013). Effects of sample preparation and measurement 
standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive 
experimental grassland biomass. Animal Feed Science and Technology, 183: 77–85.

Thomson, A., Humphries, D.J., Rymer, C., Archer, J.E., Grant, N.W. and Reynolds, C. (2018). Assessing the accuracy 
of current near infra-red reflectance spectroscopy analysis for fresh grass-clover mixture silages and 
development of new equations for this purpose. Animal Feed Science and Technology 239: 94–106.

Wilkinson, J.M., Allen, J.D., Tunnicliffe, R., Smith, M. and Garnsworthy, P.C. (2014). Variation in 
composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012. Animal Feed Science 
and Technology, 196: 139–144.



204      Precision Livestock Farming ’19

Evaluation of remote sensing technologies and cloud services to support 
grassland management

J. Kaivosoja1, O. Niemeläinen1, R. Näsi2, R. Burke3, T. McCarthy3, B. O’Brien4, D. Murphy4, 
M. Murphy5, F. Oudshoorn6, L. Hart7, K. Umstätter7 and E. Honkavaara2

1Production Systems, Natural Resources Institute Finland (LUKE), PO Box 2 FI-00791 HELSINKI, Finland; 2Remote 
Sensing and Photogrammetry Department, Finnish Geospatial Research Institute (FGI), 02430 Masala, Finland; 
3Department of Computer Science, Maynooth University (MU), Co Kildare Maynooth, Ireland; 4Teacasc, Animal & 
Grassland Research and Innovation Centre, Moorepark, Co. Cork, Ireland; 5Cork Institute of Technology (CIT), Cork, 
Ireland; 6SEGES, Landbrug & Fødevarer F.m.b.A., Aarhus, Denmark; 7Agroscope, Tänikon, Ettenhausen, Switzerland
Corresponding author: jere.kaivosoja@luke.fi

Abstract

Remote sensing technologies, including new drone technologies, are developing rapidly 
and emerging onto the marketplace. These technologies may provide grass quality and 
quantity information to support grassland management. This concept was developed and 
evaluated in a collaborative research project (GrassQ) across four EU countries. In regions 
where silage forms a significant portion of cow diet, the timing of the first and subsequent 
silage cuts is critical. Monitoring of sward quality parameters, height and dry matter (DM), 
by drones/satellites can be used to identify the optimum harvest times. Alternatively, 
where pasture grazing systems are common, monitoring of herbage yield/mass is critical 
to optimise precise herbage allocation to the herd. Drone and satellite technologies were 
used to capture this grass yield and quality over two growing seasons in Finland, Ireland, 
Denmark and Switzerland. A cloud based service and mobile application, allowing access 
and interpretation of these data was developed as a grassland management support tool. 
The prototype GrassQ management support system, incorporating drone and satellite data, 
analysis, modelling and visualisation tools, hosted on the cloud and application to provide 
Grassland information management service were presented to farmers in the different 
countries to evaluate in terms of usefulness, importance and robustness. This paper reports 
on the evaluation. Generally, satellite technologies were considered in a positive light, 
having the ability to streamline grassland management at farm level. Drone technology 
was considered as having potential to provide good yield estimates, while the application 
had potential to provide easy access to grassland management support information.

Keywords: Unmanned Aerial Vehicle UAV, Sentinel-2, Drones

Introduction

Managing pasture in dairy systems is a complex task; it involves matching fodder production 
to variable feed demands in a changing environment. Many of the decisions are influenced by 
events such as calving, opening and closing paddocks, and harvesting silage and hay for the 
winter. Optimising these decisions is one of the key drivers in ensuring a profitable farm, but 
this process can be difficult for the farmer. Grassland farmers are increasingly faced with an 
array of emerging new technologies and information systems, collectively termed Precision 
Farming (PF), that have been primarily developed around Remote Sensing, Unmanned 
Aerial Vehicle (UAV), in-situ sensors, Global Positioning System (GPS) and GeoInformatics 
(Schellberg and Verbruggen, 2014). Especially these remote sensing technologies, including 
drone and satellite technologies are developing rapidly and emerging onto the marketplace. 
There are Sentinel-2 based web cloud services such as Cropsat, MyYara, WebWisu, AgriSmart 
that provide farmer specific data. Some of them are free to the user and some are integrated 
into the farm management system. In optimal cases, these technologies may provide grass 
quality and quantity information to support grassland management.
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In regions where silage forms a significant portion of cow diet, the timing of the first 
and subsequent silage cuts is critical. Monitoring of sward quality parameters, height and 
dry matter (DM), by drones/satellites can be used to identify the optimum harvest times. 
Alternatively, where pasture grazing systems are common, monitoring of herbage yield/
mass is critical to optimise precise herbage allocation to the herd.

However, actual implementation and sustainable operation is not without its shortcomings. 
Issues such as cloud cover affecting satellite Remote Sensing (Whitcraft et al., 2015), sensor 
calibration, operational restrictions of UAVs and subsequent data handling workflows still 
present some challenges (von Bueren et al., 2015) and even small changes in sensor outputs 
could have a considerable effect on the final application (Pena-Yewtukhiw et al., 2015).

In a collaborative research project GrassQ, drone and satellite technologies were used to 
capture grass yield and quality with different and partly new methodologies in Finland, 
Ireland, Denmark and Switzerland. A cloud based service and mobile application, allowing 
access and interpretation of these data was developed as a grassland management support 
tool. This GrassQ management support system incorporates drone and satellite data, 
analysis, modelling and visualisation tools and is hosted on the cloud and application to 
provide Grassland information management service.

This study is focused on sketching out the user needs in the near future. The main research 
question was: how farmers consider future remote sensing based applications in grassland 
management? We presented the GrassQ prototype and a set of remote sensing application 
concepts for grassland management to farmers, researchers and stakeholders in the 
different countries to evaluate them in terms of usefulness, importance and robustness in 
an informal way. In this paper we present the concepts and the evaluation results.

Material and methods

First we compiled different relevant remote sensing applications and the constructed 
grassland management platform prototype and then we evaluated them by means of a 
survey questionnaire and free discussions in the different countries.

Remote sensing applications

There were five main remote sensing applications to be considered.

•	 Relative grass biomass estimations based on drone data (Figure 1a). This is perhaps 
the most common means by which drone data is utilised in agriculture. A simple map 
shows detailed variation within a paddock. In this case it shows the variation in grass 
biomass. This map can be used as support data for manual decision making.

•	 Relative grass biomass estimations based on classified satellite imagery (Figure 1b). 
This is the most common practice. Typically a straight NDVI calculation represents the 
difference between red light and near infrared light revealing the greenness difference 
which correlates well with biomass differences.

•	 Absolute grass biomass estimations based on drone data (Figure 1c). This is a new 
approach developed during the GrassQ project. The focus here is that the mapping 
process could provide usable information for the decision support systems. Manual 
data capture and manual data analysis and decision making would not be necessary. 
Direct biomass is assessed by two-step hyperspectral methods (Ancin-Murguzur et 
al., 2019) and by spectral and 3D-modelling integration (Näsi et al., 2018a, Näsi et al., 
2018b, Viljanen et al., 2018).

•	 Grass quality estimations based on drone data (Figure 1). The biomass differences are 
important for grazing but knowledge of the digestibility variations can be considered 



206      Precision Livestock Farming ’19

equally important in silage production. A logical step would be a smart combination 
of biomass and digestibility maps. Publications related to grass quality are currently 
under review.

•	 Field biomass and quality comparisons based on satellite imagery (Figure 1e). Maps 
can compare paddocks with relative differences in biomass and quality. This is an 
application area where drones have difficulties in competing with satellites. Satellite 
images can cover wide areas thus a single dataset may easily cover fields of an 
entire farm. This makes it possible to compare different fields. Combining different 
drone campaigns is possible but the changing illumination conditions make the true 
comparison somewhat difficult. The relative value can be a mean value of NDVI’s within 
a field. In GrassQ, pixels closer than 10 m to the field borders were not considered. This 
was applied to eliminate most of the forest/building shadowed pixels and the areas 
that were weakened because of field traffic (headland areas).

Grasslands Management Platform

The GrassQ.org scalable Grassland Management platform was configured and adapted in four 
EU States. The following elements were considered in the Grasslands Management Platform:

•	 Cloud-based platform and Open Source Software and database technologies

•	 Secure account and farm-project management system

•	 Design and implementation modules for all data handling aspects; ingestion, storage, 
discovery, fusion, analysis, visualisation and reporting

•	 Provision of Web Services and also a Grassland Platform AP

•	 Interoperability (OGC, ISOBUS)

•	 Country-specific calibration procedures

The platform provides timely information to farmers using the tools through either 
Smartphones or mobile devices.

Evaluations

A thorough evaluation of a specific application or service may be difficult as technologies 
and applications develop so rapidly. So an internationally coordinated questionnaire based 
on one developed system may not provide up-to-date and useful information. Instead, 
several concepts and prototypes operating in different scenarios were introduced to farmers, 
researchers and stakeholders in order to have an up-to-date full picture of the topic.

The different remote sensing application concepts and the Grasslands management 
platform were evaluated in terms of usefulness, importance and robustness in free 
discussions. In Finland, the discussions were performed at four main events; two Nurmen 
Kasvun Paikka events for milk producers, one annual dairy-coaching event and a national 
agri-drone seminar meeting with 250 people in attendance. In Ireland, the GrassQ service 
will be evaluated in the ‘Grasslands Information Services’ demonstrator project later in 
2019. This demonstrator will focus on one farm in South-Western Ireland. These In-Situ 
data-streams will be merged with Remote Sensing and linked with the Teagasc PastureBase 
Ireland system to generate grassland management services. Local farming community 
groups will be involved in assessing these services.
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Figure 1. Examples of classified images for each application
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Results and discussion

Generally, satellite technologies were considered in a positive light, having the ability to 
streamline grassland management at farm level. Drone technology was considered as 
having potential to provide good yield estimates, while the application had potential to 
provide easy access to grassland management support information.

The guiding information (such as relative values) was mostly observed in a twofold manner. 
Alternatively, these results can represent useful information, but its usefulness to the 
farmer is questionable since any concrete actions are not provided. This leads to the most 
important finding, that data should be applicable in a straight forward way. This means 
that the farmer interface does not need to show any relative NDVI values but it should have 
a direct decision support element. Examples may include decisions such as, ‘harvest this 
area tomorrow and you get 5,000 kg DM/ha yield with good digestibility’ or ‘put the cattle 
next to that field’. This shows that smart decision support systems are needed.

The interviewed farmers were mostly willing to integrate all possible new technologies 
into their existing farm management systems. For example, they use a separate weather 
app to check the weather forecast and the integration of this with grassland management 
is considered feasible.

In Finland there was a desire to have a commercial grass biomass mapping application. It 
is considered a significant drawback that there are no widely spread grass yield mapping 
methodologies available. Also, the possibility to measure sugar content was seen to be beneficial 
in silage production since that information could be used to adjust preservative contents.

The main discussion topics of the evaluation

Usefulness: colourful maps or relative (within a field) values were not considered useful. 
Easy access application was seen as very useful. A separate PC web application with 
multiple folders and tabs was not seen as useful. An increase in the complexity was allowed 
in relation to increases in the compatibility with farm management and machinery. As a 
stand-alone solution, the simpler was always seen as best.

Importance: yield amount mapping and grass quality information were seen as very 
important. Data should be easily accessed and should not be ambiguous. The availability 
of source data or transparent data processing was not observed as very important advice. 
However, the reliability of each piece of information is crucial. Obeying incorrect data was 
seen as a big risk.

Robustness: Passive remote sensing was not seen as being very robust. A lot of high risks 
were observed. Those included different grass varieties, different soil types and growing 
conditions, clouds in satellite images, drone data mosaicking, changing illumination 
conditions and over teaching in machine learning. The functioning robustness of the 
actual management platform was not evaluated.

Conclusions

The potential of remote sensing technologies in supporting grassland management has 
widely been recognised. Generally farmers are very keen on following the remote sensing 
application possibilities. However, the possible drawbacks are also well understood and 
most of the farmers are cautious on the utilisation of remote sensing applications.
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Abstract 

This paper presents an analysis of the sources of variability in milk yield, milking time 
and milking interval of cows with voluntary access to a quarter milking Automatic Milking 
System (AMS). The data used for this analysis included a large data set from a commercial 
dairy farm using AMS technology. Multiple correspondence analysis and GLMselect were 
used to explore relationships between variables and select estimation models of the 
parameters that better identify milking efficiency. This analysis provides some theoretical 
limits and ranking of precision milking management strategies to improve the capital 
efficiency of AMS technology. The strategies identified in this analysis were: 1) Increasing 
the fraction of the day that the AMS box is occupied for milking; 2) Setting a minimum 
projected milk yield for milking permission; 3) Milking the slowest quarter faster; and 4) 
Reducing udder prep and attach time. Other substantial value-added propositions for AMS 
management are to improve the economics of feeding using cow level concentrate feeding 
and the use of economic models to identify less profitable cows as candidates for dry-off 
and culling.

Keywords: automatic milking, precision milking, economic efficiency

Introduction 

One of the primary obstacles to implementing an Automatic Milking System (AMS) is 
the higher capital cost of the milking equipment and facilities compared to conventional 
milking technology. Studies have shown that reductions in labour costs are typically not 
sufficient to justify the additional capital investment (Schewe & Stuart, 2014). Increased 
milk production resulting from increasing milking frequency from twice daily milking 
provides some economic benefit (De Koning & Rodenburg, 2004), however, not when 
compared to 3x milking as is common on most large confinement based dairy farms. 
Other economic benefits attributed to automatic milking include improved animal health 
and increased cow longevity (Hamann, 2002; Stuart et al., 2013) but it has been difficult to 
quantify the economic consequences of these factors. It appears that there are not large 
differences in milk quality or yield between cows milked by the robotic versus conventional 
milking system (Reinemann et al., 2001).

The capital cost of AMS technology is largely balanced against the amount of milk 
harvested per AMS unit per day. The aim of this study was to explore associations between 
milking efficiency parameters to provide some theoretical limits on the milk harvested per 
AMS per day and identify precision milking management strategies to improve the AMS 
harvest rate and thereby the capital efficiency of AMS technology. 

Material and methods

This study used data from one commercial dairy farm (n = 1,280 Holstein Friesian cows) 
using 20 AMS units (De Laval VMS, DeLaval, Tumba, Sweden) located in the Northeastern 
USA (more detail is provided by Penry et al., 2018). This farm has used AMS technology for 
more than 10 yr. Cows are housed year-round and fed using a partial mixed ration system 
with concentrate feeding in the AMS stall. Each AMS services one pen of about 55 cows, 
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with 6 pens of primiparous cows (L1) and 14 pens of multiparous cows (L2+). The data 
obtained from the management system included Cow ID, DIM, start date:time of milking 
session, duration of the milking session, milk yield, peak milk flowrate and average milk 
flowrate at the quarter level, for each milking session. New variables were created to 
assess milking performance at the cow and AMS level. Definitions of the variables used 
in the analysis and the overall average and standard deviation values (for all cows and all 
AMS units over one year) are presented in Table 1. 

Table 1. Variables, definitions and summary statistics of the dataset used in this analysis

Mean ± std Units

DIM: Cow level days in milk 162±111 days

Lact: Cow level lactation number 2.30±1.17 lactation

BoxTime: Time that a cow is in the AMS box for milking 6.99±2.22 min

UdderTime: Time to milk the udder = time for slowest Quarter* 4.14±1.75 min

LastQuarterTime: Difference between slowest quarter milking duration 
and next slowest quarter milking duration*

0.87±0.80 min

QuarterTimeSTD: Intra-udder standard deviation of quarter milking 
duration at each milking 

0.75±0.54 min

BoxPrepTime = BoxTime –UdderTime 2.85±1.38 min

BoxMilkFraction = UdderTime /BoxTime 0.59±0.12 -

BoxAMF = UdderYield /BoxTime 1.79±0.61 kg/min

MilkingInterval: Time since last successful milking 8.46±3.39 hr

UdderYield: Sum of 4 quarter yields at each milking session 12.0±4.49 kg

MaxQyield= maximum quarter milk production 3.8±1.51 kg

QuarterYieldSTD: Standard deviation of within-udder quarter yields at 
each milking 

0.74±0.58 kg

UdderFill: Ratio of UdderYield to lactation maximum UdderYield 0.52±0.17 -

UdderMPR: Milk production rate at the udder level, =UdderYield/ 
MilkingInterval 

1.45±0.41 kg/hr

UdderAMF: Average milk flowrate at the udder level =UdderYield/
UdderTime 

3.08±0.97 kg/min

UdderPMF: Udder level peak milk flowrate sum of quarter peak milk 
flowrates 

5.66±1.36 kg/min

UdderAmfPmf = Udder AMF/UdderPMF 0.54±0.08 -

BoxTimeSum: Total box time usage per day 16.9±1.69 hours

* UdderTime and LastQuarterTime are approximations that do not take into account teatcup attachment order
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Class variables were created to perform a multiple correspondence analysis (Proc CORRESP; 
SAS 9.4) (SAS Institute, 2013) in order to explore relationships among these class variables 
and to select the most interesting variables to be included in the model for GLMselect. The 
class variables and their definitions are: UdderFill (< 50%, ≥ 50%), MilkingInterval (< 8.5, ≥ 
9 h), UdderYield (< 12 kg, ≥ 12 kg) UdderTime (< 4 min, ≥ 4 min), UdderPMF (< 5.6 kg / min, 
≥ 5.6 kg / min) UdderAMF (< 3 kg / min, ≥ 3 kg / min, BoxPrepTime (< 2.8 min, ≥ 2.8 min), 
LastQuarterTime (< 0.9 min, ≥ 0.9 min), MaxQyield (< 3.8 kg, ≥ 3.8 kg), BoxTime (<7 min, ≥ 
7 min).

The SAS GLMselect procedure was used to explore associations in the dataset. The 
procedure is intended to aid in the selection of candidate models. We used the stepwise 
method in which model ‘candidates’ are included in a forward stepwise fashion and 
assessed for their influence on the Schwarz Bayesian information criterion (SBC). If the 
effect does not improve the model fit (lower SBC) it is rejected and effects already in the 
model may be removed. If two effects are linearly correlated the procedure will accept 
only the effect with the lowest SBC. The procedure ends when the SBC criteria is no longer 
reduced, and the effects are displayed in sorted order from best to worst of the selection 
criterion. As DIM was an effect of interest with a well-known non-linear relationship with 
milk production, the dataset was divided into early lactation (< 40 DIM) and late lactation 
(≥ 40 DIM). Both UdderYield and UdderMPR showed reasonably linear responses within 
these two periods. 

Results and discussion

The results of the multiple correspondence analysis are presented in Figure 1. Three 
distinct relational groups were identified. Group A showed correspondence between 
high BoxTime, high UdderTime, low UdderAMF, low UdderPMF, high BoxPrepTime and 
high LastQuarterTime. Group B showed correspondence between low UdderYield, low 
MaxQyield, short MilkingInterval, and low UdderFill. Group C showed correspondence 
between high UdderYield, high UdderFill, long MillkingInterval and high MaxQyield.

It is interesting to note that UdderYield was not grouped with UdderTime. This is likely 
because of other factors such as milking interval, the uniformity of yield across quarters 
and quarter and udder milk flow rates. Group C indicated that when MilkingInterval 
was low, Udderfill and UdderYield were also low. Hogeveen et al. (2001) found a very high 
variation in milking interval in AMS’s. 

The results of the GLMselect analysis are presented in Table 2. Not surprisingly, the best 
predictor for milk/box/day was the daily sum of BoxTime, explaining 85% of the variation 
in milk/box/day. This was followed by BoxAMF, which increased the R-square of the model 
to 99%. All other effects explained less than 1% of the variation in milk/box/day. 

As an example of how to interpret the estimates, each additional minute of BoxTimeSum 
was associated with an increase in 1.66 kg of milk/box/day. Our data had an average 
BoxTimeSum of 16.9 hours or 70% of the day, very similar to the 16.8 hours reported by 
Tremblay et al. (2016). A practical maximum for BoxTimeSum is about 22 hours, or 92% of 
the day, leaving two hours for cleaning and other time that the box is not used for milking. 
Barn designs including traffic patterns, the number of robots per pen, manure removal 
strategies and many other details become increasingly important when increasing the 
number of milkings per day and milk/cow/day in an AMS. Achieving this high level of use 
would require advances in barn design, a pre-selection strategy and perhaps some form 
of guided cow traffic. Milking frequency has been identified as a main factor affecting box 
utilisation (Bach et al., 2009), indicating the interaction between facility design and milking 
management strategies.
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Figure 1. Multiple correspondence analysis

In guided flow systems cows must go through a selection gate or through the AMS box 
when moving from resting to feeding areas in a barn. With free flow design, cows can 
move between the AMS, resting and feeding areas without passing through selection gates. 
Tremblay et al. (2016) reported an average of 2.91 milkings per day with 1.89 non-milking 
visits per day for herds using free cow traffic, assuming that one minute for a non-milking 
visit would result in an estimate of about 1.6 hours per day of box use for sorting cows. 
Unal et al. (2017) reported that two farms with guided traffic and pre-selection gates had 
substantially higher maximum capacities (6.5 and 7.2 milkings per hour) than one farm 
with a free flow barn (4.4 milkings per hour). 

Tremblay et al. (2016) found that increases in total BoxTime and number of milkings per day 
were associated with increased milk/box/day. They further investigated the interaction of 
total BoxTime and milkings per day to arrive at strategies to manage the conflicting goals 
of maximum production and cost efficiency by selecting cows with high milking speed for 
pens with greater Cows per Robot. 

The second ranked effect associated with milk/box/day was BoxAMF. The GLMselect 
model for this dependent variable ranked the top three associative effects as UdderAMF, 
UdderYield and BoxPrepTime. BoxPrepTime averaged 2.85 ± 1.38 minutes and could 
potentially be reduced to improve BoxAMF. An optimal BoxPrepTime was imagined to be 
2.0 minutes, allowing for 1.5 minutes for prep/lag time and an additional 0.5 minutes for 
cow movement. This assumes improvements in robotic control strategies as have been 
reported by Brouk (2019). Reduction of udder prep below 1.5 minutes may not produce a 
reduction in UdderAMF, the effect most associated with BoxAMF, as it would reduce the 
time available for full udder stimulation and would likely result in an increase in bi-modal 
milk flow curves. 
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Table 2. GLMselect results for milk/box/day and for early and late lactation

Model  Effect R2 Est.  Effect R2 Est.

  All Cows  

Milk/Box/ Day
BoxTimeSum 85% 1.66

 
BoxAMF 99% 287

  Late Lactation Early Lactation 

BoxAMF

UdderAMF 63% 0.28 UdderAMF 67% 0.31

UdderYield 81% 0.045 BoxPrepTime 82% -0.17

BoxPrepTime 94% -0.17 UdderYield 94% 0.046

UdderAMF

UdderPMF 78% 0.53 UdderPMF 78% 0.54

QuarterTimeSTD 85% -0.56 QuarterDurationSTD 86% -0.59

UdderYield 88% 0.009 UdderYield 89% 0.008

UdderPMF

UdderYield 11% 0.12 QuarterPMFSTD 9% 2.62

QuarterTimeSTD 23% -1.4 UdderFill 17% 2.46

QuarterPMFstd 34% 2.5 QuarterDurationSTD 30% -1.32

UdderYield

MaxQyield 80% 0.95 MaxQyield 81% 0.87

QuarterYieldSTD 93% -0.94 QuarterYieldSTD 92% -0.89

UdderFill 94% 17 UdderFill 93% 17

UdderYieldMax 98% 0.37 UdderYieldMax 98% 0.4

UdderMPR DIM (x100) 19% -0.081 MilkingInterval 13% -0.11

MilkingInterval 29% -0.086 UdderFill 47% 0.8

UdderFill 58% 1.52 BoxAMF 52% 0.65

UdderAMF was positively associated with UdderPMF (i.e. udders with high peak flow rates 
also have high average flow rates), negatively associated with intra udder variability of 
the time to milk individual quarters, QuarterTimeSTD, and positively associated with 
UdderYield (i.e. fuller udders spend more time in peak flow and a smaller fraction of the 
milking time in low flow). Precision milking management could be applied to reduce the 
variability between quarter milk times. The slowest quarter could be milked faster to match 
the time of the next slowest quarter. This could be achieved by using more aggressive 
pulsation or by early teatcup removal of the last quarter. Both of these strategies merit 
investigation to ensure that negative consequences do not result.

One of the fundamental management decisions on a dairy farm is the feeding strategy. 
Dairy managers choose an optimal MPR based on the cost of feed components and 
calculus of income over feed costs. One way that box style AMS technology can improve 
the economic performance of a dairy farm is to implement precision concentrate feeding 
of individual cows in the milking stall (or separate concentrate feeding stall). Our initial 
estimates suggest that this advantage is considerable and underutilised in current practice. 

Scenarios were created to test the theoretical limits of improving milk/box/day. Milk 
production per cow has shown a linear increase of about 130 kg/cow/year in the US over 
the past 50 years as the result of improvements in genetics, reproduction, feeding and 
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housing. The current US average is about 33 kg/cow/day, with well managed confined herds 
routinely exceeding a milk production rate of 40 kg/cow/day. We will use production levels 
of 30 kg/cow/day (1.25 kg/cow/hr), 40 kg/cow/day (1.67 kg/cow/hr) and 50 kg/cow/day (2.08 
kg/cow/hr) to represent a range of present and future milk production performance. 

A reduction in BoxPrepTime from 2.85–2.0 minutes was modeled with our data set resulting 
in a predicted increase in BoxAMF from 1.79 kg / min to 1.95 kg / min. The strategy to 
increase UdderAMF by reducing QuarterTimeSTD resulted in an increase in UdderAMF 
from 3.08 kg / min to 3.94 kg / min. 

Both BoxAMF and UdderAMF are positively associated with UdderYield (per milking). 
The distribution of UdderYield and UdderFill in our dataset indicated that there was a 
considerable number of milkings that were performed on cows with low UdderFill. This 
reduced milk/box/day because time was being used to milk cows that do not require milking 
as well as the associated reduction in average flow rates for cows with low UdderFill. 

The effects of applying a minimum expected milk yield were investigated with our data 
set. Applying a minimum expected yield must be applied with caution. Increasing milking 
frequency (reduced MilkingInterval) is a well-known way to increase MPR in early lactation. 
We modeled a milking permission strategy that required all cows in early lactation be 
milked every six hours (four times per day) and applied a minimum expected milk yield 
of 12 kg (the average for our study herd) and 15 kg (upper quartile of our study herd) for 
milking permission of later lactation cows (> 50 DIM). The results of these UdderYield 
milking permissions combined with the reduced BoxPrepTime and QuarterTimeSTD 
strategies and with 22 hours per day of box occupancy for milking are presented in Table 3. 

Table 3. Results of theoretical milking scenarios in automatic milking systems 

Cow 
MPR 

(kg/hr)

Cow 
MPR 

(kg/day)

12 kg milking permission limit 15 kg milking permission limit

Milking frequency Cows/
box Milking frequency Cows/

box

1.25 30 2.5 / day 119 2.0 / day 127

1.67 40 3.3 / day 89 2.7 / day 95

2.08 50 4.2 / day 71 3.3 / day 76

Limiting the data set to observations with greater than 12 kg or 15 kg per milking results 
in an UdderAMF of 4.25 and 4.36 kg / min, BoxAMF of 2.70 kg / min or 2.89 kg / min, 
respectively. The predicted milk harvest was 3,570 kg/box/day kg for the 12 kg milking 
permission limit and 3,810 kg/box/day for the 15 kg milking permission limit. This is more 
than double current practice (1,630 kg/box/day) as reported by Tremblay et al. (2016).

Reinemann (2002) postulated that a doubling of the productivity/cost ratio for box-style 
AMS technology would make it economically competitive with other methods of milk 
harvesting. The reassessment of productivity of AMS technology 15 years later indicates 
that progress has been made and further advances in productivity/cost ratio are within 
the realm of possibility. 

At the highest MPR, the number of cows per box is comparable to that predicted by De 
Koning & Rodenburg (2004) who estimated in the early days of AMS that one box was 
sufficient for 60 – 70 cows. The theoretical upper limit to the number of cows per box for 
the mid and lower level MPR are considerably higher than this early projection and far 
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above current practice of 50.5 cows/box as reported by Tremblay et al. (2016). Achieving the 
very high stocking density for the 30 kg/day and 40 kg/day MPR scenarios would require 
considerable advancement in barn design and cow traffic management as noted above. 

An insight from this study which may aid in the process of increasing the number of 
cows per pen is to set milking permission MilkYield limits progressively higher as cows 
are added, to allow for the increased number of milkings required for the added cows. 
Such a strategy could be used to explore the optimal number of cows per pen and per 
AMS box in existing systems. One reason that AMS managers give for allowing ‘free time’ 
is to accommodate interruptions in milking due to maintenance or breakdown. This is a 
high continuous price to pay for what is hopefully becoming a rarer occurrence. Another 
strategy to manage this risk is a ‘recovery’ mode in which milking permissions are adjusted 
after AMS inactivity to milk the cows most in need due to extended milking interval and 
high UdderFill. 

Conclusions

Several prospects for precision milking management to improve the capital efficiency 
of box-style AMS technologies were identified in this study. The largest area of potential 
improvement appears to be using milking management strategies to increase the 
percentage of time that each AMS box is actually milking cows. This could be achieved by 
a combination of milking permission udder fill limits, increased number of cows per AMS, 
with improved barn design and cow traffic strategies required to realise this potential. 
There is also potential to reduce within udder variability of quarter milking times by 
milking slow quarters faster while further gains could be realised by reducing udder 
preparation and teatcup attachment time through advances in robotic control. 

Integration of economic models with milking performance data also offers opportunities 
for increased efficiency by using precision feeding to optimise income over feed cost, 
identification of cows for breeding, culling and dry off and developing optimal milking 
management strategies. A fundamental value-added proposition of precision milking 
management is to test and report on the effects of feeding, milking permission, milking 
machine settings and other milking management strategies on MPR and profitability. In 
this way, every day is a new experiment and part of a continuous improvement process. 
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Abstract

The aim of this experiment was to assess strategies to reduce milking time in a pasture 
based automatic milking system (AMS). Milking time is an important factor in automatic 
milking because it represents the largest portion of box time and any reductions in box 
time can facilitate more milkings per day and hence higher production levels per milking 
robot. This study evaluated two removal milk flow switch points; 30% and 50% of average 
flow-rate at the quarter-level, a strategy to increase system vacuum during the peak milk 
flow period, and the interaction of these effects on milking time in an AMS. No significant 
differences in the milking efficiency parameters of milk flow-rate, milk yield, box time, 
milk time and milking interval were found between treatments in this study on cows 
milked in an AMS on a pasture based system, where average and peak milk flows of 2.15 
kg / min and 3.48 kg / min respectively were observed during the experiment. Small 
increases in maximum milk flow-rate were detected (0.09 kg / min) due to the effect of 
increasing the system vacuum during the peak milk flow period. These small increases in 
maximum milk flow-rate were not sufficient to deliver a significant reduction in milk time 
or box time. Furthermore, increasing the removal setting from 30% of average flow to 50% 
of average flow was not an effective means of reducing box time. This was because the 
resultant increase in removal flow-rate of 0.12 kg / min was not enough to deliver practical 
or statistically significant decreases in milk time or box time. 

Key words: Milking, removal settings, milking vacuum 

Introduction

The cluster-on times of individual cows is an important factor for determining herd milking 
times and thus, labour efficiency in conventional milking systems. In the context of automatic 
milking systems (AMS), cluster on-time has a direct impact on cow box time and hence, the 
number of milkings that are possible per day. It has been reported that the cluster-on time of 
cows can be reduced, without affecting milk yield or udder health indicators, by increasing 
the automatic cluster remover (ACR) milk flow switch point at the udder-level (Burke & Jago, 
2011, Jago et al., 2010, Magliaro & Kensinger, 2005, Rasmussen, 1993, Stewart et al., 2002). 
A study by Edwards et al. (2013a) which was carried out on dairy cows in late lactation 
reported that udder-level ACR milk flow switch points up to 0.8 kg / min reduced individual 
cluster-on times without affecting milk yield or indicators of udder health when using a 
milking routine with no pre-milking stimulation, as is common practice on pasture-based 
dairy farms (Edwards et al., 2013a). Increasing ACR milk flow switch point had no effect on 
indicators of udder health despite greater residual milk due to earlier removal of the cluster 
(Burke & Jago, 2011, Edwards et al., 2013a). Increasing evidence indicates that an increase in 
residual milk does not adversely affect SCC or rates of clinical mastitis (Burke & Jago, 2011, 
Clarke et al., 2008, Edwards et al., 2013b, Jago et al., 2010). However, Burke & Jago (2011) noted 
a 1% reduction in milk production (kg / day) as a result of applying 0.4 kg / min udder-level 
milk flow switch point compared with 0.2 kg / min. In addition, Magliaro & Kensinger (2005) 
documented a 2.5% reduction in milk yield (kg / milking) for the 0.8 kg / min udder-level 
milk flow switch point when compared to the 0.48 kg / min setting. 
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Many automatic milking systems have the ability to carry out teatcup removal at the 
quarter-level. To address this topic Krawczel et al. (2017) carried out an experiment with 
teatcup removal milk flow switch points ranging from 0.06–0.48 kg/min at the quarter-
level. The effect of changing teatcup removal milk flow switch point setting was significant 
with the highest setting resulting in the lowest milking time. Milk yield, peak flow or 
average flow were not affected by milk flow switch point level (Krawczel et al., 2017). The 
milking interval was maintained at eight hours in the studies of Ferneborg et al. (2016) 
and Krawczel et al. (2017). However, in seasonal pasture based AMS farms, the milking 
interval is generally between 12–18 hours depending on the stage of lactation and level 
of concentrate feed allocation (Shortall et al., 2018). Furthermore, not every AMS teatcup 
removal system works on the basis of specifying a milk flow switch point flow-rate. Hence, 
further research is required to investigate the effects of applying different teatcup removal 
strategies (e.g. % of average flow-rate) on the milking time of cows. 

In addition to offering the user adjustable removal settings, many AMS offer an option to 
adjust the system vacuum level, or apply a vacuum level that depends on the milk flow-
rate. It is widely accepted that increasing vacuum levels increases the peak milk flow-rate 
and milking speed (Rasmussen & Madsen, 2000, Spencer et al., 2007). There is a gap in 
knowledge in the literature around the effects of varying the vacuum during the peak milk 
flow period on milking time and also on how these settings would affect the milking time 
across different removal settings in an AMS.

The aim of this experiment, therefore, was to measure the effect of adjusting the teatcup 
removal milk flow switch point (as a percentage of average quarter-level flow-rate) on the 
milking time of cows as well as the effect of varying the milking system vacuum during the 
peak milk flow period on the effect of different removal settings in a pasture based AMS.

Materials and methods

This experiment was carried out at the research facility at Teagasc Moorepark, Cork, 
Ireland. The research farm operated a spring calving, grass based system. Cows were 
milked using a single Astronaut A4robotic milking system (Lely, The Netherlands). The 
AMS was equipped with the custom take-off (CTO) module that enabled adjustment of the 
teatcup removal milk flow switch point as well as the time-delay of the teatcup removers 
from trigger flow level to removal of the teatcup from the teat. The AMS system vacuum 
level was set to 43 kPA and the pulsation system operated on a pulsator ratio of 65:35 with 
60 pulses per minute. 

Experimental treatments 

The treatments consisted of two teatcup milk flow switch point settings and two vacuum 
settings. Normal removal (NR) removed the teatcup from the teat when the instantaneous 
milk flow-rate dropped below 30% of the average milk flow-rate for that teat, early removal 
(ER) removed the teatcup when the instantaneous milk flow-rate dropped below 50% of 
the average flow-rate for that teat; Normal vacuum (NV) maintained the default system 
vacuum of 43 kPA for the entire milking, dynamic vacuum (DV) increased the system 
vacuum level (from the default of 43 kPA) by 1 kPa for each kg / min of milk flow over 2 
kg/min. Hence, the four treatments were described as 1) normal removal with normal 
vacuum (NRNV); 2) early removal with normal vacuum (ERNV); 3) normal removal with 
dynamic vacuum (NRDV) and 4) early removal with dynamic vacuum (ERDV). The time 
delay from the quarter flow-rate reaching the milk flow switch point and removal of the 
teatcup was set to three seconds.

Cows were split into four groups and transitioned through the four treatments in a 2 × 2 
factorial design. The treatments were applied in four experimental periods of three days 
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each with a two day washout period (where the cows were milked with NRNV) between 
the experimental periods. The washout days were put in place to eliminate carry over 
effects between treatment periods. The NRNV treatment was used to milk the cows during 
the week before the experiment start date.

Cow selection

Cows were suitable for enrolment in the study provided they did not present with a clinical 
case of mastitis during the 2017 milking season and had an udder-level SCC less than 
200,000 cells / ml at a milk recoding test carried out three days before implementation 
of the first experimental treatment period. Milk samples were collected using the Shuttle 
(Lely, The Netherlands) and SCC was measured using a Fossomatic machine (Foss, 
Denmark). Milk samples were treated in the Shuttle using Broad spectrum microtabs 
(Advanced Instruments Inc. MA, USA) in each milk sampling bottle to preserve the sample 
until it was transported to the milk testing laboratory. 

A group of 77 cows were enrolled in the experiment which contained 68 Holstein Friesians, 
seven Jerseys and two Norwegian reds. Cows were 179 DIM (range 110 – 234 DIM) and 
ranged in parity from one to seven (average 3). Average milking interval was 14.2 hours 
(range 7.3–24.5 hours). Milk production per milking was 9.6 L (range 2.2 – 24.8 L). Cows 
were blocked and randomly assigned to four experimental groups by breed (FR, JE, NR), 
Parity (1, >1) and maximum milk flow-rate (< 3.5, > = 3.5 kg/min). 

Data management and statistical analysis

Data reports were combined from the AMS and the milk testing laboratory using spread 
sheets. Data were manipulated and filtered in SAS 9.4 (SAS Institute Inc, NC, USA). The 
following pre-processing steps were carried out: box times greater than 15 minutes were 
removed, milk yields of less than 1.5 kg per milking were removed. These steps removed 4% 
of raw data points. The following mixed model procedure (Proc GLMIX, SAS 9.4 Statements: 
Reference, Fourth Edition, SAS Institute Inc, NC, USA) was used to assess if the dependent 
variable (y in equation 1) was influenced by the treatments. 

 y = Treatment + Block [1]

Where y = milk time (s) i.e. duration of milk flow, or box time (s) i.e. period that the cow was 
present in the AMS, or average milk flow-rate (kg/min), or maximum milk flow-rate (kg/
min). Treatment (NRNV, NREV, ERNV, ERDV), block (1–8) and CowID were chosen as class 
variables. CowID was declared as a random variable and a repeated measure with an auto 
regressive covariance structure, AR(1). 

A similar model structure was used to determine the effect of vacuum and removal settings 
independently. The following mixed model procedure (Proc GLMIX, SAS 9.4 Statements: 
Reference, Fourth Edition, SAS Institute Inc, NC, USA) was used to assess if the dependent 
variable (y in equation 2) was influenced by the treatments. 

 y = Removal + Vacuum + Removal * Vacuum + Block [2]

Where y = milk time (S), or box time (S), or average milk flow-rate (kg/min), or maximum 
milk flow-rate (kg/min). Removal (NR or ER), Vacuum (NV or DV), block (1–8) and CowID 
were chosen as class variables. CowID was declared as a random variable and a repeated 
measure with an auto regressive covariance structure, AR(1). 
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Results and discussion

Effect of treatment 

Table 1 shows the LS means for six key milking efficiency parameters for each treatment, 
which were generated using the model described in equation 1. The main effect of 
treatment on average milk flow-rate, milk yield, box time, milk time and milking interval 
was not significant. P values are displayed in Table 1. The effect of treatment on maximum 
milk flow was significant (P = 0.04). Treatment NRDV had a maximum milk flow of 3.33 
kg / min which was 5% larger than the smallest maximum milk flow of treatment ERNV. 

Table 1. Effect of treatment on six key milking efficiency parameters. P values displayed indicate the 
significance of treatment on each parameter. Parameters with different letter groups within rows 
differ significantly at the P < 0.05 level

Parameter
Treatments   P values

NRNV2 SEM1 NRDV3 SEM1 ERNV4 SEM1 ERDV5 SEM1 Treatment

Average 
milk flow 
(kg/min)

2.04a 0.07 2.04a 0.07 2.00a 0.07 2.06a 0.07 0.38

Max milk 
flow (kg/
min)

3.25ab 0.10 3.33a 0.10 3.18b 0.10 3.28ab 0.10 0.04

Milk yield 
(kg)

9.58a 0.31 9.56a 0.31 9.39a 0.31 9.72a 0.31 0.56

Box time (s) 390a 13 391a 13 390a 13 391a 13 0.10

Milk time (s) 316a 13 315a 13 313a 13 317a 13 0.90

Milking 
interval (hr)

14.28a 0.30 14.38a 0.30 13.91a 0.30 14.25a 0.30 0.47

1 SEM = Standard error of the mean 2 NRNV - normal removal with normal vacuum 3 NRDV - normal removal with 
dynamic vacuum: 4 ERNV - early removal with normal vacuum: 5 ERDV - early removal with dynamic vacuum

Effect of removal and vacuum

Table 2 shows the LS means for six key milking efficiency parameters for each level of 
removal setting (normal and early) and for each level of vacuum setting (normal and 
dynamic). These LS means were generated using the model described in equation 2. The 
interactive effect of removal*vacuum was not significant (P > 0.8) for any of the dependent 
variables and was removed from the final model. The effect of removal setting on average 
milk flow-rate, maximum milk flow-rate, milk yield, box time, milk time and milking 
interval was not significant. P values are displayed in Table 2. 

The effect of vacuum setting on average milk flow-rate, milk yield, box time, milk time and 
milking interval was not significant. P values are displayed in Table 2. The effect of vacuum 
setting on maximum milk flow was significant (P = 0.01). The dynamic vacuum setting had 
a maximum milk flow of 3.30 kg / min which was 2.5% larger than the maximum milk 
flow-rate of the normal vacuum setting.
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Table 2. Effect of removal milk flow switch point setting and vacuum setting on 6 key milking 
efficiency parameters. P values displayed indicate the significance of removal setting or vacuum 
setting on each parameter

  Removal       Vacuum    

Treatment Normal SEM1 Early SEM1 P 
Value   Normal SEM1 Dynamic SEM1 P 

Value

Average 
milk flow 
(kg/min)

2.04 0.07 2.03 0.07 0.78   2.02 0.07 2.05 0.07 0.17

Max milk 
flow (kg/
min)

3.29 0.09 3.23 0.09 0.20   3.22 0.09 3.30 0.09 0.01

Milk yield 
(kg)

9.57 0.29 9.56 0.29 0.92   9.49 0.29 9.64 0.29 0.31

Box time (s) 391 13 391 13 0.93   390 13 391 13 0.85

Milk time (s) 316 13 315 13 0.91   315 13 316 13 0.72

Milking 
interval (hr)

14.33 0.25 14.08 0.25 0.31   14.09 0.24 14.31 0.24 0.27

1 SEM = Standard error of the mean

An increase in system vacuum was applied at 93% of milkings that were assigned to the 
dynamic vacuum setting; i.e. 93% of milkings exceeded a maximum milk flow-rate of 2 kg 
/ min and hence experienced a system level vacuum increase of at least 1 kPa. An increase 
of 2 kPa in system vacuum was applied to 64% of milkings, a 3 kPa increase was applied at 
34% of milking, a 4 kPa increase was applied at 12% of milkings and a 5 kPa increase was 
applied at 1% of milkings. 

The extent to which the dynamic vacuum treatment influenced milk time in this study 
would have depended on the length of time that the flow-rate remained above the milk 
flow switch point of 2 kg / min, and hence the length of time during each milking that the 
dynamic vacuum setting was being applied. Hence, for herds with longer and higher peak 
milk flows, a larger effect due to the DV setting may be expected. In order to understand 
how this dynamic vacuum setting functioned in more detail in this study, flow profile data 
would be required at each milking. However, this information was not available from the 
AMS used in this study. 

No significant differences in the milking efficiency parameters of milk flow-rate, milk 
yield, box time, milk time and milking interval were found between the normal and early 
removal settings in this study. This was likely due to the relatively low average udder-level 
and quarter-level flow-rates observed. The average flow-rate of all milkings on the early 
removal setting was just 0.01 kg / min higher than the normal removal setting. This is 
likely because the average quarter-level removal flow-rate was just 0.12 kg / min higher on 
the early removal setting (0.37 kg / min) versus the normal removal setting (0.22 kg / min). 
This increase was likely insufficient to bring about a practical or statistically significant 
change in milk time or box time.

The average interval between milkings in this study was 14.2 hours (1.7 milkings per day) 
which differs from other studies where cows were milked much more frequently, from 
6.7–7.8 hours in the study of Krawczel et al. (2017). Hence, results from teatcup removal 
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studies with milking intervals of greater than twice per day should be interpreted with 
caution in the context of pasture based AMS farms where milking intervals tend to drop 
below twice per day. 

Conclusion

No significant differences in the milking efficiency parameters of milk flow-rate, milk yield, 
box time, milk time and milking interval were found between treatments in this study 
on cows milked in an AMS on a pasture based system. Small increases in maximum milk 
flow-rate were detected (0.09 kg / min) due to the effect of increasing the vacuum when the 
milk flow-rate increased beyond the udder-level milk flow switch point of 2 kg / min. These 
small increases in maximum milk flow-rate were not sufficient to deliver a significant 
reduction in milk time or box time. Furthermore, increasing the removal setting from 30% 
of average flow to 50% of average flow was not an effective means of reducing box time. 
This is because the resultant increase in removal flow-rate of 0.12 kg / min was not enough 
to deliver practical or statistically significant decreases in milk time or box time. 
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Abstract

Milking duration is an important factor in automatic milking systems (AMS) because it 
can affect the quantity of milk harvested by the AMS during the day and hence influence 
farm profitability. One strategy to achieve shorter milking times is to increase the milk 
flow switch point, i.e. the milk flow-rate at which the teatcup is removed. The aim of this 
study was to measure the effect of three teatcup removal strategies on box time (time 
in the AMS), milking duration, milk production rate and somatic cell count in a pasture 
based AMS. 

The three teatcup removal strategies tested in this study consisted of removing the 
teatcups when the quarter milk flow-rate fell below 20% of the quarter’s rolling average 
milk flow-rate (MFR20), 30% of the quarter’s rolling average milk flow-rate (MFR30) and 
50% of the quarter’s rolling average milk flow-rate (MFR50). 

The milk time (duration of the cow’s milking) of MFR30 was nine seconds shorter than 
MFR20. The milk time of MFR50 was eight seconds shorter than MFR20. These results were 
statistically significant. No differences were found between MFR30 and MFR50. Additionally, 
there was no difference in milk production rate or somatic cell count between any of the 
treatments. The shorter box time for the MFR30 and MFR50 strategies could allow for at 
least three extra milkings per day. 

Key words: Teatcup removal, automatic milking, milking efficiency, somatic cell count 

Introduction

In automatic milking systems (AMS), it is important to maximise efficiency by increasing 
milking capacity to have an earlier return on investment. Milking capacity can be defined 
as the number of milkings performed by the robot in a day (Castro et al., 2012). In order 
to achieve an increased number of milkings in the AMS, two of the main strategies are to 
manage cow incentives to provide a steady stream of cows presenting themselves to be 
milked (such that the robot free time is reduced) and to reduce the time it takes for each 
milking to be performed. In a study conducted by Castro et al. (2012), the most important 
factors determining the milk yield per robot per year were the average milk flow-rate 
during a single milking and the number of cows milked per robot per day. Therefore, 
increasing milking speed could allow for the robot to milk more cows and this has the 
potential to increase the amount of milk that is harvested per robot each year (Castro et 
al., 2012).

In conventional milking systems, a strategy to reduce milking time that has been studied 
is to increase the milk flow switch point in the cluster (milk flow-rate at which the cluster 
is removed). However, there is a common farmer concern that this strategy could have 
a negative impact on milk production or udder health. Edwards et al. (2013) showed that 
increasing the cluster removal switch point from 0.2 kg / min to 0.8 kg / min at the udder 
level, reduced milking time by 18–26% without affecting somatic cell count (SCC) or milk 



228      Precision Livestock Farming ’19

production variables. Additionally, Burke & Jago (2011) found that milking duration was 
reduced by 11% by changing the cluster removal setting from 0.2 kg / min to 0.4 kg / 
min at the udder level without negatively affecting somatic cell count, but with a slight 
drop in milk production (1%). In automatic milking systems, Krawczel et al. (2017) found a 
reduction in milking time of 0.9 minutes when they increased the teatcup removal level 
from 0.06 kg / min to 0.48 kg / min at the quarter level without any negative effects on milk 
yield or somatic cell count, however, the milking interval was maintained at around eight 
hours which is not a usual scenario in pasture based automatic milking systems. Milking 
intervals tend be greater and more variable with pasture based AMS than conventional 
milking and indoor AMS (Davis et al., 2005), thus, variation in the degree of udder filling 
milking time is observed. The degree of udder filling has been shown to affect the start 
of milk ejection (Bruckmaier & Hilger, 2001) and potentially milking time. Therefore, 
evaluation of the effect of teatcup removal settings on milking time in pasture based AMS 
could provide new knowledge to milking management research. Additionally, there have 
not been studies conducted on evaluating the impact of a removal strategy that uses a 
percentage of the average milk flow-rate on milking duration. 

The objective of this study was to quantify the effects of three percentage based teatcup 
removal strategies on box time (time in the AMS), milking time, milk production rate, and 
somatic cell count. 

Materials and methods

This experiment was conducted at the research facility at Teagasc, Ireland. The herd 
consisted of 86 spring calving cows being milked in a single Astronaut A4 robotic milking 
system (Lely, The Netherlands). The system vacuum level was set to 43 kPa, pulsation ratio 
of 65:35, and pulsation rate of 60 per minute. 

The treatments consisted of three percentage based teatcup removal settings. One of 
them removed the teatcup when the quarter flow-rate fell below 20% of the quarter’s 
rolling average milk flow-rate (MFR20). The second treatment removed teatcups when 
quarter milk flow-rate dropped below 30% of the rolling average milk flow-rate (MFR30) 
and a third teatcup removal strategy was used when quarter milk flow-rate dropped below 
50% of the rolling average milk flow-rate (MFR50). There was a teatcup removal flow-rate 
limit of 0.5 kg / min, which prevented teatcups to be removed if the quarter milk flow-rate 
was above this limit. The teatcup removal setting is implemented at the cow level but the 
decision for teatcup removal is made at the quarter level, therefore, the experimental unit 
was the cow. 

Seventy-five cows were selected for this trial on the basis of no previous clinical mastitis 
case during the current lactation and an udder level SCC of less than 200,000 cells/ml at a 
milk test conducted a week prior to the start of the experiment. Cows were blocked based 
on parity, breed and maximum milk flow-rate and cows in each block were randomly 
assigned to one of three groups.

The experimental design was a crossover design where each group was assigned one of the 
three teatcup removal treatments during one week and then groups were switched to a 
different treatment until they had transitioned through all of the treatments over a period 
of three weeks. Milk samples were collected at the end of each treatment week using the 
Shuttle (Lely, The Netherlands) and SCC was measured using a Fossomatic machine (Foss, 
Denmark). 

Milking data obtained from the AMS farm management software (Lely T4C) were combined 
with the milk testing laboratory SCC results. Milk sampling causes an increase in box time 
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and therefore only the first five days of each treatment period were used for the analysis of 
milking performance outcome variables. Cow milk production rate (kg/hr) was calculated 
by dividing milk production for each milking by the milking interval. Somatic cell counts 
were Log10 transformed due to the skewed nature of the data. Two cows developed clinical 
mastitis during the experiment and were removed from the dataset for final analysis. Both 
cows were from Group 3, one case occurred during the MFR 50 treatment and the second 
while on the MFR20 treatment. 

The outcome variables analysed were Box Time (BT), Milk Time (MT), Milk Production Rate 
(MPR) and Somatic Cell Score (SCS, log10 of somatic cell count). The mixed procedure 
(Proc Mixed, SAS 9.4 Statements: Reference, Fourth Edition, SAS Institute Inc, NC, USA) 
was used. Week (1, 2, 3), Treatment (MFR20, MFR30, MFR50), Block (1–8), Group (1, 2, 3) 
and Cow were declared as class variables. Week, Treatment, Lactation and Milk Yield were 
classified as fixed effects. Cow (Group) was declared as a random variable. To account for 
auto-correlation of repeated measures on the same experimental unit (cow), we used an 
AR(1) error structure. 

Results and discussion

Descriptive data for the study herd is shown in Table 1. Cows were on average on their 
third lactation, were 82 days in milk at the start of the experiment, produced 19 kg of milk 
per day and were milked every 14 hours.

Table 1. Summary of several herd and milking parameters during the experimental period

Parameter Mean STD1

Lactation 3.3 1.6

DIM start* 82 27

Milk yield/milking (kg) 13.3 4.2

Milk yield/day (kg) 19.3 8

Box time (s) 419 137

Milk time (s) 343 136

Milking interval+ (h) 14.1 4.3

* DIM = Days in Milk at the start the trial period; 1 STD = Standard Deviation

Table 2 shows the effect of teatcup removal settings on the studied parameters. There was 
evidence that the treatments had an impact on milking time (P = 0.02). Milking time for 
the MFR30 treatment was nine seconds shorter than for the MFR20 treatment (P < 0.01) 
and MFR50 had eight seconds shorter milkings than MFR20 (P = 0.02). No differences were 
found between the MFR30 and MFR50 teatcup removal treatments. 

Teatcup removal setting also had an impact on box time (Table 2). Cows that were in the 
MFR20 teatcup removal setting had 11 seconds (P < 0.01) and nine seconds (P = 0.02) longer 
box time than the cows in the MFR30 and MFR50, respectively. Again, no differences were 
found between the MFR30 and MFR50 removal settings. Milk yield and week had a strong 
influence on both milking time and box time (P < 0.001). 

Milk production rate and somatic cell score were not affected by the teatcup removal 
setting (P = 0.2 and P = 0.34, respectively). Somatic cell score was affected by milk yield (P 
< 0.001), lactation (P = 0.01) and week (P < 0.001). 
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Table 2. Effect of teatcup removal setting on several parameters related to milking efficiency and 
somatic cell count

 

Parameter

Treatments

MFR201 SEM MFR302 SEM MFR503 SEM4 P-value

Box time (s) 429a 36.8 418b 36.8 420b 36.8 0.01

Milk time (s) 350a 36.8 341b 36.8 342b 36.8 0.02

MPR* (kg/hr) 0.84 0.1 0.84 0.1 0.83 0.1 0.2

Log10 SCC** 4.55 0.05 4.5 0.05 4.51 0.05 0.33

*MPR = Milk production rate; ** Log10 SCC = log10 transformation of somatic cell count; 1MFR20 = Teatcup removal 
at 20% of the average flow-rate; 2MFR30 = Teatcup removal at 30% of the average flow-rate; 3MFR50 = Teatcup 
removal at 50% of the average flow-rate; 4SEM = Standard Error of the Mean, Different letters indicate significant 

differences at the α = 0.05 level.

This study showed that it is possible to reduce the duration of the milking and the time the 
cows spend in the box by using a MFR30 and MFR50 teatcup removal settings compared 
to a MFR20 setting. 

We found that milking time was nine seconds longer by taking off the teatcups with the 
MFR30 setting compared to MFR20, which represented a 2.6% reduction in milking time. 
These results are in agreement with previous research (Burke & Jago, 2011, Edwards et al., 
2013a, Krawczel et al., 2017) where increasing the milk flow-rate for milking unit removal, 
decreases milking time. However, Burke & Jago (2011) showed that an increase in the 
cluster milk flow switch point from 0.2 kg / min to 0.4 kg / min resulted in 47 seconds 
shorter milking times per cow, which represented an 11% reduction, whereas Edwards 
et al. (2013) showed a difference of 40 seconds in cluster on time when cluster milk flow 
switch point was increased from 0.2 kg / min to 0.4 kg / min (9% reduction). In automatic 
milking systems Krawczel et al. (2017) found that by increasing the quarter teatcup milk 
flow switch point from 0.06 kg / min to 0.3 kg / min, milking time was reduced by 24 
seconds (5.3% reduction). 

The present study tested a percentage of the milk flow-rate average as a criterion for 
teatcup removal, which is different to an absolute milk flow-rate setting. A percentage-
based strategy could create more variability in the milk flow-rate at teatcup removal 
because it is relative to the milk flow-rate of each cow and therefore, a cow with a high 
average milk flow-rate might have a higher absolute milk flow-rate at teatcup removal 
than a cow with low milk flow-rates. This AMS does not provide information on the milk 
flow-rate curves or signals the absolute milk flow-rate at teatcup removal. However, these 
were estimated by multiplying the teatcup removal setting by the average milk flow-
rate (average flow-rate 0.2 × 0.3 or 0.5). Our estimated average milk flow-rate at teatcup 
removal for MFR20 was 0.16 kg / min and for MFR30 was 0.25 kg / min milk flow-rate, 
which represents a lower difference in milk flow-rates at teatcup removal than in previous 
studies. This, added to a larger variation of the milk flow-rate at teatcup removal, could 
explain the lower milking time difference between these treatments compared to the 
Krawczel et al. (2017) study. 

MFR50 had on average eight seconds shorter milking time than MFR20 (2.3% reduction in 
milking time). These results are in agreement but to a lower degree than what was found 
by Krawczel et al. (2017) where a decrease in milking time from 7.6–6.7 minutes was seen 
by switching from a 0.06 kg / min removal setting to a 0.48 kg / min, which represented 
a 12% decrease. No differences in milking times were found between the MFR50 and 
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MFR30 removal strategies. The AMS used in our study applied a 0.5 kg / min limit, which 
prevented removal of a teatcup if the calculated removal milk flow-rate was above this 
level. When the calculated milk flow-rate for teatcup removal was above 0.5 kg / min it 
resulted in a recalculation of the milk flow switch point which possibly led to a lower 
milk flow switch point than the one originally calculated which could explaine the lack of 
differences between the MFR30 and MFR 50 treatments. 

Since the milking robot is constantly milking and considering it performs about 140 
milkings per day on average, by saving nine seconds per milking it is possible to save 21 
minutes a day which, by the average of 5.7 minutes per milking per cow, would allow over 
3 more milkings a day or at least one more cow in the robot. 

There was not a significant effect of the teatcup removal treatment on the SCS or the milk 
production rate of the cows in this study, which was in agreement with Edwards et al. (2013) 
in a conventional milking system. Contrary to what many farmers might think, evidence 
suggests that higher residual milk does not adversely affect SCC (Edwards et al., 2013). 
However, large amounts of milk left in the gland do have an impact on milk production 
rate as was shown by Penry et al. (2017). Krawczel et al. (2017) showed that there was no 
effect of a 0.48 kg / min removal strategy on SCC or milk production in an AMS. 

The average milking interval for the cows in our study was 14.1 hrs., which is equivalent to 
a milking frequency of 1.7 milkings/cow/day. Robotic grazing systems tend to have longer 
milking intervals than confinement systems (Lyons et al., 2013). The milking frequency in our 
study was lower than that reported by Lyons et al. (2017) who found an average of 2.38 milkings 
per day on eight Australian farms. There was, however, a large variation between farms with 
some farms similar to the farm in our experiment. Our study had lower milking intervals than 
what was found in a pasture based automatic milking systems by Shortall et al. (2018), where 
milking interval ranged from 16.1–16.4 hrs, or equivalently a milking frequency of 1.4 milkings 
per day. The research farm in our study had 86 milking cows on one robot, considerably higher 
than the eight farms average of 51 cows reported by Lyons et al. (2017) for grazing robotic 
farms with a maximum of 75 cows per robot. More cows per robot puts an extra time pressure 
on the robot and makes it more challenging to achieve higher milking frequencies.

Conclusion 

Significant reduction in milking time and box time can be achieved by using a teatcup 
removal strategy of 30% (MFR30) and 50% (MFR50) of the rolling average milk flow-rate 
compared to 20% (MFR20) of the average flow-rate. This study showed that these removal 
strategies did not affect somatic cell score or milk production rate.
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Abstract

We present a method of quantifying teatcup liner overpressure (OP) which is non-invasive, 
may be used during normal milking, and reflects the effects of liner, cow, milking machine 
settings and stage of milking.

Pulsation chamber vacuum was recorded as an amplitude-modulated carrier 
simultaneously with recording of vibration of the short milk tube (SMT) detected by a 
small vibration transducer coupled thereto. The frequency spectrogram of the vibration 
transducer signal showed a characteristic signature (validated by 1,000 frame/sec video 
with a transparent liner) indicative of milk flow. The pulsation chamber vacuum at which 
milk flow began corresponds to OP.

In a paired test of eight cows and two liners, a reference method (OP with limited pulsation 
(OPlp)) estimated the OPlp difference between the two liners to be 3.1 kPa, p < 0.05, by t-test. 
Our method estimated the OP difference between the same liners at peak flow to be 4.4 
kPa, p < 0 .005, by repeated measurements model (SAS PROC MIXED).

Keywords: teatcup liner overpressure, milk flow detection, flow induced vibration

Introduction

A conceptually attractive means of characterising the forces applied to teat tissues is 
to use, as a baseline reference point, the differential pressure across the liner at which 
flow from the teat just begins or ceases. Mein and Reinemann (2014) called the point 
on the pulsation curve at which milk just begins to flow the ‘Start of Milk Flow’ (SMF), 
and the pulsation chamber vacuum at which this occurs ‘Pulsation Chamber Vacuum at 
Start of Milk Flow’ (PCV SMF). Clearly, during the maximum vacuum phase of pulsation 
(phase b as defined by ISO, 2007), as well as the late increasing vacuum phase a and early 
decreasing vacuum phase c, the pressure differential across the liner must be less than 
PCV SMF. If not, no milk would flow. With the net force on the teat-end favouring fluid 
accumulation, the teat-end will tend to develop congestion and edema. For successful 
milking, this tendency must be counteracted by pressure differential greater than PCV 
SMF during the minimum vacuum phase (phase d), as well as the late phase c and early 
phase a. In a typical milking system, in which phase d pulsation chamber pressure equals 
atmospheric pressure, the closing pressure differential across the liner during phase d will 
exceed the pressure at which milk just starts or stops flowing by an amount equal to PCV 
SMF. This excess pressure is named ‘Overpressure’ (OP). 

The state of teat-end congestion or edema is dynamic, increasing within each milking phase 
as phase b continues. For this reason, measurements of overpressure must specify the 
dynamic nature of the forces on the teat. Overpressure (no pulsation) (OPnp) is determined 
when pulsation chamber (PC) vacuum is slowly increased, allowing congestion or edema 
to build up as the measurement is made. An example is the early study by Mein et al. (1987). 
Overpressure (limited pulsation) (OPlp) is determined by slowly increasing vacuum level of 
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the pulsator vacuum supply line over a series of pulsations until milk flow just begins. An 
example is the ‘OP Bucket’ (OPB) study by Leonardi et al. (2015). OP (no subscript) would be 
determined where the start of milk flow is detected during phase a of normal pulsation.

Penry and Mein (2019) provide an explanation of OP as well as of liner compression (LC), 
(the compressive pressure, over and above the pressure of air in the pulsation chamber, 
applied by the liner to the teat apex). The advantage of using OP as a defining liner 
characteristic is that it is a biologically relevant indicator of LC but can be measured 
during milking. We now report a technique in which milk flow is detected by a miniature 
vibration transducer acoustically coupled to the short milk tube immediately below the 
teatcup shell. Milk flowing from the teat canal strikes the liner wall, inducing vibration of 
the liner wall. This vibration propagates along the liner and short milk tube at the speed 
of sound until it reaches the transducer, causing an electrical signal. For determination of 
overpressure, it is the timing (not the amplitude or frequency) of the start of this electrical 
signal in relation to the rise or fall of vacuum in the pulsation chamber that is of interest. 
If pulsation chamber vacuum is recorded simultaneously with the vibration signal, the 
vacuum at the instant of initial detection of vibration is PCV SMF. 

Materials and methods

Control of pulsation phases a and c

For the instrumented teatcup, we replaced the generic pulsator with an arrangement 
of four normally closed solenoid valves, each having an adjustable flow control valve 
connected in series. Two of these valves in parallel connected the pulsation chamber 
to atmosphere, and the other two in parallel connected the pulsation chamber to the 
pulsator vacuum line. All four valves were controlled by a programmable logic controller. 
This arrangement allowed us to reduce the slope of the portions of phases a and c during 
which OP was to be determined, reducing the sensitivity of OP measurement to errors in 
determination of the time of milk flow start or stop. The effects of teat edema do not set in 
until about 0.5 sec. after liner opening (Williams, et al., 1981) so we set the duration of the 
slow portion of phase a (during which milk flow was expected to begin) to end before this, 
choosing 0.25 sec. Edema likely began during phases b and c; not attempting to prevent 
this, we chose 0.35 sec for the slow portion of phase c.

Recording of Pulsation Chamber Vacuum and Liner Wall Vibration

The key information we extracted from our recordings of vibration and PC vacuum was 
the PC vacuum at the instant of vibration detection. This information was manually 
read from the graphic presentation generated by ‘Raven’ software (Bioacoustics Research 
Program, 2014). Data input to ‘Raven’ was in the form of two-channel WAV files, one 
channel representing vibration, and a second representing PC vacuum. We handled and 
processed the vibration signal as if it was an audio signal. The vacuum transducer’s signal 
was multiplied by a constant 2 kHz sine wave, yielding a signal comprising a 2 kHz carrier 
amplitude modulated by PC vacuum, which could also be handled as an audio signal. 
Linearity of the vacuum recording was verified against a mercury manometer over the 
range of 0 – 50 kPa. For each of the two channels, Raven displays both an amplitude record 
and a frequency spectrograph.

The vacuum transducer was a solid-state analog transducer, protected by a small 
polyethylene bag and taped to the teatcup shell, connected by a short flexible tube to 
a tee inserted into the short pulse tube. The miniature, solid state, vibration transducer 
(BU-27135-000, Knowles Electronics, Itasca, Illinois 60143) was acoustically coupled to 
the short milk tube by aqueous gel and held in position by silicone elastic bands. Both 
were protected from ambient moisture by spray-on silicone conformable coating. The 
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attachment of the vibration transducer to the short milk tube and the connection of the 
vacuum transducer to the short milk tube are shown in Figure 1.

As confirmation that milk flow striking the inside of the liner barrel was the source of 
the short milk tube vibration signals we observed, we conducted a short confirmatory 
study in which milk flow and liner motion in a transparent teatcup were recorded by high 
speed (1,000 frames per second) video (Phantom v710, Vision Research, Inc., 100 Dey Road, 
Wayne, N.J. 07470) at the same time short milk tube vibration was recorded as described 
above. A single frame capture from the video is in Figure 2. To compare the OP values 
obtained by the vibration method with OP values by a previously reported method, we also 
measured OPlp for the same liners and cows using the OPB method described by Leonardi 
et al. (2015). The OPlp tests for each liner were run on the day immediately following the OP 
test for the same liner.

Figure 1. Arrangement of sensors for recording 
of short milk tube vibration and pulsation 
chamber vacuum. The vibration transducer 
used to detect flow-induced vibration is held 
in place with elastic bands and coupled to the 
short milk tube with aqueous gel 

Figure 2. Single frame from Phantom video, 
taken at time 15:19:10.956. The liner is just 
beginning to open, and the spot of milk contact 
can be seen just beneath the teat. The operator 
is holding the LED light used to synchronize 
video with the ‘Raven’ record

Data Analysis

For each cow milking, the entire record of PC vacuum and SMT vibration was presented in 
Raven’s graphic output. Figure 3 is an expanded record which includes only three pulsation 
cycles. Within each milking, numerous pulsation cycles were selected for analysis. We 
selected a series of approximately 10 consecutive pulsation cycles during the peak milk 
flow period. If the vibration signal during peak flow was not strong and easy to interpret, 
we selected a second group of consecutive cycles from the portion of the recording with 
the strongest signal. Finally, we selected for analysis approximately 10 pulsation cycles 
uniformly distributed throughout the milking. Data from all selected pulsation cycles was 
included in the analysis.
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Figure 3. ‘Raven’ plot showing, from top to bottom, (1): pulsation chamber vacuum, (2): SMT vibration, 
(3): spectrogram of pulsation chamber vacuum signal (frequency on vertical axis, time on horizontal 
axis, brightness proportional to power level at that frequency and time). (4): spectrogram of vibration 
transducer output. Horizontal cursor indicates pulsation chamber vacuum at start of milk low, 
vertical cursor indicates time at start of milk flow. 

For each analysed pulsation cycle we examined both the amplitude and the spectrographic 
record of the vibration signal to determine the time of flow start and stop. (The amplitude 
record gives a very clear time, and the spectrographic record allows some filtering out 
of non-flow signals such “squawks” from air leakage past the liner mouthpiece). At 
the moment of flow start or stop, the amplitude of the vacuum transducer signal was 
recorded, together with the amplitude during the preceding phase d (used as a zero-
vacuum reference) and the amplitude during the following phase b (used as a vacuum 
line vacuum reference). PC vacuum at the start or stop of milk flow was then calculated by 
interpolation. Additionally, duration of milk flow within the pulsation cycle was calculated 
as the time difference between flow start and flow stop. The final data set consisted of 
OP at flow start (StartOP), OP at flow stop (StopOP), and flow duration (Duration) for each 
analysed pulsation, together with stage of milking, liner and cow. We tested two liners 
(designated ‘F’ and ‘W’.) and eight cows. We divided each milking into five stages: ‘Filling’ 
(Stage 1) began immediately after cups on and included pulsations for which the duration 
of milk flow had not reached 0.5 sec, which we considered to represent teatcup not fully 
established in position on the teat or pre-letdown. ‘Prepeak’ (Stage 2) included pulsations 
thereafter until ‘Peak’ (Stage 3) flow began. After peak flow, we noted a ‘Postpeak’ (Stage 4) 
stage, which continued until flow duration fell below 0.5 sec, after which we denoted the 
‘Emptying’ (Stage 5) stage. 

The vibration data sets (StartOP, StopOP and Duration) were analysed by repeated 
measurements model (SAS Proc. MIXED) (SAS 9.4, SAS Institute, Cary, N.C.). The models 
were: 

StartOP, StopOP, or Duration = cow + liner + stage + liner*stage + cow*liner

In addition to significance of the main effects, we tested the significance of each of the 
paired comparisons between cows, liners, stages, liners within stage and cows within liner, 
using the Tukey-Kramer method.
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Each measurement of OPlp was repeated three times for each combination of cow and 
liner and the three measurements were averaged and compared by t-test.

Results

Main effects for liner and stage are presented in Table 1. Least square means for liner 
within stage are plotted in Figures 4 - 6. Differing letters within stage indicate P < 0.05. We 
do not report here the effects of cow, and of cow within liner.

The OPlp average values were significantly different (P < 0.05). The mean OPlp across all 
cows for liner ‘F’ was 16.7 kPa and the mean OPlp for liner ‘W’ was 13.6 kPa.

Table 1. Least Square Means and significance of differences for OP at flow start, OP at flow stop and 
flow duration

StartOP StopOP Duration

Least Square 
Mean (kPa)

Different 
letters 

indicate 
differences 

P<0.05

Least Square 
Mean (kPa)

Different 
letters 

indicate 
differences 

P<0.05

Least Square 
Mean (sec.)

Different 
letters 

indicate 
differences 

P<0.05

Liner

F 24.96 a 26.89 a .550 a

W 25.01 a 24.02 b .600 b

Stage

1 33.29 a 37.06 a .369 a

2 21.51 b 18.84 b .724 b

3 18.85 b 15.11 c .770 c

4 20.26 b 18.34 b .723 b, c

5 31.01 a 37.93 a .287 a

Discussion

Our method of determining overpressure by detecting flow-induced vibration of the short 
milk tube allowed us to determine the short pulse tube vacuum at both flow start (StartOP) 
and flow stop (StopOP) within pulsation cycle at any stage of milking. By the vibration 
method, we estimated the difference between StartOP’s of liners ‘F’ and ‘W’ at peak flow 
as 4.39 kPa. The difference between the two liners for StopOP was also 

4.39 kPa, whereas the ‘OPB’ method indicated an OPlp difference of 3.1 kPa. The average 
across all cows of the estimates for both liners was 18.85 kPa for StartOP, and 15.12 kPa for 
StopOP. The OPB method will detect flow if the teat canal opens at any time during phase 
b, and this increased time for the viscoelastic properties of the teat to allow the canal to 
open might logically lead to OPlp lower than StartOP. Our average value for OPlp was 15.1 
kPa. The difference between StartOP and StopOP is probably due to a combination of the 
effects of: time of flight (the sum of time for milk flow from teat end to liner wall and of 
time for vibration transmission from liner wall at the point of milk impact to the location 
of the vibration transducer); as well as hysteresis induced by the viscoelastic properties 
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both of teat tissues and of liner material. Both StartOP and StopOP are realistic indicators 
of liner/teat interaction; we suggest that either could be used for comparison with other 
liner/teat combinations.

Figure 4. Flow duration, showing effect of liner 
and of stage of milking

Figures 5 (upper) and 6 (lower). 
Overpressure at start and stop of milk 
flow, showing effect of liner and of stage of 
milking

Figure 7. Illustration of OP and of pulsation 
phases, adapted from Penry and Mein (2019)

The effect of stage of milking on either StartOP or StopOP was clear, and the trend for 
either was for a minimum value during peak flow, with higher values nearer the beginning 
or end of milking. There is a symmetry to these curves, but the causes of higher OP near 
the start vs end of milking are probably different. Leonardi et al. (2015) measured OPlp 

one minute after unit attachment, and then repeated the measurement at one minute 
intervals for a total of four measurements. They found a significant reduction in OPlp with 
time, and this would correspond with our findings at the earlier (‘Pre-peak’ and ‘Peak’) 
portions of our measurements. They mentioned possible causes for the decrease as: subtle 
changes in the position of the teat within the liner, small changes in teat sinus pressure, or 
a slight relaxation of teat end musculature. We agree with this list of possible causes for 
the decrease in OP in the early stages of milking. The increase in OP later in milking might 
again relate to teat sinus pressure changes or changes in position of teat within the liner. A 
likely additional factor in the later stages of milking results from the commonly observed 
shift of the liner towards the teat base. The accompanying development of vacuum in the 
teat sinus results in a progressive increase in congestion of teat tissues and thickening 
of the teat walls. OP rises as the teat-apex becomes harder and thicker because the liner 
walls must bend further as they collapse around the teat-end.



Precision Livestock Farming ’19      239

The duration of milk flow within a pulsation cycle is a parameter not determined by 
previously reported systems for OP measurement. Although the initial purpose of detecting 
the onset or cessation of flow by monitoring SMT vibration was to determine the pulsation 
vacuum at which milk flow started or stopped (StartOP or StopOP), knowing both the start 
and the stop times also gives the duration of flow, and this parameter is of interest. (For 
clarity, it needs to be remembered that if the shape of the pulsation waveform is known, 
Duration, StartOP and StopOP are interrelated and, as can be seen in Figure 7, knowing 
any two allows calculation of the third). Duration less than the maximum observed during 
peak flow indicates that for some portion of the time during which liner forces on the 
teat should allow milk flow through the teat canal, milk does not flow. Considering the 
factors that might affect StartOP and StopOP, it is logical to surmise that a likely cause of 
short duration near the start of milking might be inadequate letdown or poor placement 
of the teatcup on the teat. Either of these causes would indicate a need for adjustments 
in milking routine. The likely cause near the end of milking is simply that quarter nearing 
the end of milking, with the result that rate of replacement of milk into the teat sinus is 
slower than the rate of milk withdrawal through the teat canal.

Conclusions

Detection of milk flow within pulsation cycle by monitoring of short milk tube vibration 
allows determination of overpressure in a normal milking setup with unmodified liners. 
This will allow comparison of liners by a parameter that reflects the forces resulting 
from the interaction of liner with teat. This measurement could also be made using a 
standardised artificial teat incorporating a teat canal/milk flow analog that responds to 
liner compression. Further, there is a potential to make this measurement under field 
conditions and to use the results to adjust selection of liners and adjustment of machine 
parameters in the way most beneficial to the specific herd involved. With real-time 
measurements using this technique, it could be possible to adjust machine operating 
parameters interactively during milking. An even simpler measurement, of flow duration, 
does not require monitoring of the pulsation waveform so only a simple vibration 
transducer is needed. Knowledge of duration would allow generation of an automatic 
alert if the machine is not interacting with the teat as expected and would also allow 
determination of end of milking without needing to monitor milk flow. 

Our recovery of useful data from the short milk tube vibration and pulsation vacuum 
records was quite laborious. Automated real-time analysis of the data stream is a logical 
next step, and it is not unrealistic to expect that this could rely on embedded sensors 
and milk flow detection algorithms. In the context of precision livestock farming, this 
would allow end of milk flow sensing, automatic control of machine parameters, and fault 
detection within the milking process based on feedback of milking information within the 
time constant of single pulsation cycles.
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Abstract

This study investigated if conductivity sensor data from an automatic milking rotary (AMR) 
could be used for explaining composite somatic cell count (CMSCC). By predicting somatic 
cell counts for individual cows, monitoring of udder health can be improved by reducing 
both labour and costs for the farmer. During a period of eight weeks, milk samples from 
380 Holstein- Friesian cows milked in an AMR were analysed once weekly for composite 
somatic cell count (CMSCC). Regularly recorded sensor data at quarter and composite 
level from the herd management system was stored and used as input to generalised 
additive models (GAM) used in the analyses. Several new conductivity variables were 
created combining quarter conductivity. Furthermore, past period values, i.e. lags of up 
to seven days (14 milking sessions), were added to the variables. A Multivariable GAM 
was fitted in order to compare the importance of the potential predictor variables as well 
as model performance. The variance in conductivity between quarters, one milk session 
before the CMSCC sample event, was the most important variable. Conductivity variables 
from combined quarters are suggested to be important in describing CMSCC. We conclude 
that using data from only six milk sessions before the CMSCC sample event is sufficient 
to obtain a relatively high degree of explanation (R2

adj = 0.78). To evaluate the practical 
applicability of these results, we recommend investigating whether it is possible to predict 
CMSCC using GAM. 

Key words: automatic milking, udder health, somatic cell count, quarter conductivity

Introduction

Somatic cell count (SCC) is a common method for monitoring udder health in dairy herds 
(Kitchen, 1981; Schukken et al., 2003; Sharma et al., 2011), since monitoring SCC can be a 
good tool for identifying intramammary infections in individual cows (International Dairy 
Federation, 2013). To monitor SCC levels at the cow level, farmers can sample their cows 
either through the monthly sampling of their local milking organisations or with on-farm 
tests like the Californian mastitis test (CMT) or more precisely in fluoro-opto-electronic 
instruments either used in a standalone device or integrated in the milking system. 
Depending on the method, more frequent sampling of individual cows will increase 
costs or workload for the farmer. Therefore, predictions of SCC level of individual cows 
could be both a valuable tool and powerful complement to the existing methods. To our 
knowledge, very few studies have attempted to describe SCC patterns using sensor data 
to complement traditional direct measurements of SCC (Sitowska et al., 2017; Ebrahimie 
et al., 2018).

The objective of this study was to investigate the possibility of using the existing 
conductivity sensor data from an automatic milking rotary (AMR) to describe the SCC with 
a generalised additive model (GAM). The outcome of this study could potentially be used 
as supplementary information for the farmer between SCC measurements.
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Materials and methods

Data Collection

Milk samples from 380 Holstein-Friesian cows milked in an automatic milking rotary 
(DeLaval AMR) were collected once weekly during eight weeks. The samples were analysed 
for composite milk somatic cell counts (CMSCC) in a laboratory in Jena, Germany using 
a Fossomatic 7, DC 600 system (ISO/IEC, 2005). Animal information together with milking 
data on quarter level from the trial period were stored and further referred to as milk data. 
The data comprised quarter conductivity and at the cow composite level days in milk 
(DIM), lactation number (LN) and cow number. 

Data Preparation

Cows not included in the weekly CMSCC sampling were removed from the milking data as 
were all milking events for cows during the first week of lactation. Furthermore, CMSCC 
observations that did not include a complete setup of variables for 14 milking sessions 
before the CMSCC sampling event were also removed. Remaining cows were placed into 
lactation groups 1, 2, and ≥ 3. Quarter conductivity values considered not biologically 
plausible (i.e. below 3 mS / cm and above 10 mS / cm) were removed from the milking data. 
The AMR contains 24 milking bails and thus 96 milk meters, registering all milking data at 
the quarter level. Conductivity measurements between the 96 milk meters were equalised 
using an offset value that was created for each milk meter. The offset was created by 
dividing the overall mean conductivity value of quarter i by the overall mean conductivity 
value from the milk meter j, corresponding to quarter i from three months data (one month 
prior to the first sample). The offset values for each milk meter were then multiplied by 
the corresponding conductivity values, adjusting the conductivity level according to the 
offset. Several new variables were created from the quarter conductivity variables (Table 
1). Past-period variables (lags) were created to evaluate how predictive the variables could 
be up to seven days (14 milking sessions) before the actual CMSCC sample. The CMSCC 
values were transformed to a log10 scale, henceforth referred to as log10CMSCC. In total, 
< 1% of the data was removed due to cleaning. To avoid multicollinearity, a variance 
inflation test (VIF) was performed within variable among days lag. Variables with VIF > 8 
(Fox & Monette, 1992) were removed from further analysis. 

This was only valid for the variable conductivity max where the variables with day lag 2, 
5 and 12 were removed. A complete list of the potential predictor conductivity variables 
and the milking session lags can be found in Table 1. All data cleaning and statistical 
analyses were performed in the program R using the ‘mgvc’ for model development (R 
Development Core Team, 2018).

Multivariable Generalised Additive Models

Two multivariable models were fitted: model_0:7, using the 42 variables with time lags 
from 0–14 milk sessions (i.e. 7 days) and model_0:3, using 19 variables with time lags from 
0 - 3 days (i.e. six milk sessions) before the CMSCC sample event. The two GAM (Hastie 
& Tibshirani, 1990) models, containing multiple potential predictors in each model were 
fitted as smooths, i.e. non-parametric spline functions, not forcing linearity between the 
predictor and the outcome. The response variable was log10CMSCC, and LN, DIM and Cow 
were confounder variables according to: 

  yi = β0 + LNβLN + DIMβDIM + αCow + ∑j
p
=1fj(Xij)+ ϵi, (1)

  αCow~N(0,σCow
2  ),ϵi~N(0,σϵ2).
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Table 1. Explanation of the potential predictor conductivity variables used in model fit and number 
of milk session lags

Variable (mS/cm) Explanation Milking session lag

Diff.quarters 
Highest conductivity value minus 
lowest conductivity value within cow 
and milking session

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14}

Max 
Highest conductivity value (quarter) 
within cow and milking session

{0 1 3 4 6 7 8 9 10 11 13 14}

Var 
Variance in conductivity values 
between quarters within cow and 
milking session

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14}

The smoothing parameter estimation method used in both models was restricted 
maximum likelihood (REML). The adjusted coefficient of determination (R2

adj) was used 
for evaluation of model performance. The corrected Akaike information criterion (AIC), 
described by Wood et al. (2016), was used for model comparison.

Results

Effects of Variables

The results showed that the strongest predictor variable associated with CMSCC was 
variance in conductivity values between quarters one milk session before CMSCC sample 
event (model_0_7, P < 0. 001, α = 0.05). The relationship between variance in conductivity 
between quarters and CMSCC was found to be nonlinear and mainly positive. 

Models

The difference in R2
adj between model_0:7 and model_0:3 was very small (0.78 for model_0:7 

vs 0.776 for model_0:3). Comparing models using AIC showed the same trend (297 for 
model_0:7 vs 322 for model_0:3).

Discussion

The results indicate that it is possible to describe CMSCC relatively well (R2
adj 0.78) using 

GAM with relatively limited amount of conductivity sensor data from an AMR. Using 
data from 3-7 days before the CMSCC sampling event did not affect the performance of 
the models much. GAM are flexible and can provide information regarding both linear 
and nonlinear relationships between the predictor and the response variables (Hastie & 
Tibshirani, 1990). The results indicate that GAM are well suited to explain the nonlinear 
relationship between different conductivity variables and CMSCC.

Previous studies have shown that using traits such as combined quarter conductivity 
rather than the maximum conductivity alone improved the specificity in a mastitis 
detection model with almost 15% (Norberg et al., 2004). The degree of explanation of the 
models could partly be explained by the inclusion of the different conductivity variables, 
describing different traits such as difference or variance in conductivity or the maximum 
conductivity of a quarter. Variance in conductivity between quarters one milk session 
before the CMSCC sample event had the strongest association with CMSCC among the 
potential predictor variables. 

The relationship between SCC and conductivity is suggested to be positive (Hamann & 
Zecconi, 1998), i.e. as conductivity increases or decreases, so does SCC. According to our 
findings, displayed by the trend lines found in Figure 1, the relationship between variance in 
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conductivity between quarters and SCC is partly positive up to variance between quarters 
of 0.5. For variance in conductivity above 1.5, the difference in trend lines between milking 
sessions could possibly be explained by the few data points on the x- axis. Although the 
slope for the relationship is not clear, it could be concluded that the relationship between 
variance in conductivity and SCC is not linear. 

Figure 1. The partial effects of variance in conductivity bwetween quarters at the same milking 
session as the composite milk somatic cell count (CMSCC) sampling event (upper right) and -1,- 2 
and -3 milking sessions before the sampling event. The pointwise 95% confidence interval is shown 
by the dashed lines. The vertical lines on the x-axis show the individual datapoints of variance in 
conductivity. The y-axis shows the log10CMSCC 

Quarter conductivity alone has been stated to be a poor predictor of mastitis (Kamphuis et 
al., 2008; Khatun et al., 2017), and within-cow comparison of quarters is often recommended 
(Hamann & Zecconi, 1998). Our results support this theory, suggesting that combined 
conductivity variables are important in explaining CMSCC. Furthermore, conductivity 
observations close in time to the CMSCC sampling event were more important in explaining 
the CMSCC than were observations made several days before sampling. This is in line with 
the finding of Nielen et al. (1995), whereby the conductivity difference was largest for the 
milking during which the clinical mastitis was observed compared with the two milkings 
before the observation. Using only a limited amount of variables close to the sample event 
did not affect the degree of explanation much.
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Abstract

We hypothesise that at-market sensor technologies can be used to develop proxies for 
complex traits such as resilience and feed efficiency (FE). This was tested by comparing 
variables describing sensor data patterns (“curve-parameters”) from resilient or FE cows 
with non-resilient or non-FE cows. Sensor data included data from weighing scales, activity 
(steps) and rumination activity from neck collars, and milk production from the parlour or 
the milking robot. Curve-parameters were calculated for each sensor for each lactation for 
which data was available and included the mean, standard deviation (std), slope, skewness, 
and the autocorrelation. Data originated from a Wageningen Research farm, and included 
data from 1,800 cows with calvings between 1995–2016. During this time frame, there were 
98 lactations with sufficient feed intake recordings to compute FE at lactation level (DMI 
(kg) / milk yield (kg)), and to rank them accordingly. The 1,800 cows that could be ranked 
according to their lifetime resilience (ability to re-calf in combination with the number of 
health and insemination events) based on scores for each of the, in total, 5,771 lactations. 
Subsequently, the 20% or 10% most and least FE or resilient lactations, respectively, were 
selected. Curve-parameters of these selected lactations were compared. Results imply that 
using a single sensor, or a single curve parameter, is likely to be insufficient as a proxy for 
resilience of efficiency. Future research should focus on studying which combination of 
curve parameters and sensors are most informative as proxy for these two complex traits.

Keywords: resilience, feed efficiency, precision livestock farming, proxies

Introduction

After the Second World War, the animal production sector faced the challenge to satisfy a 
consumer market that demanded animal products in abundance and at low cost (Oltenacu 
& Algers, 2012). A combination of improved management, better feed and successful genetic 
selection on improved production resulted in the dairy industry being able to more than 
double the milk yield in many countries over the past 40 years (Oltenacu & Algers, 2012). For 
example, in the Netherlands, the average yearly milk production increased from 4,200 kg 
per cow in the 1960's to 9,100 kg per cow in 2018 (CBS, 2018). However, the increase in milk 
yield was accompanied by a decline in reproduction performances, an increase in health 
disorders, and a decline in longevity of dairy cows (Oltenacu & Algers, 2012). Moreover, 
public perception of animal production changed, with increasing concerns around animal 
welfare. This combination introduced an international interest in novel traits that improve 
fitness and health of dairy cows (Egger-Danner et al., 2015; Oltenacu & Algers, 2012). Two 
of these traits gaining interest are efficiency and resilience. Efficiency is often expressed as 
feed efficiency (FE), and is of great interest for increasing profitability, as well as reducing 
the environmental footprint of animal production systems (Savietto et al., 2014). Resilience 
is the ability of animals to be minimally affected in their functioning by an environmental 
perturbation, or to rapidly return to their normal level of functioning (adapted from Colditz 
& Hine (2016)). Despite the increasing interest in these traits, breeding for them is hampered 
by the lack of phenotypic information. Direct inclusion of feed intake in dairy cow breeding 
goals, for example, is not possible due to the costs associated with acquiring individual 
animal feed intake measurements on a large scale (Veerkamp, 1998).
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The adoption of sensor technologies by dairy farmers is increasing (Steeneveld et al., 
2015; Borchers & Bewley, 2015). Farmers are adopting technologies that are deployed for 
the detection of specific health or fertility events (e.g. heat or mastitis), or that monitor 
important performance traits (milk yield or SCC). These sensor technologies generate high-
frequency repeated measures, e.g. locomotor activity or rumination activity of individual 
animals. This means that instead of having snapshots of relevant events during a cow’s 
lifetime (e.g. a mastitis event recorded by the farmer or veterinarian), we now have access 
to a continuous time-series of the cow’s status. With these continuous measurements, 
cows can serve as their own control and allow precise herd level corrections when 
detecting outliers. Many disease detection models use the concept that disease occurrence 
is expected in case sensor measurements deviate from the expected values for that cow 
(e.g.,Jensen et al., 2016; Miekley et al., 2012), and therefore focus on the generation of true 
positive alerts. However, the specific feature of sensor technologies to monitor continuously 
make them also interesting for phenotyping animals for complex traits such as resilience 
and efficiency, and with that provide input for breeding programs. To our knowledge, so 
far, little to no attention has been paid for the possible use of sensor data in this regard. 

As a first step in finding out whether these sensor technologies can be used to develop 
proxies for resilience and efficiency, we studied whether the data patterns were different 
between resilient (or efficient) and non-resilient (or inefficient) cows. This was done by 
comparing sensor data patterns between the 10–20% most and least resilient or efficient 
cows, respectively. 

Materials and methods

Data 

Data originated from the Dairy Campus, a Wageningen Research farm, and included data 
from 1,800 cows, totalling to 5,771 lactations, with calvings between 1995–2016. All of these 
cows were culled at the end of the data collection period. Over this time period, data were 
collected with a number of sensor technologies. Activity (steps) and rumination activity 
were monitored through SRC-tags (via Lely Industries, Maassluis, the Netherlands). Data 
from these tags were available from October 2007 onwards. The barn of this research 
farm was split into two sections: one with four groups of approximately 64 cows that 
were milked and weighed in milking robots (Lely Industries, Maassluis, the Netherlands), 
and one where cows were milked twice daily in a conventional milking parlour where 
live-weight was recorded before entering the parlour. Cows were allocated to groups 
based on research requirements, and could therefore be milked part of the time in one 
of the robots and part of the time in the parlour. In the section where cows were milked 
in the parlour, two subsections were equipped with roughage intake control (RIC) bins 
(Insentec, Marknesse, the Netherlands). Feed trials were common on this research farm, 
ensuring detailed measures of individual feed intake. For the current study we could use 
feed intake (DMI (in kg) / cow / day) records from one of the feed trials, where feed intake 
was monitored throughout entire lactations. All inseminations and health events (disease 
cases and treatments) were recorded in the farm management system.

Definitions for Resilience and Efficiency

In the current study, efficiency was expressed as FE, which was computed at lactation 
level as total input (DMI, in kg) over total output (milk yield, in kg). To be eligible for this 
FE computation, cows were required to have at least one RIC recording per week, for a 
minimum of 36 subsequent weeks. Due to the experimental setup, the selection did not 
include heifers lactations, but was restricted to lactations from 2nd – 7th parities. 
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Friggens & De Haas (2019) stress the importance of having an operational reference measure 
of resilience when developing a proxy for this trait. They suggest to use the within-cow 
variance associated with a relevant time-series of measures, which needs to be of sufficiently 
high-frequency to capture the variance due to perturbations. One option for measures 
against which to validate these resilience proxies include the ability to re-calve, assuming 
that impaired resilience will negatively impact reproduction performance (Friggens & De 
Haas, 2019). It is this option that we explored further in this study. To reflect how good (or 
bad) this ability was compared to herd mates, a point system was introduced based on a 
cow’s lifetime. This point system included four aspects on top of 500 points for each calving: 

•	 age at first calving compared to the herd average. Bonus points were given in case the age 
at first calving was lower than the herd average, and minus points in case this age was 
higher. One (bonus or minus) point was assigned for each day difference from the herd 
average. Bonus or minus points for this aspect were only assigned for first parity lactations; 

•	 calving interval compared to the herd average. Bonus points were assigned in case 
the interval was shorter than the herd average, and minus points in case this interval 
was longer than the herd average. One (bonus or minus) point was given for each day 
difference from the herd average, where calving interval is the interval between the 
previous calving and the current calving. As such, points for this aspect were only 
assigned for second parity lactations and up; 

•	 number of inseminations: because data on inseminations were incomplete and because 
poor fertility was also reflected in aspect two (calving interval), only inseminations 
carried out in the final lactation were taken into account in this third aspect. We 
applied 25 minus points in case culled cows were inseminated, assuming that the 
farmer planned to keep this cow but it was involuntarily culled due to fertility issues. 

•	 number of events. Minus points were assigned to each event day, excluding preventive 
events, e.g. hoof trimming. Also inseminations and calvings are ignored since these events 
are already accounted for in aspect two and three. For each day during the lactation 
that a cow was curatively treated, one point was subtracted from the score. Moreover, 
because culling in an early stage after calving was assumed to be involuntary and could 
mask health problems that were not treated on-farm, one point was subtracted for each 
day the cow was culled before day 100 after calving. So, in case a cow was culled at 
40DIM, 60 points were subtracted from the total score for the last calving. 

Cows, or lactations in case of FE, were ranked according to their resilience or efficiency 
score. 

Retrieving curve parameters

For each sensor (activity, rumination activity, milk yield, and live-weight), within-day 
measurements were aggregated to daily values. These daily values were made relative 
to the herd mean, and subsequently we summarised these relative values into “curve-
parameters” at lactation level (Figure 1). These curve-parameters involved the mean, and 
autocorrelation (lag1) of the relative curve of each cow (red line; Figure 1), and the slope, 
skewness, and standard deviation of the regression line through this relative curve of each 
cow (light blue line; Figure 1). These curve parameters were computed for all lactations 
(for FE and for resilience) for which we had a sufficient amount of data (at least 200 days 
with data during 1 – 300 DIM). For resilience only first lactation curves were compared, 
assuming that these will be more useful to investigate differences between resilient and 
non-resilient cows than e.g. last lactation curves. For efficiency, which is currently purely 
calculated on a lactation basis, lactation curves were compared for the lactations for 
which efficiencies were calculated.
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Figure 1. Assessment of curve parameters based on the relative curve (red line), or its regression line 
(light blue line) of a cow. The absolute values of the cow are in dark blue, the absolute herd mean 
values in green, and the relative herd mean values in black

Statistical analyses

The 10% or 20% most and least resilient cows or FE lactations, respectively, were selected 
and curve-parameters of these selected lactations were compared between these two 
groups. 

Results and discussion

A FE score was computed for 98 lactations, with an average of 0.79 kg DM/kg milk, and a 
range of 0.48–1.19 kg DM/kg milk. A resilience score was computed for 1,800 cows with 
5,771 lactations, with an average of 1,518 points and a range of 31–6,031 points. Figure 
2 demonstrates a distribution plot for both traits (where the scores were classified into 
ten categories, each category having roughly 600 points for resilience and 0.11kg for 
FE), indicating that scores for these traits are not normally distributed. Particularly for 
resilience the distribution was skewed to the left. 

Figure 2. Percentage of values of the datasets for resilience (blue line) and feed efficiency (orange 
line), divided into 10 classes based on the range of values

Unfortunately, there were limitations with the data and, in particular, with the feed intake 
data. Feed intake was not recorded on a daily basis during an entire cow’s lifetime, but 
only during feeding trials. Because of this limitation, we lacked feed intake data from 
heifers (since they were not included in feeding trials), but even more so, we also lacked 
information on feed intake over lactations from the same cow. Consequently, we were 
limited to lactation FE and have ignored other output than milk production, particularly 
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growth which certainly should be taken into account when comparing heifer efficiencies 
with cow efficiencies. In contrast, resilience was computed based on information on an 
entire cow’s lifetime, but our scores are based on preliminary assumptions that need to 
be investigated further. Ability to re-calve as an indication for resilience suggests that 
resilience on a lactation basis is decreasing when an animal is aging, since the percentage 
of re-calvers is highest for heifers and gradually decreases thereafter. Moreover, production 
levels do influence a farmer’s culling decisions, and thus, low producing cows may be 
unable to express their true resilience and be negatively affected in our resilience scoring 
system. Preferably, a resilience score should be unbiased by production and we need to 
determine methods to avoid or remove production effects. It would be of great interest to 
study whether cows that are FE are also resilient, but we were unable to do so because of 
FE being limited to lactation level. Future research should think of a definition of efficiency 
in absence of feed intake recordings. 

Table 1 summarises the mean values (and their range) for the computed curve parameters 
for the 20 (20%) resp. 25 (10%) most and least FE or resilient cows, respectively. Not 
surprisingly, the group of lactations with the lowest score for FE has a lower mean milk 
production that those that belong to most FE. Moreover, the least FE lactations appear 
to be from cows that are, on average, heavier, less active and have a lower rumination 
activity than those that belong to the most FE lactations. However, there is an overlap 
in mean value for all sensors between these two groups. When looking at resilience, the 
difference in average daily milk production between the most and least resilient cows is 
not that pronounced as for FE. In fact, the difference between the two groups of resilience 
is, generally speaking, less pronounced overall. Whether this difference between groups is 
truly less pronounced should be studied in more detail: for the current study we applied 
a point system for four aspects to define resilience. But the value for bonus or minus 
points within each of these aspects was chosen intuitively. We have not yet conducted a 
sensitivity analysis to study whether the resilience ranking is robust (that is, independent 
from the value assigned to bonus or minus points). Future research should verify this. 
Moreover, we did not have sensor data from before October 2007, and therefore there 
might have been some bias in the selection of informative lactations. 

The current study only computed curve parameters for the first lactation (resilience) or the 
lactation for which FE could be determined, and results imply that there is a large overlap 
between the curve parameters of the two groups of cows. However, a recent study reported 
on the utilisation of sensor information as indicators for resilient cows (Van Dixhoorn et al., 
2018). During that particular study, Van Dixhoorn et al. (2018) tested different sensor data 
properties from sensors monitoring activity, behaviour, and rumen and ear temperature. 
Data properties from these sensors recorded during the period from up to two weeks before 
calving were used as predictor for a total deficit score. This deficit score summarised the 
health status of a cow up to six weeks after calving, and was used as proxy for resilience. 
The study demonstrated that sensor data recorded during the dry period was informative 
for a resilience proxy after calving. Although Van Dixhoorn et al. (2018) included a limited 
number of cows (n = 20) and used a short-term resilience proxy (transition period), results 
from their study suggest that taking into account curve parameters from the previous 
lactation and particularly the dry period may be informative for lifetime resilience and 
lactation FE. This would also mean that sensor data should be collected during the dry 
period too, which is currently not standard procedure on commercial dairy farms. 
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The large overlap in average values for curve parameters indicate that the use of one 
single sensor to define resilience or efficiency is highly likely to be insufficient, and that a 
combination of curve parameters of different sensors is expected to be of more value. The 
combination of sensors (and curve parameters) proved its value in past research already: 
the detection of clinical mastitis improves in case the electrical conductivity is combined 
with other (sensor) data (e.g. Hogeveen et al., 2010), and combining information from 
different sensors outperformed the automated detection of lameness compared to using 
a single sensor (e.g. Kamphuis et al., 2013). Moreover, for a complex trait like resilience, Van 
Dixhoorn et al. (2018) concluded that the combination of static and dynamic sensor data 
proved the best option as indicators for resilience. Identifying which combination of curve 
parameters and sensors is a challenging next step in our study to use sensor information 
as proxy for resilience and efficiency.

Conclusion

This study used lactation FE as proxy for efficiency, and applied a point system based on 
four aspects to score lifetime resilience in dairy cows. Based on these definitions, there is 
a strong indication that the average daily milk production differs between FE and non-
FE cows. Differences in curve parameters for other sensors between the two groups of 
efficient or resilient cows are less pronounced, and have a large overlap. This result implies 
that using a single sensor, or a single curve parameter, is likely to be insufficient as a proxy 
for resilience of efficiency. Future research should focus on studying which combination of 
curve parameters and sensors are most informative as proxy for these two complex traits. 
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Abstract

Improvements in animal welfare are frequently quoted for Precision Livestock Farming 
(PLF) technology. Extensive systems have significant and challenging welfare risks, 
very different from intensive systems. Predation, weather, food and water deprivation, 
internal and external parasites can all impact on these systems, with the animals very 
self-dependent. Inspection opportunities are very different. Welfare codes and supporting 
legal obligations are adapted to extensive and difficult environments and often have 
vague recommendations for inspection frequency. There are clear opportunities for PLF 
technologies, notably wearables, to provide more information to stockpeople, improving 
welfare and reducing risk. Communications from animal to stockpeople via GSM or 
LPWAN enables real-time monitoring (RTM) for illness, such as lameness (with IMU), 
for mis-mothering (with proximity), for straying away from preferred areas and/or into 
dangerous areas (with location technology such as GNSS), for predation/worrying from 
wild animals/domestic dogs (with GNSS and/or IMU). These can signify need for action or 
assurance for no action. However, wearables have welfare risks. Research-user experiences 
confirm direct welfare risks through physical damage from equipment. With infrequent 
inspection, small issues can become larger. There are additional animal energy demands 
of heavier wearables. The conservation science community note impacts of wearables 
for survival and reproductive success. Good design and low weight are critical issues for 
commercialisation. False-positive alerts and reports could involve considerable wasted 
time by stockpeople and new value judgements may be needed. Without RTM-based PLF, 
the animal could face welfare challenges or be in a poor welfare state, about which the 
stockperson has no knowledge, and with infrequent inspections, this state may continue 
or worsen. With RTM based PLF, then the stockperson should know and logically has a 
changed duty of care and responsibility to act upon this information.

Keywords: wearables, welfare, extensive, labour

Introduction

Extensive systems pose different challenges compared to intensive systems. Predation, 
weather, food and water deprivation, internal and external parasites can all impact on 
these systems. The animals are very self-dependent. The contrast in welfare challenges 
for sheep are well characterised in a major study reported by European Food Standard 
Agency 2014 (EFSA 2014). 

Precision Livestock Farming (PLF) technology offers opportunities for extensive systems 
to improve welfare through improved remote surveillance, particularly RTM, and better 
targeted inputs of care. But extensive systems have different ‘rules’ with regard to animal 
welfare, and very different approaches in practice to the interaction between animals and 
stockpeople. This paper will build upon experiences gained from research, knowledge 
transfer and demonstration use of wearable and fixed PLF technologies in an extensive 
farming environment. A substantial experience has been gained with the animal welfare 
challenges of these systems in a series of projects aiming to consider the potential trade-
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offs between welfare, labour and profitability in extensive livestock systems (Stott et al., 
2005, Stott et al., 2012).

Human/animal interactions in extensive systems and links to welfare regulation and 
guidance

Inspection opportunities are very different in extensive systems than in intensive systems. 
Laws, welfare codes, with their own supporting legal obligations, are adapted to extensive 
and difficult environments and often have vague recommendations for inspection 
frequency.

As noted by Goddard et al. (2006), livestock can be either highly selected for ‘survival’ 
traits to be acceptable to a particular management system or animals which are less well 
adapted to the system but requiring a significant level of targeted inputs. These targeted 
inputs are likely to involve steps involving shepherd labour and there is potential for PLF 
approaches to assist in the appropriate targeting (Morgan-Davies et al., 2018). 

A working group for European Food Standard Agency (EFSA, 2014) reported that the 
quality of the human-animal interaction is composed of both the behaviour of the 
human, when in contact with the sheep (and hence the amount of fear that the sheep may 
experience), and the knowledge and skills of the stockperson in recognising animal needs 
and managing the sheep to achieve these. The EFSA (2014) report also recognised that the 
extensive nature of many systems particularly in north-west Europe and the linkages with 
labour inputs and inspection and human/animal interactions.

The legal standpoint for shepherd input and inspection in extensive systems

The legal basis can be exemplified by the UK (and Scottish) approaches through laws and 
welfare codes aimed to assist animal keepers to meet the law.

The UK Animal Welfare Act (2006) says:

‘A person commits an offence if—

a) an act of his, or a failure of his to act, causes an animal to suffer

b) he knew, or ought reasonably to have known, that the act, or failure to act, would have 
that effect or be likely to

c) the suffering is unnecessary’ 

Following on from this, The Welfare of Farmed Animals (Scotland) Regulations 2010 
requires that:

‘Animals kept in husbandry systems in which their welfare depends on frequent human 
attention must be adequately inspected at least once a day to check that they are in a 
state of well-being’.

‘Animals kept in systems other than husbandry systems in which their welfare depends on 
frequent human attention must be inspected at intervals sufficient to avoid any suffering’.

The Code of Recommendations for Sheep Welfare Code (Scotland) further says that:

‘It is important for a farmer to ensure that enough time is available within the shepherd’s 
normal work routine for the flock to be properly inspected and for any necessary remedial 
action to be taken’.

‘The health and welfare of animals depend upon regular supervision. Shepherds should 
carry out inspections of the flock at intervals appropriate to the circumstances in 
which sheep are kept and pay particular attention to signs of injury, distress, illness or 
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infestation (e.g. sheep scab, fly strike, lameness and mastitis) so that these conditions can 
be recognised and dealt with promptly. Frequency of inspection will depend on factors 
which affect sheep welfare at any particular time, e.g. housing, lambing, fly strike, adverse 
winter weather conditions’.

Automated systems and responsibility for welfare

Within intensive farming systems for poultry, pigs and in many dairy cattle systems, 
automatic feeding and ventilation systems are important for the care of livestock and 
disruption to their efficient working can put animals at risk.

Returning to the Welfare of Farmed Animals (Scotland) Regulations 2010 it states:

‘All automated or mechanical equipment essential for the health and well-being of the 
animals must be inspected at least once a day to check that there is no defect in it’.

‘Where any defect in automated or mechanical equipment ….is discovered, it must be 
rectified immediately, or if that is impossible, appropriate steps must be taken to safeguard 
the health and well-being of the animals pending the rectification of such defects including 
the use of alternative methods of feeding and watering and methods of providing and 
maintaining a satisfactory environment’.

More efficient use of labour, improved feeding and environmental control interact and 
the replacement of labour by automation is one of the on-going trends within intensive 
systems

How might PLF technologies be a benefit in extensive systems?

There are clear opportunities for PLF technologies, notably wearables, to provide more 
information to stockpeople, improve welfare and reduce risk (Wathes et el., 2008). 
Communications from animal to stockpeople via GSM or LPWAN enable real-time 
monitoring (RTM) for illness, such as lameness (with IMU), for mis-mothering (with 
proximity sensors), for straying away from preferred areas and/or into dangerous areas 
(with location technology such as GNSS), for predation/worrying from wild animals/
domestic dogs (with GNSS and/or IMU) (Waterhouse et al., 2019 in press, this volume). 
These can signify a need for action or assurance that no action is needed. 

Issues of the human/animal interaction in extensive PLF systems

The wildlife conservation science community notes impacts of wearable technologies 
for survival and reproductive success (Casper, 2009). Consensus-based guidelines for 
use of wearables in birds suggest 3% of bodyweight as an upper limit, as described by 
Vandenabeele et al. (2011) who goes on to discuss the ongoing issues around this guideline 
value and discusses some of the impacts above and below this threshold.

Research-user experiences confirm direct welfare risks through skin lesions from physical 
damage from equipment. With infrequent inspection in extensive systems, small issues 
can become larger before inspections and action to treat or remove the equipment. There 
are additional animal energy demands of wearables, ranging from negligible to significant. 
For animal experimental approval purposes, collars with a weight of greater than 2% of 
bodyweight are considered the borderline upper limit (e.g. SRUC’s Animal Welfare Ethical 
Review Board’s own working arrangements).

In terms of newly-evolving wearable technology for livestock, there are few or no 
standards. Within the EU, eartag design and technology has standards, but there are none 
for other sensors, neck or leg or tail. An issue for extensive systems is that livestock spend 
many days or months without inspection, so any problems in terms of abrasion and skin 



Precision Livestock Farming ’19      259

lesions may not be detected early in the course of the problem. As a result, there may be 
greater welfare risk and challenge in these systems than intensive systems where human 
surveillance should be frequent. As extensive systems involve harsher environments, with 
poorer nutritional availability, it is arguable that the energy demand issues for wearable 
technology might be more sensitive to any negative impact of the wearable technology.

Furthermore, whilst many studies focus on recording, analysing and interpreting patterns 
of behaviour using wearable technology, these studies typically focus on the production 
objectives and seeking to confirm how well the equipment and software can gather useful 
information. By contrast, there has been little published information on the impact, or lack 
of, on animal performance and welfare measures that result from wearing technology in 
livestock. One early study, by Hulbert et al. (1998), sought to determine whether wearing 
collars close to the 2% of bodyweight impacted upon patterns of sheep behaviour. Daily 
time budgets and animal location movements of collared and uncollared sheep were 
compared and theoretical energy requirements of grazing sheep with an added 863 g GPS 
neck collar (1.7% bodyweight) were calculated, with extra energy requirements less than 
1%. 

Good design and robust testing, including in challenging conditions, should be an 
expectation of new products. However, the precision livestock science community has spent 
relatively little effort considering the variables that might influence the welfare risks of 
wearable technologies; namely weight, location (neck, body, ankle), duration and physical 
attachments and potential abrasion characteristics. Furthermore, the environmental 
challenges faced by extensive animals, such as rain, snow, drought, dust, combined with 
nutritional, or parasite challenges may put extensive animals under greater, or different 
risks to those kept in more intensive systems. Fundamentally, this equipment is likely to 
be on animals for considerable periods without human inspection.

New PLF approaches for extensive sheep and cattle systems

Wathes et al. (2008) questioned the focus in PLF modified systems and whether it would be 
towards efficiency, profitability, animal health or welfare and queried whether optimising 
the process to meet one overall target can have implications for another, e.g. the farmer’s 
income vs. animal welfare. 

New precision farming technology that provides improved decision support should provide 
extensive livestock farmers with better information to target the input of care identified 
by Goddard et al. (2006) to maintain both welfare and production. Ideally, there would be 
an improvement in both.

However, there is a potential problem. To finance the new technology, there needs to be 
either or both an increase in production or reduction in costs. For extensive systems, 
labour is a major proportion of costs. There is a case to be made that increased use of 
PLF, in this case remote surveillance, needs to be financed at least in part by reduced 
labour. In intensive systems, with regular inspections then this replacement is easy to 
envisage and creates a few potential dilemmas. However, in current extensive systems, 
the expectation and reality is that inspection and human/animal interactions are already 
infrequent. Without surveillance, knowledge of any animals ‘in trouble’ cannot be known 
by stockpersons and the system falls back upon the self-reliance of the breeds and 
robustness of the system. Much of current health care involves prevention not cure in 
current systems.

However, with RTM surveillance data from sensors direct to smartphones, entirely new 
types and levels of information will be provided to extensive livestock farmers. Does this 
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new information bring with it new responsibilities, in addition to new opportunities? If 
the farmer, and the animals, also become reliant upon the new surveillance approach, is 
this responsibility comparable with an intensive farmer with an alarm to provide alarms 
to signal that the ventilation system has broken, and not repairing the ventilation system 
when it breaks? Will laws, guidelines and codes of welfare need to change to take into 
account the role of RTM and wearable technology? As a further note of an emerging issue, 
could the ‘digital signature’ of a PLF decision support system, provide ‘digital fingerprints’ 
of the important ‘Failure to Act’ element seen in the UK Animal Welfare Act (2006)? 

Table 1 provides a few realistic examples of the current animal welfare issues for an extensive 
livestock farmer and the new information flow which may occur with adoption of an RTM 
system. As animal welfare is very much about the welfare of the individual, then each of the 
cases in the table should lead to identical, and direct, rapid action. A question to pose with the 
low value animals within typical extensive systems is whether the actions would be equal in 
reality. The table also highlights the issues with false-positive information, easily checked in 
an intensive system, but potentially time-consuming to check in extensive systems.

Finally, as noted by Goddard et al. (2006), members of the general public are believed to highly 
value natural aspects of animal production which are often found in extensive systems. Does 
intervention with automated systems of surveillance and management change this belief? 

Table 1. Some ethical challenges of traditional and PLF-surveillance systems

Hierarchies of acute welfare issues – traditional approach

Shepherd finds horned ewe caught in fence 

Member of public reports a sheep caught in fence at known location

Member of public reports a sheep but cannot be sure where it was

Phone message saying sheep caught in fence – no location mentioned 

Hierarchies of acute welfare issues – PLF approach

Smartphone says ewe is immobile and prostrate near fenceline

Smartphone says ewe is immobile and prostrate high on hill – no fences

Smartphone says 50% probability that a ewe is immobile and at risk, high on hill

Examples of long-term welfare issues and information flow

Hillwalker tells shepherd that ‘a few sheep on hill were lame’ (2 hours walk away)

Alert on smartphone - 1 ewe is lame in field near farmhouse

Alert on smartphone – 1 ewe lame high on hill (2 hours walk away)

Alert on smartphone – 5 lame ewes high on hill (2 hours away)

Alert on smartphone – probability 50% that 1 ewe high on hill is lame

Conclusions

The differences between intensive and extensive systems lead to different issues 
associated in the relationship between welfare, improved capacity for remote surveillance 
of livestock and the interactions and interventions of stockpeople with their livestock. 
New PLF technology offers the potential to improve welfare in extensively farmed livestock 
through better targeting of care and inputs. Increased use of surveillance systems also 
offers the potential to identify animals in short and long term difficulties. The costs of 
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new PLF needs to be financed by improved outputs or reduced inputs, or both. However, 
there is no certainty about whether labour costs will be reduced or increased by the new 
information flow that RTM data flow may provide. False-positive alerts and reports could 
involve considerable wasted time by stockpeople and new value judgements may be 
needed in terms of when action is taken as a result of RTM information. 

Without RTM-based PLF, the animal could face welfare challenges or be in a poor welfare 
state, but the stockperson has no knowledge of this status, and with infrequent inspections, 
this state may continue or worsen. With RTM-based PLF, then the stockperson should know 
and logically has a changed duty of care and responsibility to act upon this information.

Wearable technology in livestock is still in its infancy, but both scientific practices and 
commercialisation processes need good practices to ensure there are no negative impacts 
of wearing the technology. Policy-makers involved in framing animal welfare guidelines and 
legislation need to recognise that whilst wearable technology, especially when involving 
real-time, changes the relationship between the animals and those responsible for them. 
Technology may provide opportunities to improve welfare, but it also, by providing more 
information, changes the duty of care to the animals. It is arguable that these changes will 
be most profound in extensive systems, where current inspection routines are minimal. 
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Abstract

The Moorepark St Gilles Grass Growth (MoSt GG) model was developed to predict grass 
growth, grass nitrogen (N) content and N leaching on a daily basis depending on soil type, 
fertilisation and grazing management. The inputs required are at the paddock level and 
are soil type (% sand, % clay), percentage of organic matter, the weather historical and 
forecast (daily rainfall, solar radiation and temperature), the N fertilisation (type and 
amount), and the defoliation management (day of grazing/cutting, number of animals on 
the paddock, post grazing/cutting height). All the information concerning N fertilisation 
and defoliation management are present in a decision support tool called PastureBase 
Ireland (PBI). The model was evaluated against data from PBI (2013–2018) on a number 
of farms. The model showed good accuracy and was able to take into account variation 
between the different years and grazing/fertilisation management. Since January 2018, the 
MoSt GG model was used weekly to predict grass growth for three farms. The model used 
historical management (from PBI) and weather data, as well as weather forecast provided 
by Met Eireann, to predict the grass growth of the following week. This live evaluation 
highlighted a number of strengths and weaknesses of the model during the challenging 
year that was 2018. The prediction of grass growth helped the farm managers’ weekly 
management decisions. Since January 2019, the model is being used on 40 farms. Grass 
growth is communicated to farmer and farm manager through WhatsApp at least once a 
week. The next step will be the full integration into PBI.

Keywords: grass growth, model, predictions, on-farm

Introduction

Each additional kilogram of grass dry matter (DM) utilised on farm increases farm benefit 
(Hanrahan et al., 2017). In Ireland, an increase of one tonne of grass DM/ha eaten will 
increase profit by €105/ha on beef farms and €181/ha on dairy farms. PastureBase Ireland 
(PBI; (Hanrahan et al., 2017)) is a grassland management tool for farmers. It helps farmers 
to manage the grass on their farm, identify grass supply surpluses or deficits and to take 
appropriate action. Several grassland management tools are available such as the spring 
and autumn planner and the grass wedge. However, currently within PBI, farmers can only 
make decisions based on historical information. Incorporating a means of predicting grass 
growth based on management and weather forecast would be very useful in PBI. 

The Moorepark St-Gilles Grass Growth (MoSt GG; (Ruelle et al., 2018)) model was developed 
through a collaboration between Teagasc and INRA, and can predict grass growth, grass 
nitrogen (N) content and N leaching. The main objective in developing the MoSt GG model 
was to have a model which can be useful from a research and from a farmer’s point of 
view. The inputs have been kept as simple as possible to ensure its easy utilisation. 

This paper will describe the results of the different evaluations and the acceptance by 
farmers and the future work.

Material and methods

The MoSt GG (Ruelle et al., 2018) is a dynamic model developed in C++ describing the 
grass growth and the N fluxes of a paddock at a 2 m2 level. The model is run with a daily 
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time step simulating soil N mineralisation/immobilisation and water fluxes, grass growth, 
N uptake and grass N content. The model is driven by daily potential growth depending 
on the radiation and the total green biomass. To calculate the actual daily growth, this 
potential growth is then multiplied to environmental parameters (temperature, water in 
the soil and radiation) and a parameter describing the availability of the soil mineral N 
compared to the N demand associated with the potential grass growth. The availability 
of the N in the soil depends on the mineral N in the soil, the proportion of the N that can 
be used by the plant (depending on the time of the year and the heading date) and the N 
demand to grow one kg of biomass dry matter (depending on the N dilution curve and the 
actual biomass over 4 cm – (Gastal and Lemaire, 2002)).

Evaluation years 2013-2018

The MoSt GG model was evaluated using experimental data for 2013-2018 from three 
Teagasc experimental farms - Ballyhaise, Clonakilty and Curtins. Corresponding weather 
data were extracted from a weather station nearby and information about N fertiliser 
application, grazing and cutting events, as well as biomass and growth (for each herbage 
mass estimation entered by the farm manager) was imported from PBI. Data from 2017 
was missing for Curtins’ farm due to changes to paddock sizes and reseeding in the middle 
of the year; and data was missing for a Clonakilty farm for 2018 because no weather data 
were available. The soil type used for the simulations was a sandy loam (38% sand, 27% 
clay) for Curtins’ farm and a loam (55% sand, 15% clay) for the Clonakilty farm according 
to information given by the farm manager. For Ballyhaise farm, more information was 
available and the soil type ranged from a peaty clay (15% sand, 70% clay) to a loam (38% 
sand, 27% clay). The organic matter content of all paddocks was available from soil test 
conducted prior to or during the evaluation years. 

For each year for each paddock on each farm, a simulation was run using the soil type 
(percentage of sand clay and OM), weather, fertiliser application (amount and date), cutting 
event (date and post cutting height), and grazing event (date, number of animals and post 
grazing height) as input data. On the date of an herbage mass estimation, the biomass in 
the model was corrected using the herbage mass estimated by the farm manager. 

The grass growth calculated in PBI based on the herbage mass estimation by the farmer 
was compared to the growth for the exact same period predicted by the MoSt GG model 
at the paddock level. 

The RMSE is calculated as (Bibby and Toutenburg, 1977)

with A the PBI growth and P the MoSt growth for a specific day.

The evaluation was undertaken at the paddock year, farm year and farm level.

Pilot program 2018-2019

In 2018, the model was live tested on three farms, two Teagasc farms (Curtins, Co. Cork and 
Ballyhaise, Co. Cavan) and one commercial farm in Mitchelstown (Co. Cork). The weather 
forecast for each location was provided Met Éireann (The Irish Meteorological Service). 
Apart from the weather, the other inputs in terms of N fertiliser application, grazing and 
cutting events were extracted weekly from PBI for each farm. 

Since January 2019, the model is being used to predict grass growth on 40 farms across 
Ireland. The farms selected completed more than 30 farm covers (herbage mass estimation) 
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and recorded N fertiliser application in PBI in 2018. The farms are representative of soil 
type and geographic variability of Ireland. Historical and forecast weather data is provided 
for each individual farm by Met Éireann. Information about N fertiliser and grazing and 
cutting events are imported from PBI weekly. The soil type of each paddock on each farm 
was determined using the Irish Soil Map of Ireland. All the soil types available within 5 
km2 of the farm and their characteristics in terms of soil depth, horizon, sand and clay 
percentage, and organic matter content were extracted from the soil data shapefile. Using 
the 2018 weather specific to each farm, simulations were run for each paddock using each 
soil type available for the farm, as well as the actual N fertilisation, grazing and cutting 
events conducted on each paddock. The soil type for each paddock resulting in the lowest 
error was linked to the paddock for the 2019 simulations. This optimisation will be re-
conducted every three to six months with the new data available. 

Result and discussion

Evaluation

The results of the evaluation of the model are presented at the paddock (Table 1) and at 
the farm (Table 2) level. Overall the model showed a similar accuracy across farms. The 
accuracy at the paddock level with RMSE of between 27 - 32 kg DM/ha day is quite poor, 
however, the accuracy at the farm level of between 11 - 18 kg DM/ha/day is quite promising. 
When looking at those results, it is important to remember that the data entered into PBI 
corresponds to visual assessment of the herbage mass on a paddock completed by the 
farmer and not actual measurement, which could explain some of the large errors at the 
paddock level. Some of the errors in the model could also be explained by the absence of 
detailed information on soil type which results in poor simulations.

Table 1. Evaluation of the predicted growth (kg DM/ha/day) on three Teagasc farms at the paddock 
level. The growth calculated in PBI for each paddock is compared to its simulated equivalent by the 
MoSt GG

Farm Ballyhaise Curtins Clonakilty

PBI MoSt RMSE PBI MoSt RMSE PBI MoSt RMSE

2013 50.7 49.0 27.3 46.6 46.9 28.2 45.5 45.3 27.6

2014 60.0 52.9 31.7 57.0 56.6 31.1 47.4 45.2 26.9

2015 46.6 48.6 22.8 53.5 51.9 28.2 53.6 51.2 27.6

2016 47.9 48.2 24.3 52.1 48.6 28.2 49.6 48.5 30.8

2017 49.7 47.7 24.5 NA NA NA 49.6 51.7 28.1

2018 44.1 45.0 28.7 37.3 36.1 27.3 NA NA NA

All years 49.7 48.4 26.8 45.8 44.6 28.2 49.1 48.4 28.3
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Table 2. Evaluation of the predicted growth (kg DM/ha/day) on three Teagasc farms at the farm 
level. Each average farm growth calculated based on garbage mass estimation in PBI for each farm 
is compared to its simulated equivalent by the MoSt GG

Farm Ballyhaise Curtins Clonakilty

PBI MoSt RMSE PBI MoSt RMSE PBI MoSt RMSE

2013 50.7 49.0 12.7 46.6 46.9 16.8 45.5 45.3 15.4

2014 60.0 52.9 17.2 57.0 56.6 15.3 47.4 45.2 14.8

2015 46.6 48.6 11.5 53.5 51.9 13.6 53.6 51.2 13.2

2016 47.9 48.2 15.3 52.1 48.6 15.7 49.6 48.5 17.9

2017 49.7 47.7 14.2 NA NA NA 49.6 51.7 14.3

2018 44.1 45.0 17.2 37.3 36.1 16.3 NA NA NA

All years 49.7 48.4 6.9 45.8 44.6 9.4 49.1 48.4 7.6

Spring 23.4 25.4 13.0 32.4 31.4 10.2 31.4 32.2 9.9

Summer 74.1 76.0 17.0 69.1 73.6 18.6 77.1 80.1 19.3

Autumn 57.9 51.1 15.3 51.7 48.4 15.4 52.4 51.0 15.0

The model was able to adapt to the different years and different soil types. The graph of 
the best and worst years in term of RMSE is presented in Figure 1.

Feedback of the start of the pilot program

In 2018, the grass growth prediction was sent each Monday to the farm manager. The 
model adapted to the different growth patterns on the farms, as well as to the extreme 
conditions of 2018 with a very wet and cold spring and a very dry summer. The feedback 
from the farm managers was very positive, and the farmers consider the predictions very 
useful aids to decision making in challenging times. Differences between predictions using 
forecast and actual weather occurred. The solar radiation predictions have been identified 
as the biggest factor impacting the difference between simulations with historical or 
forecast weather. Solar radiation is difficult to predict because it is affected by cloud cover. 

Since February 2019, the weekly grass growth has been communicated to farmers involved 
in the pilot study in the form of a map sent to the farmers on a Monday (Figure 2). 
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Figure 1. Representation of the best (Ballyhaise 2015) and the worst (Clonakilty 2016) predictions by 
the model at the farm level. MoSt GG model prediction is the black line, and the growth predicted in 
PBI from herbage mass estimation is the grey line
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Figure 2. Grass growth prediction sent to farmers in the pilot study for the period of 26 February to 
5 March 2019. Numbers in white correspond to commercial farms, numbers in yellow correspond to 
experimental Teagasc research farms

Future of the MoSt model: Integration into PBI

If the pilot study is successful, and the accuracy of the model is sufficient across the 
different farms, the model will be into PBI. 

Future of the MoSt model: research

The model has already been used to answer the key research question such as the impact 
of climate change on grass growth in Ireland (Ruelle et al., 2018). Currently, the model is 
used to investigate the best timing of fertiliser application in early spring depending on 
weather and soil type. In the future, it is planned to use the model to evaluate the impact 
of different management on the environment depending on the weather condition. At the 
moment, only N is simulated but the addition of other nutrients will be investigated to 
improve the quality of the prediction in terms of performance as well as environmental 
impact. 

Conclusion

The MoSt grass growth model is a mechanistic model developed for both research and 
farm use. The initial on-farm testing (2018) indicates that the model is capable of adapting 
to differences in farms and in weather conditions. The larger pilot study currently on-
going will provide a true indication of the MoSt GG model’s ability to provide useful grass 
growth prediction across soil types, regions and management conditions.
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Abstract

Collisions between vehicles and animals have increased in Norway and Europe over the 
last 40 years, causing economical losses as well as poor welfare for animals and people. 
In Norway 2 m high deer fences have been put up to prevent killings of semi-domestic 
reindeer at some limited road- and railway distances. However, these are very expensive 
and animal passages are needed. As a supplementary measure, an electronic system, 
aimed at warning the driver if reindeer are close to the road, was tested along the E6 
main road at Saltfjellet, Norway, during March - April 2018. 235 female reindeer were 
equipped with radio transmitter collars (805.15.4 866 MHz). The animals were grazing 
in a collision exposed area at Saltfjellet. A total of 41 receivers were mounted on road 
sticks alongside the 4.5 km test distance. When a reindeer with transmitter was within 
50 - 100 m proximity to a road stick, the receiver started blinking red. Saltfjellet reindeer 
herding district lost 15 reindeer in the test area from December 2017 until test start in 
February 2018. No reindeer were hit by cars during the test period. Nevertheless, 25% of 
the receivers became defective after a while, most possibly due to battery shortage. A new 
generation of transmitters and receivers was tested at Saltfjellet during December 2018 
- April 2019. Preliminary results from this extended test are presented. We evaluate the 
electronic warning system as promising. However, improvements are needed in order to 
achieve optimal receiver and transmitter reliability in function. 

Key-words: animal-vehicle collisions, electronic devices, preventive measures, real-time 
detection 

Introduction

Collisions between vehicles and animals have increased in Norway and Europe over the 
last 40 years (Hughes et al., 1996; Knapp et al., 2004; Rolandsen et al., 2015). Such collisions 
result in serious economical losses, but also represent a considerable welfare issue for 
animals and people. In Norway, more than 3,000 reindeer have been killed by the railway 
in the last 10 years (Rolandsen et al., 2017; Stanimirov et al., 2018). In 2017 alone, 514 semi-
domestic reindeer were killed at ‘Nordlandsbanen’, a railway track in mid- and Northern 
Norway which is 729 km in length, costing about €500,000 in compensations. Because 
reindeer is a highly gregarious species, as many as 80 animals have been killed by the train 
in the same collision event. 

Many mitigation measures have been tested. Mitigation measures might be divided into 
four different categories: 1) physical barriers; 2) measures that reduce the local density 
of animals; 3) measures that scare the animals, and 4); measures that warn the driver, of 
which the two latter categories include different types of electronic devices. In Norway, 2 
m high deer fences have been established at some limited road- and railway distances. 
This is the most effective measure to prevent collisions with animals, however, fences are 
very expensive as well as fragmenting the pasture areas, thus animal passages are needed 
(Rolandsen et al., 2017). In addition, the fences affect other mammals’ natural movement 
in the terrain. Electronic devices that scare the animals are most often based on light 
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and sound signals, however, the effect on semi-domestic reindeer, and particularly in the 
dark, is not known (Wagner et al., 2019, in press). Furthermore, animals usually habituate 
quite fast to such measures (Bomford & O’Brien 1990). Mitigation measures that warn the 
drivers, based on different animal detection systems, are more promising. The problem 
with unspecified detection systems (IR-cameras, motion sensors, beam-brake systems 
etc.) is that they trigger many error signals (false positives), because the detection system 
is not specific enough (Huijser et al., 2005). Detection of GPS-instrumented semi-domestic 
reindeer is another possibility (GPS connected to GEOfencing or other virtual fencing), but 
the GEOfencing technology is still premature and these kind of systems are too expensive 
today. A cheaper technology for real time detection of instrumented semi-domestic 
reindeer might be the solution. Nevertheless, transmitters should weigh little, should not 
accumulate ice on the collars, have large battery capacity (at least more than one year) 
and be low-cost. The receivers should warn the driver only when animals are present and 
have sufficient battery capacity (at least four months during the darkest time of year). 
Both transmitters and receivers should function, over time, in an Arctic winter climate. 

The aim of the experiment was to develop and test a new electronic device that warns 
the driver when animals are close to roads. The main goal is to reduce the number of 
collisions between vehicles and semi-domestic reindeer.

Materials and methods

Animals, location and electronics 

235 semi-domestic female reindeer from two herds were equipped with radio transmitters 
(805.15.4866 MHz) integrated into their collars. The animals were grazing together with 
the rest of their flock in an area at Saltfjellet located close to the Arctic Circle (660 N). The 
area was prone to vehicle-animal collisions. The receivers were connected to led lights 
and integrated in a light globe that started blinking red when the receiver was activated. A 
total of 41 receivers were mounted on road sticks alongside the 4.5 km test distance. When 
a reindeer with transmitter was within 50 - 100 m proximity to a road stick, the receiver 
flashlight (RF) was activated.

The technology was developed and designed at the Umeå University Embedded Systems 
Lab. Battery capacity and casings were tested by putting both receivers and senders in a 
freezer for nearly one year. Estimated battery life of the transmitters was five years and 
production costs were about €10. The electronic warning system was tested initially on 
sheep at a home pasture close to NIBIO Tjøtta Research Station (65 0 N) and at a small 
semi-domestic flock of reindeer in corrals at Tverrvatnet (66 0 N), close to Saltfjellet. 

Data recording

A supervisor from Mesta (contractor of operations and maintenance for the Norwegian 
Public Roads Administration, NPRA) checked the receivers once a week by driving slowly 
in a car with a transmitter passing all the RFs. Any receiver that was not activated by the 
transmitter during the test period was registered. The number of semi-domestic reindeer 
with and without transmitters killed by cars within the test distance before and during the 
2 months test period (February 22th – April 26th 2018) was recorded.

At the present time a new generation of transmitters and receivers (Figure 1) were tested 
at the same location (December 2018 - April 2019). Another 200 semi-domestic reindeer 
were equipped with radio collars. Data on receiver reliability in operation is checked every 
week by Mesta. Additionally, five of the receivers are connected to GSM. Reports from these 
are sent to a web site every hour, if activated, logging each transmitter (by ID-number) 
that has trigged the receiver. Furthermore, on 13 February 2019 a random sample test of 
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the reliability in operation of 120 transmitters was conducted. At the same date the NPRA 
established speed indicators outside and within the test distance. The number of semi-
domestic reindeer with and without radio collars killed by vehicles in the test area will be 
collected throughout the test period. 

Figure 1. The flashlight receiver and the transmitter integrated in a reindeer collar (photo: Johannes 
Karlsson)

Results and discussion

Saltfjellet reindeer herding district lost 15 reindeer in the test area from December 2017 
until test start. No reindeer (with or without transmitters) were hit by car during the test 
period. Nevertheless, by end of the study, 25% of the receivers stopped working, most 
possibly due to battery shortage. Preliminary results from Saltfjellet 2019 show that many 
semi-domestic reindeer are killed by traffic this winter, but none with transmitters so far 
within the test area. By mid-February 2019, three out of 39 RFs had stopped working (8%) 
and the random check of radio transmitters showed that, for unknown reasons, 35% of the 
transmitters were defect. 

There has been continuous development of casings and upgrading of the technology 
during the research period. The latest generation of RFs seem to work better than the 
initial ones, most probably due to small software adjustments. Less energy demanding 
procedures for activating the receivers have resulted in longer battery life. The random 
sample test of radio transmitters in February 2019, however, showed rather disappointing 
results. Nevertheless, since reindeer flock together it is not necessary that all individuals 
wear radio collars. Indeed, results from 2018 show that no animals, neither with nor 
without radio collars, were killed in collisions within the test area. Results 2019 will show 
if this is due to the drivers’ behaviour, i.e. if the car drivers slow down when warned by 
the flashlights. Overall, we evaluate the electronic warning system as promising. Further 
improvements are needed, in order to achieve optimal receiver and transmitter reliability 
in function.

Although deer fences are the most effective measure in preventing animal-vehicle 
collisions, these are very expensive and cannot be put up along complete road or railway 
distances (Rolandsen et al., 2017). The new electronic warning system is meant to be a 
supplement to deer fences, and might cover more of the collision-prone ‘hotspots’. It will 
probably be sufficient to run this warning system during winter, when the probability for 
collisions is at the highest due to large amounts of snow and the polar night (Rolandsen et 
al., 2015; Rolandsen et al., 2017; Stanimirov et al., 2018). Another advantage over fences is 
that this new electronic system is not fragmenting the reindeer pasture areas or disturbing 
other animal species. 

To date, there is no particular technological solution that can solve the problem of collisions 
between train and domestic reindeer along the Norwegian railways (Wagner et al., 2019, 
in press), especially not in a harsh Arctic climate. It is accepted knowledge that reducing 



Precision Livestock Farming ’19      271

speed is the most effective way to reduce animal-vehicle collisions (Kistler, 1998; Romer 
& Mosler-Berger, 2003; Mosler-Berger & Romer, 2003) and this is also the method most 
frequently requested by reindeer herders (Rolandsen et al., 2017). Wagner et al., (2019, in 
press) therefore, recommend mitigation measures that involve real-time warning systems 
to the train drivers for effective speed control with appropriate breaking distances. These 
systems must consist of an animal detection system and a communication system that 
alerts the train driver. We consider adaptations of our new electronic warning system for 
the Norwegian railways. By supplying all receivers with sim-cards, the train drivers (and 
also the reindeer herders) can receive an SMS when an animals has activated a receiver. 
Another potential for extended use of the reindeer transmitters is animal identification. 
Since each tag has a unique ID, this could be matched with owner, age, sex and other 
animal-based information. In the future, we think it might be possible to scan a whole 
reindeer herd wearing transmitters by using a drone carrying a receiver.

Conclusions

Results from the tests at Saltfjellet show that the new electronic warning system has a 
promising potential. Improvements are still needed in order to achieve optimal receiver 
and transmitter reliability in function. The electronic warning system may be used both 
for roads and railways in the future.
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Abstract

The ChickenBoy is a robotic farmer assistance system. It is the worldwide first ceiling 
suspended robot that aims to assess aspects of animal welfare and help farmers increase 
farm productivity. At the current stage, the ChickenBoy measures climatic conditions 
(temperature, relative humidity, CO2 and air speed), examines excrements using artificial 
intelligence, finds dead birds and defective nipple drinkers and identifies wet spots in the 
litter. Farmers access the robot via a cloud-based user interface or subscribe to one of the 
15 available alerts that sends messages directly onto the farmer’s phones. We have created 
a full-scale economic model of farm performance to assess the impact of the ChickenBoy 
on farm productivity and to convince farmers that higher welfare can mean higher profits. 
In this contribution, we will present the current state of the development with results 
from European farms.

Keywords: broiler real-time surveillance robot, dead birds, defective nipple drinkers, wet 
spot recognition, climate, faeces analysis, farmer alert system

Introduction

The global livestock sector has profoundly changed in the course of recent decades 
in response to globalisation and growing demand for animal-source foods, driven by 
population growth and increasing wealth in much of the developing world (Robinson et 
al., 2011). The production of farm animals delivering milk, meat and eggs has grown in 
the last 50 years by a factor of four. World meat production rose from about 200 million 
tons in 1995 to about 280 million tonnes today and will continue to grow presumably 
to an estimate (without fish) of about 350 million tons in 2030 (FAO). Highest increases 
are expected in developing countries while meat production in developed countries will 
increase only slightly or will stagnate. In total approximately 60–70 billion animals are 
raised, transported and slaughtered every year (The Economist 2011; Anonymus 2019).

This enormous increase of production was only possible by a revolution in agriculture and 
livestock production since the 1970's that can be characterised by the terms intensification 
and specialisation. Significant breeding progress was associated with the development of 
specialised farms with modern intensive indoor production, where the animals are kept 
in confined houses at high stocking rates all year round, in order to make best use of their 
selected genetic qualities that enable them under appropriate housing, feeding, hygiene, 
management and veterinary control to reach high growth rates and high feed efficiencies 
in the shortest possible time. In consequence, poultry production increased dramatically. 
Farms raising 30–40,000 broiler birds per barn became common in Europe and many other 
parts in the world and prices of broiler meat dropped. For the first time in human history, 
Europeans do not need to worry about sufficient animal-source food supply (Hartung, 
2013). 

Soon two serious problems appeared. First, the consumer, increasingly disconnected from 
the fast development of modern farming, is increasingly concerned about the welfare of 
the animals in these ‘animal factories’ where the birds are kept solely under commercial 
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conditions, not regarding their species-specific nature (Harrison 1964). Consequently, 
resistance has grown in recent years to ‘industrial’ farming. Second, farmers and farm 
workers have problems to survey health and welfare of broilers in these large herds in 
an economically justifiable timeframe. In front of this conflicting background, a farmer 
assistance system for broilers, called ChickenBoy, was developed combining mechanical 
robustness with modern sensors and advanced digitalization (4.0) technology. 

This paper will present the latest state of the development and gives examples of 
measurements in commercial farms. 

Material and methods: Description of the ChickenBoy

Figure 1 gives a view of the ChickenBoy system. The robot consists of two major parts 
connected with a telescopic rod that can automatically move up and down according to the 
measuring programme. The system runs on rails that are fixed to the ceiling of the barn. 
Depending of the size of the barn, rails are mounted to the ceiling meandering through 
the whole barn. The cameras can cover about 90% of the floor space. One battery charge is 
sufficient for about one km driving distance of the robot. It returns back automatically to 
the charging station and reloads automatically. Loading time up to 4 h. The robot can run 
in different speeds between 10–30 cm / s. 

Figure 1. View of a ChickenBoy robot showing the rails, driving engines, upper platform with electric 
equipment and battery, the retractable telescopic rod and the sensor platform with sensors and the 
lateral camera set

Four wheels are running on the rails, two are equipped with small cylindrical electric 
engines which drive the robot forwards. The engines are powered by a battery located in 
the head section of the robot. In the lower section, the sensors and cameras are installed. 
For the measurement of air temperature, relative humidity of the air, carbon dioxide 
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(CO2) and air speed animal house proven sensors are used. Both camera sets consist of a 
visible and an infrared camera, with which continuous ‘normal’ and thermal images can 
be recorded. One camera set is mounted sidewise of the sensor platform directed to the 
nipple drinker lines in order to recognise too fast dripping nipples. The other camera set is 
fixed to the bottom side of the platform and traces birds with very low body temperature 
(dead birds) and wet spots in the litter. An additional feature is the examination of the 
faeces of the birds using artificial intelligence in order to detect early signs of diarrhoea. 
The sensor platform runs usually 40–50 cm above the heads of the animals. 

The data are transmitted to a database where they are stored in a protected, cloud-based 
system. The farmer has access to the robot and the data via a user interface. He can 
receive e.g. hourly via PC or smart phone measuring results mapped across the barn floor. 
This enables him to take early action in case of animal disorders or technical failures. The 
data mapping leads him directly e.g. to a broken drinker or an animal which needs help or 
a dead bird in the barn. He can also subscribe to one of at present 15 available alerts that 
send messages directly to his mobile phone including a visual map of his barn floor with 
spots indicating the location from which the alert was triggered. 

Results and discussion

Figure 2 shows an example of a broiler barn with an uneven distribution of relative 
humidity. The reason was a higher animal density in the left part of the barn. More animals 
mean a higher release of water vapour via the breathing air of the animals and thus higher 
humidity in the ambient air. 

Figure 2. Uneven distribution of rel. humidity in the air of a broiler barn 50 cm above the floor. 14,000 
birds, tunnel ventilation from left to right, barn size 55 × 12 m

In Figure 3 the thermal pictures of a living (left) and a dead (right) broiler bird is shown. 
The combination of the visible and infrared camera can clearly distinguish between dead 
and viable birds by temperature and position of the animal. 
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Figure 3. Thermal pictures of a living (left) and a dead (right) broiler bird

Figure 4 shows a resulting map of the measurements carried out by the robot presented to 
the farmer on his PC or mobile phone. The dots in different colours represent ‘bad’ faeces 
(blue), wet spots in the litter (orange), dripping / broken nipples (green), and dead birds 
(red). This automatic mapping gives the farmer practical advice for his daily work. The 
careful evaluation of these surveys can give valuable indications of systematic failures in 
the barn, e.g. when there is a cumulation of dead birds in a certain part of the barn.

Figure 4. Automatic mapping of ChickenBoy results in a broiler barn with dimensions 140 m × 15 m

Conclusions

The presented example of a precision livestock farming robot has a considerable potential 
to improve animal welfare and health of broilers by real-time surveillance and transparency 
of production. It can increase the quality of the life of broilers, satisfy the farmer’s need in 
terms of respected production and reliable income and may help to reconcile consumers 
with modern production systems. 

The system offers a wealth of data by real-time monitoring and direct presentation to the 
responsible farm worker. Recognising early technical failures, dead birds and the onset of 
diseases can reduce both suffering of animals and the use of drugs such as antibiotics and 
can improve production. 

Intelligently used, this 4.0 technology can significantly help farmers protecting health, 
welfare and performance of his animals, reduce losses and may possibly raise acceptance 
of animal products deriving from modern farming systems in all parts of the society by 
transparency of production. 
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By direct and in real-time involvement in the life of his animals, the farmer can develop 
a better understanding of his animals, which helps him to improve the quality of life of 
the animals. A European study revealed that most of European farmers are in favour of 
PLF support systems for their farm animals when they are economically affordable and 
technically reliable (Hartung et al., 2017).

In future, a closer cooperation between farmers and veterinarians is required. By 
direct transmission of data and pictures from a farm, the veterinarian can quickly do a 
preliminary diagnosis and treatment can happen much earlier than usual today. 
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Abstract

Connecterra’s Intelligent Dairy Assistant (IDA) is a novel Internet of Things based on a 
management support system for dairy farms. IDA uses sensor technology, cloud computing 
and artificial intelligence to support dairy farmers with insights on oestrus and health 
management. IDA analyses cow behaviour (originating from a 3D accelerometer on a 
neck collar) and herd patterns, and learns from the farmer’s feedback. Within the Horizon 
2020 project Internet for Food and Farm (www.IoF2020.eu) a field trial was conducted. 
The goal was to demonstrate that the IDA approach to generate actionable insights 
works. Therefore, we tracked KPI’s on farm economics, animal health and fertility on two 
commercial dairy farms. We report the results of our trial from January to December 2018. 
Both farms had a herd of 100 cows, from which 50 cows were equipped with IDA. The farm 
KPI’s were measured separately for the groups with and without. In comparison to the 
without group, the with group had, on average, its expected calving interval 5.92 and 0.88 
days lower on Farm 1 and 2, respectively. Likewise, treatments with antibiotics 1.15 and 
2.60 days shorter and 305 day milk yield 434 kg higher (Farm 1) and 405 kg lower (Farm 2) 
in the with group. For milk production the results are inconclusive as the groups were not 
balanced on milk yield before the trial started. We experienced in this trial, by qualitative 
feedback of the farmers, that the IDA approach worked and more observations are needed 
for scientific proof. 

Keywords: sensor, artificial intelligence, learning, oestrus, health

Introduction

In dairy farming trends move to larger herds per farmer, less farmers and lower labour 
input (Barkema et al., 2015). These trends influence the management of dairy farms 
dramatically. In order to support the management of dairy farms many sensor systems 
have been proposed (Rutten et al., 2013; Caja et al., 2016). It has been suggested that sensors 
can help improve farm profitability, animal health, welfare and fertility impact (Wathes 
et al., 2005; Ipema et al., 2011; Banhazi et al., 2012). However, uptake of decision support 
systems by dairy farmers in practice has been limited thus far (Borchers & Bewley, 2015; 
Steeneveld & Hogeveen, 2015).

Investment analysis on automated oestrus detection has shown inconclusive results. 
Ex ante simulations have estimated positive returns on investment (Rutten et al., 2014; 
Dolecheck et al., 2016). On the other hand, the analysis of real farm data did not confirm this 
result (Steeneveld et al., 2015a). The problem is that it was hard to explain the difference as 
farmers often made several investments and management changes over the same period 
(Steeneveld et al., 2015a). Furthermore, there are only a few studies that have attempted to 
observe and measure technical changes on dairy farms. 

The recent improvements in machine learning algorithms, cloud computing and 
internet of things (IoT) hardware and data communication protocols collectively make it 
economically feasible to deploy an advanced monitoring solution that can continuously 
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observe cows every second of the day for multiple years. The acquired accelerometer data 
sets are sufficiently granular for convolutional neural networks to detect behavioural 
activities such as eating, ruminating, walking, standing and laying. Since IoT and cloud 
computing allows the direct interpretation of behavioural data, a farmer can be instantly 
alerted when a behavioural pattern emerges that indicates a potential health issue. The 
directly elicited feedback from the farmer allows an innovative automated learning system 
that can evolve over time to allow an increasingly precise and specific diagnosis of the 
cow’s health and fertility status that would not have been economically feasible without 
the recent breakthroughs in IoT, A.I. and cloud computing. While real-time sensor systems 
are in common use by dairy farmers, such systems offer only limited decision support 
features. New IoT systems can exploit cloud computing to allow for more advanced data 
analysis techniques, resulting in improved decision-making by the dairy farmer. 

The goal of this field trial is to demonstrate that the IDA prototype, based on the approach of 
using cloud computing and artificial intelligence to interpret data and generate actionable 
insights, can support dairy farm management in a meaningful way.

Material and methods

In this field trial Connecterra’s Intelligent Dairy Assistant (IDA) was used. IDA is a novel IoT-
based management support system for dairy farms. IDA uses sensors, cloud computing and 
artificial intelligence to support dairy farmers management. IDA analyses cow behaviour 
(originating from a 3D accelerometer on a neck collar) and herd patterns, and learns from 
the farmer’s feedback. In this field trial, two commercially available features of IDA were 
tested, detection of oestrus and detection of health problems. IDA presents actionable 
insights rather than data or graphs to the farmer. The farmer reviews the insight, checks 
the cow and takes the appropriate measures and responds back to IDA through an app or 
web application. In this field trial the farmers have agreed to actively use the app, i.e. check 
and respond to each insight. The Horizon 2020 project Internet of Food and Farm (IoF 2020) 
gives the opportunity to demonstrate and test IoT based applications in practice. Within 
this context we could provide 50 sensors to two farmers in 2018. For this trial two farms 
with a herd size of 100 cows were selected in Belgium and the Netherlands. 

The two herds were split into two groups, one with and one without IDA. The selection was 
semi random while it was stratified for lactation number and fertility state (open, pregnant 
and dry). The assumption is that better monitoring of the with IDA group will help the 
farmers to detect oestrus and health issues earlier and thereby improve management 
for this group. Because the herd was split into two groups, the idea is that there are two 
comparable groups. Therefore, KPI’s were defined, benchmarked and tracked over time. 
The benchmark at the start of the experiment was to evaluate whether the farm as a 
whole did improve over time, e.g. because the farmers increases his skills or capacity with 
the use of IDA. Data collection took place for 12 months, starting at January 2018. For each 
farm, the most recent year from January to December in which the respective farmer was 
not using IDA was chosen as a benchmark. Since IDA was deployed at Farm 1 during 2017 
for another trial, the year 2016 was chosen as a benchmark at Farm 1. The year 2017 was 
chosen as a benchmark year for Farm 2. For both farms, the farm structure and herd sizes 
did not change since the benchmark year. 

Three KPI’s were defined and based on readily available data from the farm management 
system. Firstly, the production level of the cows was monitored with the 305 day milk 
production that originates from the milk production registration. Secondly, the expected 
calving interval was estimated. The insemination dates and pregnancy checks were used 
to determine if a cow was successfully inseminated. To estimate an expected calving 
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interval an average gestation length of 280 days (Parkinson et al., 2001) was assumed. 
Thirdly, antibiotic use was monitored as the number of days that a cow was treated in the 
past year. Each month data were pulled from the farm management system to estimate 
these KPI’s. The moving average over a year was taken to exclude small fluctuations that 
can occur on a month to month basis. For all three KPI’s the average value per KPI was for 
the groups with IDA and without IDA separately.

Results and discussion

In Figure 1, the KPI’s for Farms 1 and 2 are presented per month of the experiment. On 
Farm 1 the expected calving interval was on average 5.92 days shorter for the with IDA 
group. However, in months 7, and 9–12 the without IDA group had a shorter expected 
calving interval ranging from 2–15 days. We have no clear explanation to why the without 
IDA group had a shorter expected calving interval for these months in the second half 
of 2018. It will be interesting to see how the trend develops in the next year of the trial. 
Both groups at Farm 1 had a significantly shorter expected calving interval of 77 and 
68 days in comparison to the benchmark year for the with IDA group and without IDA 
group, respectively. The 305 day milk yield was on average higher for the with IDA group 
and the difference with the without IDA group increased over the course of the trial. For 
both groups the 305 day yield was more than 200 kg / 305 days / cow higher than the 
average of the benchmark year 2016. The comparison to the benchmark indicates that 
the farmer did improve his herd or his herd management over time. The use of antibiotics 
was consistently lower for the group with IDA than for the group without IDA. On average 
the treatment with antibiotics in the without IDA group took twice as long as the with IDA 
group. 

Figure 1. KPI’s on expected calving date, 305 day milk yield and antibiotics use measured on two 
farms for groups with and without IDA and compared to a benchmark (the previous year in which 
no cow had IDA)
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On Farm 2 the expected calving interval varies over time for both groups. We do not 
see a clear difference between the with and without group. The 305 day milk yield was 
higher for the group without IDA and it remained higher over the course of the trial. This 
observation is in line with the feedback we received from Farmer 2. Our selection method 
did not stratify for production level, so, the farmer noted that of his best cows none were 
selected for the IDA group. The yield for both the with and without group did increase over 
time. No positive effect of IDA on milk yield can be deduced from the data of Farm 2. The 
antibiotic use on Farm 2 was consistently lower for the group with IDA than for the group 
without. The average duration of antibiotic treatment in the with IDA group shortened 
during the trial. On average, the duration of antibiotic treatment in the control group 
lasted four times longer than the group with IDA. Our observations on antibiotics use are 
in line with the feedback of Farmer 2. Farmer 2 noted that IDA detected a cow with e. coli 
earlier than the farmer did for cows without IDA and thereby could start treatment earlier 
and a shorter treatment than normal was sufficient. For Farm 2 we were unable to retrieve 
the antibiotic use data prior to the start of our field trial.

In this field trial we observed differences between the with and without groups and these 
observations are in line with the feedback we gathered from the farmers. However, we 
cannot prove a causal relationship between the use of IDA and the observed changes in 
the KPI’s. The number of cows and farms are too low to show causal relationships, but are 
big enough to demonstrate practical use and first impressions. Furthermore, the selection 
of cows was not balanced for milk yield and this fact may influence reproductive efficiency 
and health of the with and without groups. In general, milk yield has been observed to 
reduce the odds of conception and increase the risk on disease. For the reduction in 
antibiotic use, we have anecdotical evidence that our approach enables early detection of 
diseases. Furthermore, this anecdote indicates that farmers are able to start earlier with 
more effective treatments. We have no evidence to support a generalised claim on the 
potential of early detection, early and effective treatment. That will require more in-depth 
studies on multiple diseases. For instance, experiments on the effectiveness of early hoof 
trimming of sub clinically lame cows, and the willingness and ability of farmers to apply 
such an intervention in practice.

Automated oestrus detection has been suggested to improve oestrus detection rate 
especially for larger herds or when limited amounts of labour are available (Firk et al., 
2003; Kamphuis et al., 2012). A better oestrus detection rate would result in a shorter 
calving interval and have financial gains (Inchaisri et al., 2011; Rutten et al., 2014). The 
situation on Israeli dairy farms seems to confirm the idea that automated oestrus 
detection improves reproductive efficiency (Galon, 2010). However, a Dutch study on real 
farm data contradicts those findings (Steeneveld et al., 2015b). Our study observes some 
positive effects on oestrus detection and calving interval, but differences are small and far 
from conclusive yet. Our trial was not a fully controlled experiment as it involved only two 
commercial dairy farms. Therefore, it is possible that our assumption of an equal breeding 
strategy across the whole herd may not be valid, e.g. the farmer uses a shorter voluntary 
waiting period for the group with IDA. 

On Farm 1 we found indications that the group with IDA had a higher production level 
than the group without IDA. The root causes of these effects were not investigated. But 
based on literature we could speculate that better management helps cows reach their 
full potential. Firstly, automated measurement of rumination behaviour can be used to 
monitor dairy cows health, e.g. ruminal acidosis and heat stress (Beauchemin, 2018). For 
heat stress it seems questionable whether a farm could take measures to mitigate heat 
stress for an individual cow. Heat stress depends strongly on weather, which a farmer 
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cannot influence and barn climate, which a farmer could influence but would affect the 
whole herd equally. However, studies suggest potential to optimise concentrate feeding 
that balances energy balance and acidosis risk based on rumination data of individual 
dairy cows (King et al., 2018).

Secondly, lame cows have been described to eat, walk and ruminate less and to lay more 
(Kramer et al., 2009; Ito et al., 2010; Miekley et al., 2012). These behaviours are associated 
with a lower milk yield as is also observed for lame cows (Ettema and Østergaard, 2006; 
Bruijnis et al., 2010). Therefore, it would seem plausible that IDA could detect cows with 
aberrant behaviour and thereby enable the farmer to intervene. 

Previous research has suggested benefits from individually optimised treatments 
(Hogeveen et al., 2010; Steeneveld et al., 2011). Health monitoring is believed to enable early 
detection of diseases and thereby enable early treatment (Løvendahl and Friggens, 2009; 
Hogeveen et al., 2010; Rutten et al., 2013). Although widely suggested this benefit of early 
detection has never been confirmed in experiments. Our field trial does provide some first 
indications of the value that sensors have for early detection and treatment of diseases. 
The lower antibiotics use for the group with IDA and the farmer feedback indicate that 
sensor monitoring could have a positive effect on the treatment effectiveness for dairy 
cows. However, our study does not provide causal evidence yet to support this theory, it 
merely illustrates observed differences on a commercial dairy farm.

It has been widely suggested that more detailed herd information from sensors would 
enable better management decisions (Wathes et al., 2005; Ipema et al., 2011; Banhazi et 
al., 2012). However, such effects on herd level could not be observed in our trial. In this 
field trial we use two herds which we split in two groups. This ensures that circumstances 
like barn setup, climate and milking routine were the same for all cows. The advantage 
is that the two groups can be more easily compared, because it seems appropriate to 
assume that there are no external factors causing differences between the two groups. 
However, it could also cause a limitation, because all cows would be subject to the same 
herd management like the mixed ration the cows are fed, and the fact that the farmer 
might be influenced by the experiment and the IDA system, and that he is projecting that 
on the without IDA group. So, in our trial we cannot asses the full potential of the IDA 
system to help dairy farmers improve their management. 

Conclusion

For milk production the results are inconclusive as the groups with and without IDA were 
not balanced on milk yield before the field trial started. We experienced by qualitative 
feedback of the farmers that the IDA approach works. The experiences indicate that oestrus 
detection can be improved and health monitoring can help to start early treatment and 
thereby reduce the use of antibiotics. In this field trial we demonstrated positive changes 
in milk production, calving interval and antibiotics use. Based on the limited size of the 
experiment we could not prove significant effects or causal relationships.. The IDA system 
uses feedback on historic data to improve its underlying models and farmers may learn 
from using the system. We therefore look forward to how the tracked KPI’s will evolve in 
the successive year and if farm management will be further improved.
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Abstract

Individual feed intake of dairy cows is an important, currently unavailable, variable in 
commercial dairies. Earlier systems developed were either costly or unreliable enough 
for commercial farms. This research developed a low-cost individual feed intake system 
using RGB-D cameras and deep learning algorithm. Depth and colour images are produced 
from an RGB-D camera, and are used to build a CNNs (Convolutional Neural Networks) 
regression model for weight intake prediction. To provide training data, an automatic 
data acquisition system was designed to collect a wide range of food weights, in different 
configurations and conditions (indoor, outdoor, direct-sun). The system included a scale 
and a micro-controller set in the Volcani research dairy facility, an open cowshed with 
Holstein cows, eating Total Mix Ration. With this setup, 28,761 data were collected over 
seven days. Additional data were created by data augmentation methods. The model was 
evaluated on a test-dataset acquired in the same dairy farm. The model was tested for 
different combinations of training data (direct-sun/outdoor) to evaluate the importance of 
the data diversity. Per meal, mean absolute and square errors were 0.127 kg, and 0.034 kg2, 
respectively, the consumed amount of feed measured in range of 0-8 kg. The sensitivity 
analysis shows that the amount and diversity of data is important for model training. Better 
results were achieved for the model that was trained with high diversity data. The results 
suggest that cameras and CNNs are feasible for individual feed intake measurement on 
the dairy farm.

Keywords: individual cow feed intake, 3D camera, machine vision, deep learning, precision 
livestock farming (PLF)

Introduction and background

Individual feed intake of dairy cows is an important variable in dairy management. 
Proper measurement of feed intake of cows can help in monitoring individual cow health 
and productivity. This may increase overall productivity of the farm (Buza et al., 2014; 
Halachmi et al., 2016; Herd et al., 2003). Researchers have tried to evaluate feeding weight 
with machine vision systems cameras (Shelley, 2013). Previous studies have attempted 
to estimate the weight of the food pile using depth cameras by calculating the volume of 
points cloud received directly from the camera. These studies found it difficult to achieve 
reliable results due to sunlight interference with the infrared sensor of the cameras 
(Borchersen et al., 2018). Other studies have shown reasonable predictability but in very 
specific lighting conditions, using Light Detection and Ranging (LIDAR) sensing methods 
(Shelley et al., 2016). A recent study attempted to overcome the problem of sunlight by 
using photogrammetry methods (Bloch et al., 2019). This method requires multiple high 
quality RGB cameras per food pile measurement, scattered at different observation points 
to build a point cloud of the food pile. Although this method showed better results, the 
estimation error for calculating the mass was 0.483 kg for heaps up to 7 kg. The SD for 
the estimation error for the cowshed experiment was 0.44 kg, resulting in total method 
error of 1.32 kg for heaps up to 40 kg. Another major weakness of this approach is that 
the coloured markers used for the point cloud processing would not be applicable in a 
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cowshed on a working farm (dirt can change the colours and they can be inadvertently 
detached from the floor and walls by tractors).

In recent years there has been significant development in computer vision systems, 
thanks to deep learning methods. Deep learning or officially deep Convolutional Neural 
Networks (CNNs) is a discipline that belongs to the machine learning family, and is useful 
for complicated computer vision tasks such as detection, classification, recognition, and 
tracing. The CNNs are inspired from the learning process of neurons in the human brain. 
This method has become popular and available in recent years because of the growth of 
computer computation capability of Graphics Processing Units (GPUs), and the amount 
of available data in the world of big data (Chen & Lin, 2014). CNNs are based on highly 
non-linear, end-to-end training, which implies the learning of millions of parameters and, 
accordingly, they require relatively large amounts of diverse and annotated data (Ros et 
al., 2016).

This study deals with building a CNNs regressor model for predicting feed intake using an 
RGB-D camera. In order to obtain a reliable model, the CNNs regressor must rely on large 
and varied labelled data collected from the RGB-D camera, and the corresponding weight 
of the food pile images. Since the desired output in the prediction is a continuous value and 
the data is presented as two images – depth image and colour image, the images collection, 
together with labelling process, is a difficult task; especially when large-scale data is 
needed. The diversity of the data determines the robust and generic value of the model. 
Therefore, data collection is one of the most important operations for building a CNNs 
regressor. The high variance between different dairy farms in a multitude of parameters 
(e.g. geographic orientation, background features like shape and colour, lighting power and 
its influence on depth data) can be an obstacle to achieve a model that can be useable 
everywhere. Furthermore, the model must be immune to weather influence.

To estimate how much a cow ate at a specific meal, information about the food pile after 
the meal should be subtracted from information about the pile before the meal. The first 
intuitive thought to solve this problem is to train a CNNs model that predicts the weight of 
a single food pile. This model can predict the weight of the food before and after the meal, 
and then calculate the difference between the two prediction values. However, this metric 
contains several problems. First, as discussed, for building a CNNs model large datasets 
are necessary, especially if the required prediction values include a continuous range 
between 0 and 30 kg. Second, since there can be very high variability in the dispersal of 
a single food pile in any weight range, this may lead to error predictions. Third, assuming 
that each prediction has an error, if the desired result depends on two predicted values, 
the calculated result may contain a high bias.

This study presents a possible solution to provide and create a data set, by designing an 
automated acquisition system, and a subtraction method to increase the amount of data. 
This data is used to train a CNNs model for cow feed intake weight prediction of a single 
meal, using an RGB-D low cost camera.

Materials and methods

Weight calculation

Depth and colour images (Figure 1) are produced from an RGB-D camera, which is placed 
1.4 meters above the ground of the feeding area. These images are used to build a CNNs 
regression model for weight intake prediction.
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Figure 1. Left - depth image; right - RGB image

Data collection setup for weight prediction

We developed an automated data collecting system to achieve a convenient way to collect 
data under different conditions. The system consists of a 3D camera, weight, Arduino 
micro-controller and computer; on the top of the weight we installed a large plate. All 
these components were installed in an aluminium frame setup, so the camera was 
situated directly above the weight palette (Figure 2).

Figure 2. Data acquisition system

The micro-controller is connected to the scale and streams the weight readings to the 
computer. Simultaneously, the 3D camera streams RGB and depth images on two different 
tracks to the same computer (Figure 3). The user can change the shape of the food pile as 
desired and save the data – RGB image, depth image, and their weight label – on a data 
structure.
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Figure 3. Data acquisition structure designing

994 depth and RGB images were acquired in the weight range of 0–30 kg (Table 1). The data 
were collected for a wide range of setups including different backgrounds (standard, brown, 
as exists in the dairy farm) and illumination (standard, covered, direct sun, shadows) in 
both indoor and outdoor conditions.

Table 1. Data collected

SamplesBackgroundLocationConditionSession

74standardindoorstandard1

391standardindoorcovered2

177brownindoorcovered lights3

140standardoutdoorshadow4

95standardoutdoordirect sun5

39dairy farmoutdoorshadow6

78dairy farmoutdoorshadow7

Create a dataset for weight consumed prediction

In order to create a dataset that is not sensitive to the description in the background section, 
and includes all the required information to solve the problem, we built a new dataset 
including tensors based on the collected data. This tensor contains the result of the difference 
between two food pile images, before and after the meal, representing the feed intake (Figure 
4). Unlike standard image subtraction, which results in a tensor with no negative values 
(i.e. that is zero in any negative pixel subtraction result), this subtraction preserves negative 
values. These values can be obtained when the cow moves the food during feeding. This way 
we keep all the information related to the difference between the two images.

Figure 4. Illustration of subtraction of colour images. Pile of 3.49 kg subtracted from pile of 12.22 kg. 
The resulting tensor represents 8.73 kg
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To create the dataset, the following was conducted: all images of each food pile were 
subtracted from all the images with a reduced weight value (Formula 1). The subtraction

Tensori,j = Imagei - Imagej ∀ i,j were Weight(Imagei ) > Weight(Imagej ) (1)

works on four channels separately (RGB and Depth). Thanks to this method, the amount  
of the training data increases proportionally to the sum of arithmetic sequence.

To further increase the dataset for training, we also performed rotational flipping 
augmentations before images subtraction, so that from each subtraction of images, four 
completely different images emerge (Figure 5). Finally, for some of the subtracted tensors, 
additional rotational and flipping augmentations were also performed. To reserve the 
balance and uniformity of the data for the model training phase, we made sure to produce 
a balanced number of data to represent single meals (as described above) in each value 
range [0,8] in the artificial data creation step. The number of samples created was 28,761 
in four-channel matrices, 20% of the data was used for testing and 80% for training and 
validation.

Figure 5. Illustration rotational flipping augmentations before images subtracting

Testing data

The model was tested on an independent dataset taken from the research dairy farm, 
by using the developed data collection setup. Seventy-eight food pile images, simulating 
a feeding station with range of 0–30 kg, were acquired in an outdoor setting. From these 
images a dataset that simulates 576 single meals was assembled.

CNNs Regressor model

The CNNs model was trained on the RGB-D data, which included a tensor of 4-channel 
matrices of data, each with 480 × 640 pixels. The model design was inspired by ResNet 
CNNs (He et al., 2016). In ResNet, the input of a convolutional layer bypasses one or 
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more layers, and is added to the outputs of forward layers (Figure 6), denoted as residual 
mappings. Since the information is directly transmitted, the ResNet architecture avoids a 
vanished gradient, enabling easier learning even with deeper structures (He et al., 2016). 
The model developed for feed intake prediction used the residual blocks with 20 layers of 
3 × 3 convolution kernels.

Figure 6. ResNet architecture

Results and discussion

Feeding weight prediction

The weight CNNs regressor measures consumed feed in range of 0-8 kg per meal. Results 
revealed food predictability (Figure 7) with a prediction mean absolute error (MAE) of 0.127 
kg per meal, and a mean square error (MSE) of 0.034 kg2 per meal. The total error was 12 
kg from 2 tons distributed over the test data samples.

Figure 7. Weight prediction graph based on all training data. The observations are arranged in 
ascending order on the X-axis, according to the actual value; the Y-axis is the weight in kg

Sensitivity analysis of data diversity

In order to demonstrate the necessity of data diversity with large scale, we trained more 
models based on part of the data, and tested them on the test set. Model 1 was trained on 
6,964 shadow conditions data, and Model 2 was trained on 6,888 direct sun condition data. 
The results of Model 1 weight prediction (Figure 8) were MAE of 0.761 kg per meal, and MSE 
of 0.996 kg2 per meal.
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Figure 8. Weight prediction graph based shadow data. The observations are arranged in ascending 
order on the X-axis, according to the actual value; the Y-axis is weight in kg

The results of Model 2 weight prediction were even worse (Figure 9), with a prediction MAE 
of 1.504 kg per meal, and a MSE of 4.802 kg2 per meal.

Figure 9. Weight prediction graph based on direct sun data. The observations are arranged in 
ascending order on the X-axis, according to the actual value; the Y-axis is weight in kg

As can be seen in Table 2, diversity and the amount of data is important for model training. 
Better results are achieved for the model that has been trained with high diversity data.

Table 2. Models results comparison

MSE in kg^2MAE in kgAmount of dataTraining data

0.0340.12723,000All conditions

0.9960.7616,964Only shadow condition

4.8021.5046,888Only direct sun condition
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Conclusions

Results of the simulated cow feed intake prediction shows high accuracy in the open-cowshed 
test dataset, with Mean Absolute Error of 0.127 kg, and Mean Square Error of 0.034 kg2 per 
meal. This is better than state-of-the-art estimation error achieved by the photogrammetry 
method (0.483 kg for heaps up to 7 kg). The model showed success in open-cowshed, despite 
the use of an RGB-D camera that is sensitive to external conditions. This success is due to 
the specially created training set that provides highly variable data for the deep learning 
algorithm that overcomes the variable conditions. The developed model proves the feasibility 
of the system without requiring mechanical accessories. Ongoing research aims to apply this 
algorithm for real-time feed intake detection for each individual cow.
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Abstract

For economic reasons, the number of animals per farm(er) has increased drastically over 
the last decades and will continue to rise further in the future. Due to this trend, it has 
become impossible for farmers and veterinarians to observe large herds intensively on a 
frequent basis. However, fast detection and identification of infections remains extremely 
important to optimise the economic result of livestock production, the welfare of the 
animals and the reduction of the overall use of antibiotics. These challenges are the drive 
behind the continuous growth of the precision livestock farming sector where advanced 
technologies are used to optimize the contribution of each animal.  In this study, the 
SOMO Respiratory Distress Monitor of Soundtalks was used as a commercially available 
product with an early warning tool for the automated detection of respiratory problems 
in fattening pig houses. Based on the continuous processing of the sounds recorded in a 
pig barn, SMS or e-mail notifications were sent from the SoundTalks cloud to farmers and 
veterinarians. In a demonstration project in Flanders (Belgium), the SOMO was installed 
in 10 commercial fattening pig houses showing an automatic alarm when respiratory 
problems occurred. During the demonstration period of two years, one or two SOMO devices 
were installed in four identical pig house compartments in all 10 farms. The warnings of 
the SOMO-system were analysed against the observations of the farmer. In total, 72 cough 
alerts occurred on which farmers gave feedback. The management decisions to tackle 
the alarm situations were taken by the farmer in consultation with his veterinarian. This 
study mentions the challenges that came along with the collection and processing of data 
from the different livestock facilities, including suggestions from farmers and local vets. 
This valuable information was used to translate the data from the systems into more 
advanced customised information by automated analysis.

Introduction

Respiratory diseases are an important cause of increased mortality rate and reduced 
production performance in intensive pig farming (Chung et al., 2013). Due to respiratory 
diseases, pig farmers suffer from severe economic losses and the welfare of the animal 
is impaired. To reduce the negative impact of such diseases, early treatment is requisite. 
Before early treatment can be started, early recognition of the disease is needed.

Today, the detection of diseases is mostly a task for the farmer. During his daily routine, 
the farmer visually inspects his animals and the detection of diseases is based on the 
judgement and experience of the farmer (Berckmans, 2004). Due to the increase in the 
number of animals per farm, the work load increased, which makes it more difficult for 
the farmer to monitor each animal accurately.

A solution for monitoring the animals is using automated sensing techniques such as 
microphones and cameras to detect abnormalities in the behaviour of the animals. Sensing 
techniques have the ability to monitor the animals continuously and automatically in 
real-time. This happens without inducing additional stress to the animals. By monitoring 
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the animals continuously and using appropriate algorithms to detect deviating behaviours 
or sounds, more information is gathered compared to the snapshot that farmer gets from 
his daily visual inspection.

Monitoring animals with the use of sound analysis is not new. In 1999, Van Hirtum 
already monitored cough in pigs (Van Hirtum et al., 1999). Later, SoundTalks developed 
a commercial device, which monitors the respiratory distress in pigs similar to the work 
of Vandermeulen et al., 2013. This device is called the SOMO (SOund MOnitor) respiratory 
distress monitor. 

This study covers a field demonstration of the SoundTalks SOMO respiratory distress 
monitor. More specifically, the effect of using early warnings from the SOMO respiratory 
distress monitor to detect respiratory issues on 10 commercial pig-fattening farms in 
Belgium is evaluated.

Materials and methods 

Farm information

The analysis in this study is based on information gathered from 10 fattening pig farms 
located in Flanders, Belgium, that participated in a demonstration project funded by the 
European Fund for Rural Development (PDPO) and the Flemish Government, Department 
of Agriculture and Fisheries, section Education. The goal of the project was to demonstrate 
the SOMO respiratory distress monitor on existing commercial pig farms in Belgium and 
to analyse the perception of the farmers.

The farmers were selected based on a number of criteria. 

•	 There must be enough variation in production results and the respiratory pig health 
status between the farms;

•	 Farmers must be interested in new sensor technologies;

•	 Farmers and their vets must be willing to attend information meetings and workshops 
and participate in public discussions;

•	 Farmers must be willing to report on their experience with the use of the technology;

•	 Farmers must be willing to allow visitors in their farm within the limits of the sanitary 
regulations.

At the start of the project, farmers and their vets were trained to use the technology and 
they were informed about the project goals. 

Sound recording and processing

In each farm, sound was recorded and processed using the Pig Cough Monitor (PCM) which 
is a commercial variant of the SoundTalks SOMO respiratory distress monitor (Figure 1). 
The number of pigs per compartment varied between 100 and 600. Sound recordings 
were taken continuously and automatically during five complete fattening periods over 
two years. Each compartment was equipped with one or two microphones, depending 
on the total number of pigs. With a specially designed algorithm, the SOMO calculates 
a Respiratory Distress Index (RDI) which represents the status of the respiratory system 
(coughing) of the pigs in the compartment. 
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Figure 1. SoundTalks SOMO respiratory distress monitor

The evolution of the respiratory distress index (number of coughs) measured by the 
SOMO devices, including the time points of the automated warnings generated by the 
build-in algorithm are presented to the farmer in a cloud solution and visualisation tool. 
Farmers received automated alerts by SMS. The system allows a continuous monitoring 
of the respiratory health status with the final goal to treat animals at the right moment 
to improve their health status, resulting in a reduction of the use of antibiotics. In earlier 
studies it was proven that the system detects respiratory problems two to 12 days earlier 
than the farmer does (Hemerijck et al., 2015).

Results and discussion

Results SOMO 

An example of the output of the SOMO in one of the farms is presented in Figure 2. The 
upper line shows the number of animals in the compartment over 2.3 fattening periods 
(left axis). The area shows the evolution of the Respiratory Distress Index (RDI) representing 
the number of coughs (right axis). The black marks (◊) indicate the moments of the alerts 
that were generated by the system. These alerts were automatically calculated with a 
patented Statistical Process Control algorithm using the history and the variation of the 
RDI of that specific batch.

Figure 2. Example of the evolution of the Respiratory Distress Index of one of the demonstration 
farms

In this particular farm, during the first round (December 2017 – April 2018) the pigs 
were suffering from Porcine Reproductive and Respiratory Syndrome (PRRS), and after 
vaccination in the second round, the cough levels were significantly lower, but an 
outbreak of Actinobacillis Pleuropneumonia (App) occurred at end of June 2018. Alerts 
were automatically generated to inform the farmer about the optimal moment to treat 
his animals.
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Responses from farmers

Farmers were asked to answer seven multiple choice questions on-line, each time they 
received an alert from the SOMO system. The goal was to evaluate the experience of the 
users and to get a better insight in the way they treated their animals during the alert 
situations. The questions were:

•	 Do you confirm coughing of pigs in the compartment?

•	 Did you notice yourself any coughing in the compartment before you received an alert 
from the system?

•	 Did you use any medication against respiratory diseases, and if yes, at what moment?

•	 How many pigs are coughing in the compartment?

•	 How severe is the coughing?

•	 What is the general health status of the pigs?

•	 Do you have other remarks about the alerts given by the system?

In total, 72 replies on alert situations were given by the 10 farmers that participated in the 
demonstration project.

On question 1, in 74% of the cases, the farmers confirmed coughing in the compartment 
at the moment of the alarm. In 26% of the cases, no coughing was noticed or the number 
of coughs was to their opinion very low. This, of course, does not mean that the pigs didn’t 
cough at moments when the farmer was not in the barn. Previous studies showed that 
coughing often occurs during night periods (Hemeryck et al., 2015), or at other moments 
when farmers are not present in the pig house. In practice, farmers spend less than 10 
minutes checking all animals in a compartment during their daily inspection rounds.

Regarding question 2, in 46% of the cases, the farmers already noticed coughing before 
they received an alert from the SOMO system, while in 52% of the cases, farmers were not 
aware of any coughing. This confirms that coughs are often not detected by a farmer and 
that 24 h / 7 d monitoring is useful for early detection of respiratory diseases. Otherwise, 
it is also possible that there was no significant amount of coughing of animals in the 
compartment, which is confirmed by the answer on question 5, where farmers scored 46% 
of the coughings as mild. In 3% of the cases, farmers noticed coughing before the alert 
was given based on the evolution in the graphs during the previous days in the SOMO 
visualisation tool.

About the use of medication in question 3, in 72% of the cases no medication was used 
before the alert was given, while in 11% of the cases medication was already used. In 17% 
of the cases, medication was applied as a result of the alert.

The number of pigs that were coughing during an alert was mainly (40% of cases) less 
than 50% or only some individuals (39%). In the second case, individual treatments were 
mainly used.

In the question 5, the type of cough was scored, with 26% no coughing (in accordance with 
question 1), 46% mild coughing, 24% average coughing and 4% heavy coughing.

The general health status of the pigs was in 86% of the cases normal and in only 14% there 
was a reduction of feed intake, lower activity or body condition. In some extreme cases 
pigs died from lung lesions.

A summary of the answers from the farmers is presented in Figure 3.
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Figure 3. Results of farmers feedback of cough alarms 

Discussion

Although user feedback is a very powerful tool for building better products and early 
warnings, we have to be careful with interpreting the results. First of all the interpretation 
can be very subjective and different for each user. The time pig farmers spend with 
their animals is relative small (on average 10 minutes per compartment per day) and 
consequently it cannot be seen as a gold standard for a continuous monitoring system. In 
the project, blood samples were taken from some animals, but because of the high costs 
involved, sample numbers were not sufficient to show any clear relation with the RDI. 

On the other hand, feedback from farmers and their vets was helpful for optimising the 
visualisation tool and a better definition of the algorithm settings. In most cases, the 
veterinary treatment of the animals was based on the RDI data, and in general, animals 
were treated earlier, resulting in a lower use of antibiotics.

The base level of the RDI is farm specific and absolute values cannot be used as alarm 
levels. Using statistical process control helped to overcome the problem, but in future, 
farm history of RDI levels can help to improve the early warning software and make it 
farm specific.
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Conclusions

In a demonstration project in Flanders (Belgium), the SOMO Respiratory Distress Monitor 
of SoundTalks, was installed in 10 commercial fattening pig houses showing an automatic 
alarm when respiratory problems occurred. In total, about 200 fattening periods were 
followed up. The warnings of the SOMO-system were analysed against the observations of 
the farmer. In total, 72 cough alerts occurred on which farmers gave feedback.

In most cases (74%) the alert situation was confirmed by the farmers inspection, and in 
17% of the cases farmers started a medical treatment based on the alerts. At the time of 
the alert the number of sick animals was still low and the behaviour (activity, feed intake) 
of the animals still normal in most cases (86%). It was confirmed by the farmers that the 
use of the SOMO system helped to reduce the amount of medication, because treatments 
were done in an early stage of infection.

Acknowledgements

The authors gratefully acknowledge the European Fund for Rural Development (PDPO) and 
the Flemish Government, Department of Agriculture and Fisheries, section Education. The 
partners in the project (Soundtalks, DGZ, Provet, Province of Antwerp, KULeuven, VIVES 
and PVL) are acknowledged for their contribution in the data collection and interpretation.

References
Berckmans, D. (2004). Automatic On-line Monitoring of Animals by Precision Livestock Farming. In: 

ISAH conference “Animal production in Europe: The way forward in a changing world, October 2004, 
Saint-Malo, France, 1, pp.27–31.

Chung, Y., S. Oh, J. Lee, D. Park, H.-H. Chang, S. Kim (2013). Detection and Recognition of Pig Wasting 
Diseases Using Sound Data in Audio Surveillance Systems. Sensors, 13(10): 12929–12942. 

Ferrari, Sara, Mitchell Silva, Marcella Guarino, and Daniel Berckmans (2008). Analysis of Cough 
Sounds for Diagnosis of Respiratory Infections in Intensive Pig Farming. Transaction of the ASABE 
51(3): 1051–55.

 Hemeryck, M., D. Berckmans (2015). Pig Cough Monitoring in the EU-PLF Project: First Results. 
Precision Livestock Farming Applications, pp.199 – 208. 

Vandermeulen, J., Decré, W., Berckmans, D., Exadaktylos, V., Bahr, C., and Berckmans, D. (2013). The Pig 
Cough Monitor: From Research Topic to Commercial Product. In Proceedings of Precision Livestock 
Farming 2013 Leuven, pp.17–23. 

Van Hirtum, A., J.−M. Aerts, D. Berckmans, B. Moreaux, P. Gustin (1999). On−line cough recognizer 
system. J. Acoust. Soc. America, 106(4:2): 2191−2194.



298      Precision Livestock Farming ’19

Effect of environmental enrichment on the surface temperature, skin lesion 
score and behaviour during transportation of pigs

C. Crone1, R.A. Martins1, I.C.C. Lippi1, F.R. Caldara1, G.F. Oliveira2, R.G. Garcia1, C.A. Calado1, 
A. Bevilacqua1 and H.B. Morais1 
1Animal Science Department, Federal University of Grande Dourados, Itahum Highway, km 12, Dourados, Brazil; 
2Animal Production Department, State University of São Paulo, Botucatu, Brazil
Corresponding author: isa_lippi@hotmail.com

Abstract

The aim of the study was to evaluate the environmental enrichment effect during transport 
of pigs on the surface temperature (ST), skin lesion score (LE) and behaviour, considering 
as an enrichment the creation of a familiar environment between the housing facilities 
and the transport vehicle. Two experiments were conducted: the first during transport 
of the Piglets Production Unit to the nursery and the second during transportation of 
animals from the Finisher Unit to the slaughterhouse. The animals (n = 250, Exp I and n 
= 120, Exp II) were distributed in a completely randomised design to five treatments: T1 - 
control without environmental enrichment; T2 - use of enrichment objects in the truck; 
T3 - familiar environment using lavender aroma; T4 - familiar environment using music; 
T5 - familiar environment using truck noise. Treatments were applied at the housing 
facility five days before transportation and during transportation. The ST of the skin was 
evaluated by an infrared thermal imager and the skin LE by observation (after transport). 
The ST of the skin after transport from the Piglets Production Unit to the nursery and 
from the Finisher Unit to the slaughterhouse was smaller for swine that received the 
treatment with music. There was no effect of treatments on skin LE in both experiments. 
Piglets from experiment I exposed to music, had less agonistic behaviour compared to the 
other treatments. Creating a familiar environment for pigs through the use of music can 
be promising in improving animal welfare during transport.

Keywords: thermography, welfare, surface temperature, music therapy, swine

Introduction

Transport is a common practice in pig farming and can occur more than once throughout 
the production cycle or its reproductive life (Faucitano & Goumon, 2018). It is considered 
a critical moment in the life of the animal, with serious implications for its welfare, since 
they are exposed to numerous potentially stressful factors such as climate, management 
by unknown people, batch mixing, transport stock density, new odors, sounds and duration 
of transportation, among others (Pereira et al., 2015).

Farm conditions are considered important sources of variation in the ease of handling 
pigs for transport. During the productive life, swine are normally kept in the same bay 
in a sterile environment, with little stimulation and usually without any environmental 
enrichment, resulting in animals that present a high degree of reactivity to new stimuli, 
less developed social behaviour or increased fear (Rocha et al., 2016). In contrast, Tönepöhl 
et al. (2012) identified that animals raised in an enriched environment are easier to handle 
during shipment and less responsive to transport stress, fighting less when mixed.

Research has shown satisfactory results with the use of environmental enrichment during 
the breeding of pigs in several stages (de Jonge et al., 2008). However, few alternatives are 
discussed to reduce transport stress, except for climatic conditions and density.

The use of environmental enrichment in transport can have beneficial effects on the 
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physical and psychological welfare of swine, significantly improving this stage, considered 
as one of the most stressful for animals. Since the fear of the unknown is one of the factors 
with great impact in the transport, it is presumed that the creation of an environment 
previously experienced, such as the reproduction of sounds with which animals are 
familiar in their breeding environment, may be a good alternative to reduce neophobic 
responses and stress. Unknown sounds for animals such as truck engines and vehicles, in 
general, can be very stressful, and subjecting the pigs to these sounds before transport to 
make them familiar can be a good strategy for fear reduction.

To increase understanding on the subject, a broad approach is needed, including studies 
of animal physiology and behaviour. The objective of this study was to evaluate the 
effects of environmental enrichment for pigs during transport in different stages of the 
production cycle, considering as enrichment the creation of a familiar environment during 
transportation. 

Material and methods

Experimental data

Two experiments were conducted in the state of Mato Grosso do Sul, Brazil. The first, 
during transportation of the Piglets Production Unit to the nursery, and the second during 
transportation of animals from the Finisher Unit to the slaughterhouse.

The animals (Experiment I: 120 hybrid females DanBred, weaned with an average of 28 
days old; and Experiment II: 120 hybrid females DanBred, with an average weight of 120 
kg), were distributed in five treatments: T1 - control treatment without environmental 
enrichment; T2 - use of enrichment objects made using hydraulic PVC pipe, with holes in 
the sides on which were attached non-toxic plastic hoses (Figure 1), allowing pigs develop 
exploratory activity. The objects were fixed to the sides of the truck compartments, with 
plastic clamps at the height of the eyes of the animals. These objects were used only in the 
transport truck, not being offered prior to transportation; T3 - the creation of a familiar 
environment using a lavender aroma in the pen five days before transportation and during 
it. Lavender odour-filled sachets were made and distributed inside the creep (Experiment I), 
in the pens (Experiment II) and in the truck compartments (Experiment I and II); T4 creating 
a familiar environment with the use of music. It used a varied repertoire of songs played 
by speakers at 60 decibels maximum sound pressure, distributed in the maternity room 
(Experiment I) and fattening room (Experiment II), uninterrupted for eight hours per day 
for the five-day pre-transport period. The same playlist was used during transportation of 
the animals, in a speaker placed between the compartments of the truck; T5 - the creation 
of a familiar environment using vehicle sounds. Recordings of running vehicle sounds 
were used, which were played by speakers at the maximum sound pressure of 60 decibels, 
arranged throughout the maternity (Experiment I) and fattening rooms (Experiment II), 
two hours a day, for the five-day pre-transport period. During transportation, the sound of 
the truck itself was considered. This treatment aimed to familiarise the animals with the 
noises produced by the truck and vehicles on the highways, aiming to reduce the stress of 
this unknown factor.

The animals from each treatment were housed in separate maternity and fattening rooms 
so that one treatment did not influence the other. The same care was taken during the 
animal’s transportation. In experiment I the distance travelled was 60 km, with a duration 
of 70 minutes while in experiment II the distance travelled was approximately 32 km, 
during 60 minutes.
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Figure 1. Object of enrichment used in the piglet’s transportation truck from the Pig Production Unit 
to the nursery (Treatment 2)

Score of skin lesions

Determined through visual evaluation, according to the adapted methodology proposed 
by Brown et al. (2009), the number of lesions found throughout the body of 30 animals per 
treatment at the Piglet Production Unit and 15 animals by treatment of the fattening unit, 
chosen at random were counted. The lesion scores were classified as 0 - absent (absence 
of lesions), 1 - mild (one to five lesions), 2 - moderate (six to 11 lesions) and 3 - severe (12 
lesions or more). Only recent lesions were considered, with no signs of healing.

Surface temperature

Pre-transport skin temperature measurements (24 hours prior to animal’s shipment) and 
post-transport (immediately after unloading of animals in the nursery and slaughterhouse) 
were performed. The thermographic images were recorded in 24 animals per treatment, 
randomly selected. The surface temperature of the animals was evaluated using 
Termovisor Infrared Reporter equipment and by specific software for this equipment. The 
colour spectrum reading was converted to surface temperature. The emissivity coefficient 
used was 0.96 for the entire body surface of the animal. The mean surface temperature 
and standard deviation of the body area were calculated using the temperature of 30 spots 
selected to represent the overall body surface of the animals (Figure 2).

Figure 2. Thermographic image of the piglet before transportation. Points selected for determination 
of mean surface temperature
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Behavioural evaluation during transport

For behavioral evaluation, a monitoring system with video cameras (Action Go Pr Sport 
Ultra 4K Full) was used to record uninterrupted behaviour and posture of the pigs during 
transportation. The cameras were installed in each compartment of the truck in order to 
allow the visualisation of all the animals during each treatment. The videos were watched 
and the behaviours recorded according to an ethogram elaborated and adapted from 
Sutherland et al. (2009).

To make the frequency histogram of behavioural activities, the images were visualised 
through the Windows Media Player program and every five minutes the recording was 
paused. All the animals present in the truck compartment were evaluated, and the data 
were recorded in a spreadsheet showing the number of animals and their respective 
activities. The behaviour was analysed individually and each animal considered an 
experimental unit. For the behavioral analysis, 50 animals per treatment of Experiment I 
and 12 animals per treatment of Experiment II were observed.

Statistical Analysis

In all analyses, the animal was used as an experimental unit. The behavioural data were 
analysed as mixed generalised linear models, considering as fixed effects the different 
treatments (control, aroma, music, object, vehicle sounds) and time as a random effect. 
In this approach, a Poisson distribution was also considered when the variables were 
derived from the sum of the behaviour, and binary distribution for the lesion score data 
using the SAS GLIMMIX procedure (version 9.4; SAS Institute Inc., Cary, NC). For the body 
temperature data, no adjustments were necessary for the distribution of the data. When 
significant, the means between variables were compared using the Tukey test. Significance 
was assigned when P < 0.05.

Results and discussion

Score of skin lesions

There was no effect of the treatments on the skin lesion score of piglets after transportation 
from the Piglet Production Unit to the nursery (P > 0.05). In the same way, there was no 
effect of treatments on the skin lesion score of pigs after transport from the Fattening 
Unit to the slaughterhouse (P > 0.05) (Figure 3). However, for this category, no score 0 was 
observed, i.e. all animals evaluated had some type of skin lesion even before transport, 
distributed among scores one to three. The effects of hanging objects and substrate 
(shavings) as enrichment strategies for piglets were investigated during lactation up to 
ten days after weaning on the skin lesion score, one day before weaning and the first two 
days after weaning. Yang et al. (2018) concluded that enrichment did not influence the 
number of lesions before and after weaning. Other studies, however, indicate the benefits 
of using environmental enrichment in reducing the incidence of skin lesions. According 
to Tönepöhl et al. (2012), the scores of pig’s lesions in commercial conditions housed in 
a sterile environment were higher than in pigs housed in enriched environments. The 
authors suggest that the relative absence of stimuli for the development of species-
typical behaviours, such as exploration and foraging, alternately promotes more frequent 
interactions with their co-specific species. 
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Figure 3. The frequency of post-transport skin lesion scores of animals from Fattening Unit to the 
slaughterhouse (Experiment II)

Evaluating the effects of transport time and sex on the number of skin lesions in pigs, 
Mota-Rojas et al. (2006) observed that males had a higher incidence of hematomas in 
the skin, regardless of the duration of transport. Skin lesions are usually the result of 
transport struggles between pigs and they occur to a greater extent between males than 
between females (Geverink et al., 1996). In the present study, female piglets were used 
and there was no mixing of lots during shipment, which favoured the non-occurrence of 
fights during transportation. Hwang et al. (2016) affirm that the smaller number of lesions 
observed in a lot may suggest familiarity with the other animals of the pen, reducing the 
severity of the conflicts.

Temperature

The skin surface temperature of the piglets was similar between all treatments before 
transport (P > 0.05), being lower after transportation to the animals of the treatment with 
music (Table 1). The measured temperatures are within the conditions of thermal comfort, 
before and after transportation, according to Manno et al. (2005). 

Temperature is a factor that rules the intensity of stress an animal suffers during 
transportation. The ideal thermal comfort zone varies as the piglets age. The thermal 
comfort zone for weaned piglets (about 7 kg) is within the dry bulb temperature range of 
20–22 ºC and 60–70% relative humidity when the wind speed is close to 0.5 m s-1 (Tolon et 
al., 2016) and temperature can fluctuate rapidly during transport in not air-conditioned 
vehicles (Tarrant & Grandin, 2000). 

No effect of treatments (P > 0.05) on the surface temperature of the pig’s skin was observed 
before transport of the Finisher Unit to the slaughterhouse (Table 2). However, after 
transportation, pigs from the control and music treatments showed lower skin surface 
temperature (P < 0.05). The total reduction of the surface temperature after the transport 
can be related to the fact that the transport occurred in the night period, favoring 
convection heat exchanges, in detriment to the heat gain by radiation. The use of sensory 
stimuli such as sounds and aroma, seeking calm down and make environments familiar 
to animals, can be presented as enriching sources that help on the alleviation of stress and 
contribute to the positive welfare (Maia et al., 2013 ).
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Table 1. Surface temperature (ST, °C) of the skin before and after transport of the piglets from the 
Piglets Production Unit to the nursery (Experiment I)

 

 

Treatment

 

 

 

 

 

 

Control Lavender 
aroma Music Object V.S. SEM P-Value

Pre-transport

ST, °C 34.37a 33.88a 33.34a 34.16a 34.51a 0.439 0.3789

Post-transport

ST, °C 32.85ab 34.74a 31.95b 34.23a 33.34ab 0.656 0.0225

V.S. = Vehicle sounds; SEM = Standard error of the mean; a, b, c Means with different letters in the same row differ 
among themselves by the Tukey test at 5% significance

Table 2. Surface temperature (ST, °C) of the skin before and after transport of the pigs from the 
fattening unit to the slaughterhouse (Experiment II)

 

 

Treatment 

 

 

 

 

 

 

Control Lavender 
aroma Music Object V.S. SEM P-Value

Pre-transport

ST, °C 34.67a 34.57a 34.51a 34.42a 34.53a 0.1533 0.8252

Post-transport

ST, °C 29.70b 31.66a 28.79b 30.93a 31.21a 0.3051 <0.001

V.S. = Vehicle sounds; SEM = Standard error of the mean; a, b, c Means with different letters in the same row differ 
among themselves by the Tukey test at 5% significance

Behaviour during transport

Piglets submitted to music enrichment before and during transport to the nursery had a 
lower frequency of agonistic behaviour during transport than the animals from the other 
treatments (Table 3). Similarly, results obtained by De Jonge et al. (2008) point out that 
piglets exposed to music before weaning presented increased play behaviour in the daycare 
phase and reduced aggressive behaviours, constituting a positive indicator of well-being. 
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Table 3. Behavioural frequency (%) of piglets during transport from UPL to nursery 
(Experiment I)

  

  

Treatment    

Control Lavender 
aroma Music Object1 V.S. SEM P-value

Activity %

Agonistic 
behaviour

0,31a 1,38a 0b 1,23a 0,31a 0,3872 0,0365

Resting 17,38a 3,23bc 12,46ab 2,62c 14,46a 2,964 0,0011

Standing 35,38b 55,23a 37,85b 45,23ab 36,92b 3,5714 0,0012

Moving around 5,69ab 8,77a 4,62b 8,31ab 8,77a 0,9982 0,0093

Jumping over 
another

6,62b 13,85a 8,92b 13,85a 8,92b 1,4306 <0,001

Seated 34,62a 17,54b 36,15a 26,77ab 30,62a 2,8732 0,0002

V.S = Vehicle sounds, SEM = Standard error of the mean, 1: Interactivity activity with the object corresponded to 
1.99% of the time. a, b, c: means with different letters in the same row differ among themselves by the Tukey test at 
5% significance

In experiment II, during transportation of the finishing unit to the slaughterhouse, pigs 
exposed to the sounds of vehicles five days before slaughtering and during transportation 
spent more time resting, and consequently less time standing in relation to the animals of 
the other treatments, which did not differ among them (Table 4).

Table 4. Behavioural frequency (%) of piglets during transport from finishing unit to the 
slaughterhouse (Experiment II)

Treatment    

  Control Lavender 
aroma Music Object1 V.S. SEM P-value

Activity %

Resting 35,26b 35,26b 28,21b 32,69b 63,46a 10,933 0,0003

Standing 30,77a 30,77a 41,67a 39,10a 9,62b 9,585 < 0,001

Moving around 0 0 0,64 0 0 0,573 0,4168

Seated 33,97 33,97 29,49 26,92 26,92 8,427 0,5749

V.S = Vehicle sounds, SEM = Standard error of the mean, 1: Interactivity activity with the object corresponded to 
1.29% of the time. a, b, c: means with different letters in the same row differ among themselves by the Tukey test at 
5% significance
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Agonistic behaviours and jumping on other pigs were not observed at this stage. Familiarity 
with the noises present during transport may have attenuated the stress of the animals, 
which got used to the environment more quickly and soon put themselves in a rest 
position. However, this fact was not observed during the transportation of the piglets from 
the UPL to the nursery. According to Sutherland et al. (2014), the weaning stress is so severe 
for piglets that in the transport of up to six hours, no additive effects are observed. 

Conclusions

The use of sound stimuli such as music in order to become more familiar with distinct 
environments to pigs is presented as a promising tool for reducing fights during transport, 
and thus improved welfare in this critical phase. The effects of this kind of enrichment are 
most pronounced in the early stages of life. 

More research should be conducted evaluating longer periods of familiarisation with the 
enriching, as well as long transport periods. New strategies for the use of enrichment 
objects can be evaluated for greater effects.

Acknowledgments

This project was funded by Coordination for the Improvement of Higher Education 
Personnel (CAPES). 

References
Brown, J.A., Dewey, C., Delange, C.F., Mandell, I.B., Purslow, P.P., Robinson, J.A., & Widowski, T.M. (2009). 

Reliability of temperament tests on finishing pigs in group-housing and comparison to social 
tests. Applied Animal Behaviour Science, 118(1-2): 28–35.

de Jonge, F.H., Boleij, H., Baars, A.M., Dudink, S., & Spruijt, B.M. (2008). Music during play-time: Using 
context conditioning as a tool to improve welfare in piglets. Applied Animal Behaviour Science, 115(3-
4), 138–148.

Faucitano, L., & Goumon, S. (2018). Transport of pigs to slaughter and associated handling. In Advances 
in Pig Welfare Woodhead Publishing 261–293. 

Geverink, N.A., Engel, B., Lambooij, E., & Wiegant, V.M. (1996). Observations on behaviour and skin 
damage of slaughter pigs and treatment during lairage. Applied Animal Behaviour Science, 50(1): 1–13.

Hwang, H.S., Lee, J.K., Eom, T.K., Son, S.H., Hong, J.K., Kim, K.H., & Rhim, S.J. (2016). Behavioral 
characteristics of weaned piglets mixed in different groups. Asian-Australasian Journal of Animal 
Sciences, 29(7): 1060.

Maia, D.A., A.P., Sarubbi, J., Medeiros, B.B.L., & de Moura, D.J. (2013). Environmental enrichment as 
positive welfare of pigs: a review. Revista Eletronica em Gestão, Educação e Tecnologia Ambiental, 
14(14): 2862–2877.

Manno, M.C., Oliveira, R.F.M.D., Donzele, J.L., Ferreira, A.S., Oliveira, W.P.D., Lima, K.R.D.S., & Vaz, 
R.G.M.V. (2005). Effect of thermal environment on performance of growing pigs from 15–30 
kg. Revista Brasileira de Zootecnia, 34(6): 1963–1970.

Mota-Rojas, D., Becerril, M., Lemus, C., Sánchez, P., González, M., Olmos, S.A., ... & Alonso-Spilsbury, M. 
(2006). Effects of mid-summer transport duration on pre-and post-slaughter performance and 
pork quality in Mexico. Meat Science, 73(3): 404–412.

Pereira, T.L., Corassa, A., Komiyama, C.M., Araújo, C.V., & Kataoka, A. (2015). The effect of transport 
density and gender on stress indicators and carcass and meat quality in pigs. Spanish Journal of 
Agricultural Research, 13(3): 0606.

Rocha, L.M., Velarde, A., Dalmau, A., Saucier, L., & Faucitano, L. (2016). Can the monitoring of animal 
welfare parameters predict pork meat quality variation through the supply chain (from farm to 
slaughter)?. Journal of Animal Science, 94(1): 359–376.

Sutherland, M.A., Krebs, N., Smith, J.S., Dailey, J.W., Carroll, J.A., & McGlone, J.J. (2009). The effect of 
three space allowances on the physiology and behavior of weaned pigs during transportation. 
Livestock Science, 126(1-3), 183–188.



306      Precision Livestock Farming ’19

Sutherland, M., Backus, B., & McGlone, J. (2014). Effects of transport at weaning on the behavior, 
physiology and performance of pigs. Animals, 4(4): 657–669.

Tarrant, V., & Grandin, T. (2000). Cattle transport. In: Grandin, T. (Ed.) Livestock handling and transport, 2nd 
edition. CAB International, Wallingford, UK, pp. 151–173.

Tolon, Y.B., Nääs, I.A., Baracho, M.D.S., & Moura, D.J. (2016). Housing thermal comfort zone for weaned 
to growing pigs. In 2016 ASABE Annual International Meeting (p. 1). American Society of Agricultural 
and Biological Engineers.

Tönepöhl, B., Appel, A.K., Welp, S., Voß, B., von Borstel, U.K., & Gauly, M. (2012). Effect of marginal 
environmental and social enrichment during rearing on pigs’ reactions to novelty, conspecifics 
and handling. Applied Animal Behaviour Science, 140(3-4), 137–145.

Yang, C.H., Ko, H.L., Salazar, L.C., Llonch, L., Manteca, X., Camerlink, I., & Llonch, P. (2018). Pre-weaning 
environmental enrichment increases piglets’ object play behaviour on a large scale commercial 
pig farm. Applied Animal Behaviour Science, 202, 7–12.



Precision Livestock Farming ’19      307

Session 8

Monitoring Animal 
Health and Behaviour



308      Precision Livestock Farming ’19

Assessing feasibility of using depth images to acquire body condition score of 
sows

I.C.F.S. Condotta1, T.M. Brown-Brandl2, L.A. Rempel3, J.R. Miles3, A.J. Cross4, G.A. Rohrer3, 
K.O. Silva-Miranda1

1Biosystems Engineering Department, University of São Paulo, “Luiz de Queiroz” College of Agriculture, Brazil; 2 

Biological Systems Engineering Department, University of Nebraska-Lincoln, United States; 3 USDA, Agricultural 
Research Service, U.S. Meat Animal Research, United States; 4DNA Genetics, United States
Corresponding author: isabella.condotta@yahoo.com.br

Abstract

Observation, control and maintenance of physical condition of sows in acceptable levels 
is critical to maintain animal welfare and production standards. Early recognition of 
animals that present atypical physical condition is important to prevent production 
losses. Currently, classification of body condition is done by subjective methods, thus is 
dependent on the opinion of the manager, which can generate differences between ratings. 
As alternatives to these subjective methods of classification, various methods have been 
proposed to obtain a more objective measure. Knauer & Baitinger (2015) developed a 
calliper that quantifies the angularity from the spinous process to the transverse process 
of a sow’s back and concluded that this instrument can be used as a tool to standardise 
this classification. Another way to standardise this measurement would be to automate 
the process by analysing images generated by depth cameras. The present work aimed to 
obtain sow’s body condition score (BCS) using a commercially available depth camera. This 
was done by correlating the scores obtained with a BCS calliper (scores ranging from 1 to 
29) with the sow’s body widths acquired from depth images.  A multiple linear regression 
was performed with an R² of 0.61, a standard error of 1.36, and average absolute error of 
8.01% (1.05 units).  These errors may be associated with poor repeatability (human error) 
and/or the measurement calliper. It is considered that there is a need for a reliable gold 
standard and depth images analysis could be a possible option.

Keywords: image analysis, automation, depth cameras

Introduction

The observation, control and maintenance of the physical condition of sows in acceptable 
levels is critical to maintain the animal welfare and production in appropriate standards. 
The animal welfare assessment protocol for pigs, Welfare Quality® (WELFARE QUALITY®, 
2009), states that good feeding, one of the principles of the animal welfare, is composed of 
two criteria: absence of prolonged hunger and absence of prolonged thirst. It is proposed 
to evaluate the first criterion on sows by measuring the body condition of the animals. 
This is suggested to be done in a subjective method, visually and by touch, classifying 
the body condition in three levels: Level 0 (sow in good condition, with well-developed 
muscles on the bone), Level 1 (thin sow, with bones easily felt; or sow visually obese) and 
Level 2 (very thin sow, with the hips and backbone prominent).

It is known that, during pregnancy, each sow should receive a different amount of food 
according to its body condition. Bigger, older or skinnier sows should receive higher 
amounts of food to meet their nutritional needs. Underweight animals present nutritional 
deficiency, fewer piglets born per litter, and those that are born, can present also nutritional 
deficiencies and smaller body mass (Eissen et al., 2000). Overweight sows are usually larger 
than the space provided in the pen, which leads to stress for the animal and may cause 
piglets’ crushing. In addition, these sows have an abnormal development of mammary 
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glands, reducing the amount of milk produced during lactation. Sows that are obese 
during pregnancy tend to reduce the amount of food ingested during lactation, which 
also reduces the amount of milk produced (Eissen et al., 2000). All these factors result in 
economic losses.

Therefore, the early recognition of animals that present physical condition outside the 
standards is important to prevent production losses. Some authors have been using 
ratings like those proposed by the Welfare Quality® to assess body condition of sows over 
the years (Esbenshade et al., 1986; Patience & Thacker, 1989; Charette et al., 1996; Maes 
et al., 2004; Knauer et al., 2007; Knauer et al., 2012; Salak-Johnson et al., 2014; Knauer & 
Batinger, 2015). As alternatives, various methods have been proposed to obtain a more 
objective measure.

To reduce the errors with the body condition scoring, one should try to reduce the 
variation generated by the classification done by different managers. A way of doing that 
was proposed by Knauer & Baitinger (2015), who developed a calliper that quantifies the 
angularity from the spinous process to the transverse process of a sow’s back and concluded 
that this instrument can be used as a tool to standardise this classification. Another way 
to standardise this measurement would be to automate the process by analysing images 
generated by depth cameras. This method was used for dairy cows (Kuzuhara et al., 2015), 
obtaining a correlation of 74% between the predicted and actual body condition score. 
This can indicate the possibility of using this method for sows.

The present work aims to obtain the body condition score of sows using a commercially 
available depth camera.

Material and methods

The experiment was conducted in a gestating building of the U.S. Meat Animal Research 
Center, from the Agriculture Research Service-ARS of United States Department of 
Agriculture – USDA (-98.13° W, 42.52° N). Animal digital and depth images were collected on 
a population of sows at four parities. All animal procedures were performed in compliance 
with federal and institutional regulations regarding proper animal care practices (FASS, 
2010).

Preliminary Study

A preliminary study was conducted to test the calliper proposed by Knauer & Baitinger 
(2015) and the feasibility of using depth images to obtain a correlation with the values 
of body condition score (BCS). For that, depth images (Figure 1) of a paper cylinder were 
acquired and the BCS was obtained with the calliper. The size of the paper cylinder was 
set to obtain a BCS range from seven to 21. The cylinder was selected on the image by a 
depth threshold and its width was acquired in pixels and, then, transformed to cm using 
Equation 1.

Animal Specifics

One-hundred and seven sows at four different parities (1, 2, 3, and 4), weighing approximately 
between 150 and 250 kg, from a rotational Landrace and Yorkshire cross were sampled. 
The animals were allocated in a gestating building. Animals were sampled at two different 
time-points: on the day of moving to the farrowing building and on the day of moving from 
the farrowing building. The first group received a restricted diet and ad libitum water and 
were housed in a group-pen; while the second group had ad libitum access to both feed and 
water and were housed in individual crates. Diets were a mix of corn and soybean meal 
formulated to meet or exceed National Research Council recommendations (NRC, 2012).



310      Precision Livestock Farming ’19

a b

Figure 1. Depth images of paper cylinder (centre of image) with a BCS of 7 (a) and 21 (b)

lcm = lpx / 
lpx  

(3.669 × Zm -0.915)
 
 (1)

where lcm is the length, in cm; lpx is the length, in pixels; and Z is the distance from the 
camera to the object being analysed, in meters.

Data Acquisition

Microsoft® Kinect Studio program was used to acquire both digital RGB colour and 
depth videos from a commercially available depth camera (Microsoft Kinect® v.2). The 
program was deployed on a Windows®-based computer for data collection. A camera was 
positioned above the hallway of the building mounted on the ceiling to take both dorsal 
colour (1,920 × 1,080 pixels per frame, Figure 2a) and depth videos (512 × 424 pixels per 
frame, Figure 2b) of the animals at approximately 30 frames per second.

To acquire the body condition score of animals, the calliper proposed by Knauer & Baitinger 
(2015) was used as standard (Figure 3).

a b

Figure 2. Example of (a) colour and (b) depth frames acquired

Figure 3. Body condition score acquired with calliper proposed by Knauer & Baitinger (2015)
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Data Analysis

An algorithm proposed by Condotta et al. (2018) was used in a numerical computing 
software (MATLAB, version R2018a) for pre-processing the images. After that, the last 
rib region of the animal was selected. For that, first the smaller column on the image 
belonging to the back half of the animal’s body was selected as being the last rib region 
(Figure 4a). Then, the length of the curvature at the last rib was obtained (Figure 4b). An 
ellipse was fitted on the animals’ body and its minor axis length was acquired (Figure 5). 
Equation 1 was used for unit transformation (from pixels to cm).

a b

Figure 4. (a) Last rib region and (b) curvature at last rib

a b

Figure 5. Ellipse fitted on sows’ body and minor axis of ellipse acquired for a sow with a body condition 
score of eight (a) and for a sow with body condition score of 17 (b)

Results and discussion

The preliminary results showed a high correlation (Figure 6) between width of the paper 
cylinder and body condition score (BCS), with an R² of 0.9792 and an average absolute error 
of 3.2%, or 0.47 units of BCS.

Figure 6. Width of paper cylinder, in cm, versus body condition score (BCS) obtained with calliper
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Although the preliminary results showed a high correlation between width and BCS, the 
same did not apply to width of sows’ body. Figure 7 shows the results of simple linear 
regressions between lengths of both minor axis of ellipse fitted on sow’s body and of last 
rib curvature, in cm, and the body condition score (BCS) collected with the calliper. Body 
condition scores of the population ranged from eight to 17.5 units.

Figure 7. Lengths of minor axis of ellipse fitted on sow’s body (a) and of last rib curvature (b), in cm, 
plotted against body condition score (BCS) collected with calliper

A multiple linear regression was performed (Equation 2) to obtain BCS using length of 
minor axis and length of last rib curvature as inputs. The R2 for this regression was 0.6108, 
with a standard error of 1.3586 (Table 1) and average absolute error of 8.01%, or 1.05 units.

 BCS = -13.7479 + 0.8523 MA × -0.0174 × CL    (2)

where BCS is the body condition score; MA is the length of minor axis of ellipse fitted 
around sow’s body, in cm; and CL is the length of curvature at last rib, in cm.

Table 1. Multiple linear regression statistics

Regression statistics

R2 0.6108

Standard error 1.3586

Observations 107

Previous results obtained by Kuzuhara et al. (2015) showed an R² of 0.73 for a multiple 
linear regression predicting BCS of cows that used as inputs six geodesic lines along the 
back of the animal and parity. The results obtained in the present work were slightly 
lower, but the animal differences in anatomy should be taken in consideration and the 
comparison should be done with reservations.

The errors on the model could have been caused by different sources. One source could be 
human error, failing to consistently acquire the body condition score with the calliper due 
to animal’s movement specially when the animals were in the group pens and had more 
range of movement.

Figure 8 shows the curvatures at last rib for two sows classified with a body condition 
score of 12. One sow was younger and pregnant (located in the group pen), while the 
other was an open sow located in an individual crate. It’s easy to see that the curvature 
for both sows is different, with one animal being wider than the other. This difference 
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could indicate either a measurement error or that the back curvature does not correlate 
so well with the calliper measurements. Knauer & Baitinger (2015) found a maximum 
correlation between BCS and calliper measurements of 0.76, indicating that, although a 
less subjective measurement of BCS is much needed, we are still far from having a perfect 
gold standard for this variable.

Figure 8. Curvature at last rib for two sows classified with a body condition score of 12. The shorter 
and wider sow (dashed line) was younger and pregnant

Next steps on this research will consider parity, back fat and mass on the model, as these 
variables showed correlation with body condition score in previous studies (Maes et al., 
2004; Charette et al., 1996).

Conclusions

A multiple linear regression was performed to obtain BCS using length of minor axis and 
length of last rib curvature as inputs, with an R2 of 0.6108, a standard error of 1.3586, and 
average absolute error of 8.01%, or 1.05 units. These errors could be correlated with both 
difficult on repeatability (human error) or associated with the error of the standard itself 
(the calliper). It is observed a need for a reliable gold standard and depth images analysis 
could be a possible candidate. For that, a model that uses other input variables, like parity, 
back fat and mass could be used for calibration purposes.
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Abstract

Automation of the monitoring of pig behaviour can support management; deviating 
behaviour can be an indicator for disease or other disturbances. Registrations of RFID at 
specific places in a pen can be used to estimate the individual pig behaviour in order to 
detect abnormalities in drinking and eating behaviour. LF RFID tags were applied to pigs 
in the period from weaning until the start of the fattening phase. This was done in several 
experiments at the Dutch Swine Innovation Centre in the South of the Netherlands. In 
each experiment, 12 pigs were monitored, each equipped with a RFID tag in the right ear. 
Three readers were installed at the drinking place: (1) and at the feeding trough (2) video 
recordings were available to validate the results from the processed RFID readings. The 
performance of the system depended on the established reading distance of the readers. 
Tag readings were combined into visits by applying a bout criterion. Visits were combined 
into meals by applying a meal criterion. A good correspondence between tag readings and 
observed visits was found. A longer reading distance resulted in more tag readings that did 
not coincide with eating or drinking (but with resting behaviour nearby). Combining the 
two readers at the feeding trough as if they were one gave better results. The derived visits 
and meals can be used for detection of deviations on the number per pig per day (or per 
pig per part of the day). This automated detection can be a valuable tool in pig farming.

Keywords: RFID, pigs, eating behaviour, drinking behaviour

Introduction

Monitoring animal health and welfare is important in pig farming. This task can be 
supported by the use of data from sensors or other sources. Climate data are a priority to 
guarantee a quality environment for the pigs. Individual identification with RFID tags can 
be useful for this monitoring task. The goal of the research project ‘Smart Tools for Robust 
Pigs’ is to support these developments. This project is a private-public partnership with KDV 
(Sustainable Pork Value Chain) and Hotraco as private partners and Wageningen Livestock 
Research as public research partner. KDV applies individual identification with RFID tags 
on some farms to guarantee antibiotics-free meat production. The system is based on 
reading and registration of the RFID numbers of the treated animals in a database, this 
information is in the slaughterhouse and is used to separate the two different categories 
(see website sustainable-pork.com for details).

Eating and drinking behaviour can be recorded with RFID tags (Maselyne et al., 2016a, 
Maselyne et al., 2016b, Maselyne et al., 2018). Tagged animals are recorded when they visit 
a drinking place or a feeding trough. Several types of RFID systems are available (Ruiz-
Garcia and Lunadei, 2011). Mostly HF or UHF RFID systems were used. In this research, an 
LF RFID system was used to validate the possibilities for monitoring eating and drinking 
behaviour.

Material and methods

Measurements and observations for this research were done in one pen of the Swine 
Innovation Centre Sterksel in Sterksel, the Netherlands. This pen was 2.15 m width and 
2.64 m long (Figure 1) and equipped with one drinking trough and two combined feeding 



316      Precision Livestock Farming ’19

troughs. The pen had a slatted floor. During three cycles, 12 pigs were kept in this pen 
starting at weaning until the start of the fattening phase. This corresponds globally with 
the phase from four weeks old until nine weeks old. RFID tags were placed on the right 
ears of the pigs. RFID Reader 1 was installed at the drinker and RFID Reader 2 and 3 at the 
combined feeders. The reading distance of these readers is flexible: the maximum reading 
distance was used in Cycle 1 and the minimum reading distance was used in Cycle 3. Feed 
and water were available ad-lib. In the first two weeks an extra mobile feeding trough was 
used (without RFID reader). Enrichment materials, like a playing chain, were available for 
the animals.

Figure 1. Layout of the pen where measurements and observations were done, with an indication of 
the placement of one drinker and two combined feeders

All RFID readings (RFID number, reader number, date and time) were recorded per second. 
Multiple readings per reader and second were possible as the system scanned ten times 
per second. The csv files with readings per day were transferred to an Access database. 
Video recordings from one camera were available for validation purposes. Stripe patterns 
were applied on the pigs to make visual identification possible. Each pig was uniquely 
identified by one to four stripes in blue, green or red. Video recordings were available 
continuously; six hours during daytime were worked out for recording the eating and 
drinking behaviour of the individual animals. Weight recordings of the pigs were available 
at four moments: birth, weaning, start of fattening phase and slaughter. Records were kept 
of diseases, treatments and other remarks.

Recordings of three cycles were available for the research:

•	 starting at 27 June 2018;

•	 starting at 8 August 2018 (without video recordings);

•	 starting at 19 September 2018.
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Figure 2. Representation of all tag reading during one day (20 September 2018) during the night 
(upper figure), the morning (second), the afternoon (third) and the evening (lower); readings from 
Reader 1 (at the drinking trough) are blue, from Reader 2 are green (left feeding trough) and from 
Reader 3 are red (right feeding trough)

Recordings of tag readings were available per second for every animal and every reader. An 
example of the readings of one day is given in Figure 2. Each dot is a reading. Successive 
readings of the same animal and the same reader result in lines. The readings give the 
impression that the activity of the animals is fluctuating; intervals without any reading 
are alternated with intervals where readings from all animals are recorded.

Tag readings were combined into visits. The bout criterion of Maselyne et al. (2016b) was 
used: readings were considered to be in the same visit if the interval between successive 
readings was less than 20 seconds. For Reader 1 (at the drinker) also the criterion for a 
length of a visit between 3 and 180 seconds was applied, based on the possible lengths of 
drinking visits according to Maselyne et al. (2016a). Visits with shorter length were deleted 
and visits with longer length were cut off at 180 seconds. In a second step, visits were 
combined into meals if the interval between successive visits was less than 14 minutes. 
This meal criterion was determined by applying the method of Tolkamp and Kyriazakis 
(1999).

In order to validate the tag readings, video recordings have been analysed by two students, 
each student analysed three times per hour. Whenever an animal started with eating or 
drinking, they recorded the time, the animal identification (number and colour of stripes) 
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and the behaviour: A for Actively for the start of eating/drinking, P for Passively for the end 
of eating/drinking and L for leaving the eating of drinking trough. For the validation, these 
recordings were transformed into observed actions, defined as any period starting with a 
recorded A and ending with a recorded P or L, for any animal or reader.

Results and discussion

The number of tag readings, visits and meals has been determined for Cycle 1 and Cycle 
3. The average numbers per day are included in Table 1. The smaller reading distance of 
the readers applied in Cycle 3 resulted in smaller number of tag readings, but this effect 
decreased when the tag readings were converted to visits and meals.

Table 1. Average (and standard deviation) of number per day of tag readings, visits and meals per 
reader and cycle

Cycle 1 (n = 33)1) Cycle 3 (n = 36)

Tag readings Visits Meals Tag readings Visits Meals

Reader 1 48,968 (8,208) 1,151 (203) 289 (25) 29,242 (7,265) 831 (173) 238 (18)

Reader 2 22310 (4,345) 789 (136) 223 (18) 26,728 (7,888) 808 (155) 206 (16)

Reader 3 10,137 (2,418) 871 (148) 215 (17) 18,134 (5,394) 907 (165) 203 (15)

1) Two days excluded due to incomplete data collection

The number of tag readings, visits and meals were also available per animal (data not 
shown). There were clear differences between animals. There were no recorded cases of 
diseases or other disturbances that might explain these differences.

The average number of tag readings, visits and meals has also been calculated per hour 
within a day. To illustrate this, the average number of visits per hour are shown in Figure 
3 for Cycle 1 and Cycle 3. For Cycle 1, a diurnal pattern was visible with increased activity 
in the morning and late afternoon. This pattern appeared to be different in Cycle 3 when 
there was only an increase in the afternoon. No explanation is known for this difference.

For the validation of the tag readings, the observed actions were compared with the tag 
readings and derived visits per animal and reader. From a preliminary analysis, it appeared 
worthwhile to combine Reader 2 and 3 into one reader as their distance was small and 
it was apparently difficult to distinguish these two locations in the observed actions. 
Therefore, these readers are combined in the further analysis. The length criterions for 
drinking visits were not applied in the validation phase. An example of the resulting 
comparison is given in Figure 4.

It can be seen from the comparison in the upper part of Figure 4 that most observed 
drinking behaviours did correspond with tag recordings and visits. However, the visits 
could last longer and not each visit corresponded with an observed behaviour. In general, 
a good correspondence between observed eating behaviours and eating visits can be seen 
in the lower part of Figure 4. An observed eating behaviour always matched an eating visit 
(based on tag recordings), and the other way round was also true in most cases.
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Figure 3. Average of number per hour within day of visits per reader (blue = Reader 1, red = Reader 2, 
green = Reader 3) for Cycle 1 (upper) and Cycle 3 (lower)

There appeared to be a minor time lag between the tag recordings and the observed 
behaviours. The time lag used in the analysis varied from 10 - 16 seconds for Cycle 1 
and varied from 33–42 seconds for Cycle 3. This time lag was probably due to incorrect 
synchronization of the time recordings.

The correspondence illustrated in Figure 4 is quantified in Table 2 where the results of the 
comparison are given for each of the analysed hours. For reader 1, 81% (217 out of 267) of 
the observed actions did correspond with one or more visits. For Reader 2, this percentage 
was 97% (176 out of 181). These results implied that most observed actions could also be 
derived from the tag recording, especially in case of a feeding visit. 
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Figure 4. Graphical comparison of tag readings (dark blue) and visits (magenta blocks) with observed 
actions (red blocks based on observed actions: Actively, Passively and Leaving) for Reader 1 (upper) and 
Reader 2 (in fact combination of Reader 2 and 3, lower) for the second analysed hour in Cycle 1; green 
lines delimit the analysis period and light blue lines define human interventions (e.g. noise) in the pen

Table 2. Number of visits and number of visits matching with one or more observed actions, number of observed 
actions and number of observed actions matching with one or more visits; per reader and analysis period

Visits Matching 
visits

Observed 
actions

Matching 
observed actions

Reader 1 Cycle 1 Analysis 1 99 52 59 56

Analysis 2 65 35 44 38

Analysis 3 94 20 53 22

Cycle 3 Analysis 1 96 58 68 65

Analysis 2 25 19 20 19

Analysis 3 43 16 23 17

Total reader 1 422 200 267 217

Reader 2 & 3 Cycle 1 Analysis 1 50 41 45 44

Analysis 2 47 37 42 42

Analysis 3 25 14 13 13

Cycle 3 Analysis 1 68 35 41 39

Analysis 2 38 8 10 8

Analysis 3 31 22 30 30

Total reader 2 259 157 181 176
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On the other hand, for Reader 1, 47% of the recorded visits did correspond with one or 
more observed actions (200 out of 422). For Reader 2, this percentage was 61% (157 out of 
259). This implied that not all recorded visits did correspond with observed actions.

These results varied considerably between different analyses; these differences might be 
due to the circumstances. For example, in Analysis 3 of Cycle 1, only 42% of the observed 
actions at Reader 1 corresponded with a visit. This might be caused by the fact that the 
outside temperature was extremely high in a Dutch climate that day (maximum 36.7 ˚C).

These results are very promising; it appears to be possible to monitor drinking and eating 
behaviour of pigs by analysing readings of LF RFID tags. This method is easy to implement 
with relatively low costs. Firstly, because a single RFID tag can replace the two required 
visual Identification and Registration tags (one applied on the farm of birth and second 
one applied on the farm from where the animal is sent for slaughter). So a part of the 
labour costs for applying tags can be saved. Secondly, because in this case the RFID tags are 
also used to separate pigs with and without antibiotics treatment, the recorded behaviour 
can be applied to detect deviations in the drinking and eating behaviour. Multivariate 
processing can be used to include individual vs group behaviour, the climate in pen and 
added data like weight measurements. Automated detection can help the pig farmer in 
his daily management.

Conclusions

Passive LF RFID tags can be used to monitor eating and drinking behaviour of pigs. 81% of 
the observed visits to a drinking trough did correspond with recorded visits based on tag 
readings. This percentage was 97% for visits to an eating trough. Not all recorded visits 
did correspond with observed visits, filtering might be applied to select real visits. The 
variation in the results might be explained by differences in climate conditions.

These results imply that RFID readings can be used to measure animal behaviour. So, 
behaviour can be monitored for detection of diseases and aberrant behaviour.
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Abstract

In most modern pig production systems sows are confined in farrowing crates in a period 
from entering the farrowing compartment until weaning. This has a negative impact on 
welfare and health status of sows. One way to reduce this negative impact is to confine 
sows in crates only in a critical period for piglet survival; from the beginning of farrowing 
until a few days after farrowing. In order to address this challenge in this study, ear tag 
based acceleration data were modelled to provide two types of alarms. The experiment 
took place in the research farm of The University of Veterinary Medicine in Vienna, 
Austria. The sow herd counted 140 Large White sows in total with 53 animals included in 
the experiment. Each sow had an ear tag with an accelerometer sensor mounted on the 
ear. Acceleration data was modelled with Kalman Filtering and Fixed Interval Smoothing 
(KALMSMO) algorithm. It was possible to predict farrowing on the basis of increased 
activity in the validation dataset with 1st quartile of 5 h 22 min, median of 8 h 51 min and 
3rd quartile of 14 h 1 min before start of farrowing. Alarms indicating the need to confine 
a sow in a crate were raised with 1st quartile of 1 h 24 min after start of farrowing, median 
of 2 h 3 min and 3rd quartile of 5 h 38 min before start of farrowing. These results indicate 
that the developed model should be sufficient to provide early warning for approaching 
farrowing and secondary alarm indicating the need to confine a sow in a crate.

Keywords: parturition prediction; parturition detection; temporary crating; accelerometer

Introduction

It is a common practice in modern intensive pig husbandry to confine sows in crates, 
usually for 4-5 weeks, including at least the last few days before the onset of farrowing. The 
main reason for this practice is to improve piglet welfare by protecting new-born piglets 
from fatal or injurious crushing by the mother sow (King et al., 2019). These conditions 
prevent much of the nest-building behaviour (Hansen et al., 2017), an important part of 
behavioural repertoire in sows, which starts 24 h before parturition, is the most intense 
6 - 12 h before parturition and then decreases as parturition approaches (Castrén et al., 
1993; Wischner et al., 2009). Increased physiological stress for the sow is a consequence of 
confinement in a crate (Jarvis et al., 2006).

A concept of temporary crating has been developed as a response to concern about welfare 
of sows (Moustsen et al., 2012). According to this concept, sows should be temporarily 
confined in crates only in critical period of piglet lives, when piglet crushing is most 
probable, in the first 48–72 h after farrowing (Heidinger, B. et al., 2017; Marchant et al., 
2000). When the crate is opened the pen offers additional space for the sow, providing a 
compromise between the needs of the farmer, the sow and her piglets (King et al., 2019). 
This would allow the sow to stay not confined in crates, in a period of nest-building, at 
least 24 h before farrowing, which would have positive impact on sows’ welfare (Algers, 
1994). However, choosing the right moment to confine an individual sow in a crate in farm 
conditions in a way that makes nest-building possible without increasing the risk of piglet 
crushing, is challenging.
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Automated detection of increase in sow activity related to nest-building behaviour, with 
use of sensor technology provides a possibility to predict onset of farrowing. This might be 
useful in practical conditions for farm staff to shorten surveillance intervals by stockmen, 
and the pen could be prepared for an optimal start of the birthing process (for example, 
activating a heating source) (Traulsen et al., 2018). However, for the purpose of selecting the 
optimal time of sow confinement in a crate, in a pen with possibility of temporary crating, 
so that a sow could stay out of a crate in time of nest-building, there is a need for a reliable 
method to provide a “second level” alarm additionally to “first level” which indicates when 
she starts nest-building behaviour. We hypothesise that providing a “second level” alarm 
at the end of nest-building behaviour should allow confining a sow by farm staff in a crate 
after nest-building is finished but before farrowing starts. Then, the potential of farrowing 
pens with possibility of temporary crating to achieve a compromise between the needs of 
the farmer, the sow and her piglets could be realised.

Thus, the objective of this paper is to model dynamics of ear tag acceleration data in a 
period before the onset of farrowing to provide “first and second level alarms”. Developed 
techniques should be especially relevant for improving sow welfare in pens with possibility 
of temporary crating.

Materials and methods

Animals and housing

Experiments were conducted between June 2014 and May 2016 at the experimental farm 
of the University of Veterinary Medicine Vienna. In total, 53 Austrian Large White sows 
were included in the experiments. The sows were kept in three types of farrowing pens 
with possibility of temporary crating of the animals. Out of 53 sows, 18 were kept in SWAP 
pens (Sow Welfare and Piglet Protection) (Jyden, Vemb, Denmark), 18 in trapezoid pens 
(Schauer, Prambachkirchen, Austria) and 17 in wing pens (Stewa, Steinhuber, Austria). 
None of the animals included in the experiments was confined in a farrowing crate from 
introduction of the animals to farrowing pens until farrowing was finished.

The sows were introduced to the farrowing pens around five days before expected date 
of farrowing. The date was derived from usual gestation length of sows (114 days) which 
might vary from 105–125 days. Therefore, it was uncertain when a sow would farrow. The 
experimental period was from the introduction of sow to the farrowing room until the end 
of farrowing.

Video recording

Behaviour of sows was video recorded from introduction to the farrowing pens until 
weaning with 2D cameras in order to create a data set that could be labelled. Each pen 
was equipped with one IP camera (GV-BX 1300-KV, Geovision, Taipei, Taiwan) locked in 
protective housing (HEB32K1, Videotec, Schio, Italy) hanging 3 m above the pen, giving an 
overhead view. Additionally, infrared spotlights (IR-LED294S-90, Microlight, Bad Nauheim, 
Germany) were installed in order to allow night recording. The images were recorded with 
1,280 × 720 pixel resolution, in MPEG-4 format, at 30 fps. The cameras were connected 
to a PC on which Multicam Surveillance System (8.5.6.0, Geovision, Taipei, Taiwan) was 
installed. 

Data labelling

Recorded videos were manually labelled in order to create a reference data set on the basis 
of which further data analysis could be performed. In the first step of the labelling process, 
the time of the beginning of farrowing of each individual sow (n = 53) was labelled. The 
start of farrowing was defined as the point in time when the body of the first piglet born 
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dropped on the floor. In the second step, the time of birth of each of the piglets born in 
a litter was labelled. Time of birth of a piglet was defined as the point in time when the 
body of the piglet dropped on the floor. Finally, the time of birth of last piglet was labelled 
that indicated the end of farrowing. Labelling software Interact (version 9 and 14, Mangold 
International GmbH, Arnstorf, Germany) was used to label the images.

SMARTBOW® system 

The SMARTBOW® System (Smartbow GmbH, Weibern, Austria), comprised of ear tags, 
wall points and station, delivered information on acceleration of sensors attached to sows. 
The SMARTBOW® ear tag was equipped with an accelerometer sensor that measures 
acceleration in 3 axes (xyz). The specification of the SMARTBOW® system was described 
in detail in previous work by Oczak et al. (Oczak et al., 2016). 

Dataset

For the purpose of modelling acceleration data, 27 (50.9%) sows out of the total of 53 sows 
included in the experiment were chosen as a training set and 26 (49.1%) as a validation 
set (Table 1). The animals both in the training set and in the validation set were equally 
distributed between the wing, trapezoid or SWAP pens. Comparison of statistical measures 
of effectiveness of the algorithm on training and validation sets enables certain conclusions 
to be drawn on how well the algorithm could work on other independent datasets.

Table 1. Dataset

Pen type Training Validation

Trapezoid 9 9

SWAP 9 9

Wing 9 8

Total 27 26

Input variable

One variable was used as an input to estimate a model for prediction of farrowing and 
providing the first and second level alarms. In the first step total physical acceleration 
(magnitude) was estimated from three axes of accelerometer data (xyz) with an eq.

Acc(i) = √(x(t)2 + y(t)2 + z(t)2,   t = 1,2,..., N

In the above equation Acc(t) is total physical acceleration at a given time point . Three axes 
of accelerometer data are represented with x(t),y(t) and z(t) at a given time point t. 

In the second step total physical acceleration (magnitude) was smoothed with standard 
deviation calculated on a sliding window of 24 h with 15 min steps. Smoothing window 
of 24 h allowed elimination of variation in activity of animal related to diurnal rhythm. 
Steps of 15 min allowed sampling frequent enough for proposed application (Figure 1). The 
first 12 h of smoothed total physical acceleration was not used as an input to the model. 
The reason was that activity of a sow in the first hours after introduction to a farrowing 
pen is increased due to exploration of new environment (Figure 1). These first hours were 
eliminated to avoid variation in input variable not related to approaching farrowing or 
nest-building behaviour of sows. 
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Increased activity 
level in the first 
hours after the sow 
was introduced to a 
farrowing pen

Figure 1. Standard deviation calculated on sliding window of 24 h with 15 min steps. Period depicted 
in the plot starts from introduction of a sow to a farrowing pen and ends around three days after 
farrowing

Kalman Filtering and Fixed Interval Smoothing (KALMSMO) algorithm

Input variable (Figure 1) was used to estimate a trend in activity of each sow. Changes in 
trends (dynamics) in activity of sows were a basis for detection of approaching farrowing 
and providing first and second level alarms. To estimate the dynamics of activity of sows 
the Kalman Filtering and Fixed Interval Smoothing (KALMSMO) algorithm was used 
(Young, 2011) that comprise as special case the Integrated Random Walk.

Data analysis

In the first step, KALMSMO algorithm was applied to an input variable on a fixed interval of 
48 h to estimate a level of activity of each sow in a period when the animal is not preparing 
for farrowing. Nose to variance ratio (Q_nvr) was set on training dataset to 0.000001 to 
adjust the estimated trend to dynamics of sow’s activity.

In the consecutive steps the fixed interval was expended recursively by 15 minutes steps 
until the trend in animal activity changed to significantly increasing. This was indicated 
by input variable reaching higher value than upper confidence interval of estimated trend 
(Figure 2). At this time point the “first level” alarm informing about approaching farrowing 
was raised.

In the next step KALMSMO algorithm was applied to acceleration data on a fixed interval 
starting from time point of the “first level” alarm. In the consecutive steps the fixed interval 
was expended recursively by 15 minutes steps until the trend in animal activity changed 
to significantly decreasing. This was indicated by input variable reaching lower value than 
lower confidence interval of estimated trend (Figure 3). At this time point the “second 
level” was raised. This alarm could be interpreted as an indication to confine a sow in a 
crate. 
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Figure 2. “First level” alarm at 9 h before the onset of farrowing. Period depicted in the plot starts 12 h 
after introduction of a sow to a farrowing pen and ends around three days after farrowing

Figure 3. “Second level” alarm at 2 h before the onset of farrowing. Period depicted in the plot starts 
around 24 h before the onset of farrowing and ends around 24 h after it 

Performance of KALMSMO algorithm was evaluated by estimating the duration between 
time of first “second level” alarms and time of onset of farrowing. Analysis was performed 
with a commercial software package (MATLAB 2015b, The MathWorks, Inc., Natick, 
Massachusetts, United States) and function irwsm of CAPTAIN toolbox (Young et al., 2009) 
was used to fit KALMSMO algorithm. 

Results and discussion

Distribution of time of “first and second level” alarms was similar in training and validation 
datasets. In the training set median of “first level” alarms was 7 h before the onset of 
farrowing with first quartile of 5 h 6 min and third quartile of 9 h 59 min, while in the 
validation set median of “first level” alarms was 8 h 51 min with first quartile of 5 h 22 min 
and third quartile of 14 h 1 min (Figure 4). 
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These results are similar to results of previous work related to farrowing prediction where 
individual models were applied to sow activity data (Manteuffel et al., 2015; Pastell et al., 
2016; Traulsen et al., 2018). These “first level” alarms can be useful for practical purposes on 
farms as an alarm within that time window offers the opportunity for targeted attendance 
to the sow by stockpersons (Traulsen et al., 2018). 

Figure 4. Distribution of alarms in training and validation sets

In the training set median of “second level” alarms was 37 min before the onset of 
farrowing with 1st quartile of 3 h 8 min after the onset of farrowing and 3rd quartile of 4 
h 25 min before the onset of farrowing, while in the validation set the median of second 
“level alarm” was 2 h 3 min before the onset of farrowing with 1st quartile of 1 h 24 min 
after the onset of farrowing and 3rd quartile of 5 h 38 min before the onset of farrowing 
(Figure 4).

In both training and validation datasets, the median of the time of the “second level” 
alarm was before the onset of farrowing. This might give a possibility to confine a sow in 
a farrowing crate before the onset of farrowing without too much disturbance for most 
sows. Still, in many sows the “second level” alarm was raised after the onset of farrowing. 
This was probably due to the fact that many sows stay active in the beginning of farrowing, 
with some piglets already born. Thus, activity level itself, measured on the basis of ear tag 
acceleration data probably can’t provide ideal information when farrowing begins. 

Although the idea of providing a “second level” alarm was discussed before in scientific 
literature, for example, in the work of Traulsen et al. (2018), to our knowledge this is the 
first time that a method of this type has been published.

Conclusions

Modelling of changing trends in activity of sows before the onset of farrowing registered 
with ear tag acceleration data allowed generating “first and second level” alarms. The 
median time of “first and second level” alarms was before the onset of farrowing in both 
training and validation sets, with time of “second level” alarms occurring in most sows 
just before the onset of farrowing (2 h 3 min in validation set). This type of monitoring can 
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be useful to indicate when a farrowing pen should be prepared for approaching farrowing 
and when a sow should be confined in a crate in pens with possibility of temporary crating. 
Potential of farrowing pens with possibility of temporary crating to achieve a compromise 
between the needs of the farmer, the sow and her piglets might be better realised with 
application of developed monitoring system.
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Abstract

Hypothermia is a significant contributing factor to piglet neonatal mortality. This 
study assessed the use of an Infra-Red Thermography camera (IRT) to measure piglet 
temperature in the hour after birth, relative to the gold standard (rectal temperature; 
RT). At birth (06:00 ± 02:19 min post-partum), 32 piglets were dried, weighed, scored for 
growth retardation (GR; 0-3), and isolated in a plastic box. Immediately, IRT images were 
taken at a distance of approx. 1 m from directly above the piglet, followed by RT. The 
piglet was then returned to the farrowing pen, and the process repeated at approx. 15, 30 
and 60 min post-partum. Temperatures of the ear base and tip, and minimum, maximum 
and average back temperature (shoulders to rump) were extracted with Thermacam 
Researcher Pro 2.0. Pearson correlations between temperature measures were calculated, 
and the effect of sex, time, GR score, and weight were included in linear mixed models 
(SAS 9.4). Temperature at the ear base was most consistently similar to RT across time 
points (P > 0.05), with the ear tip, and minimum back temperature most often different. In 
general, the worse the GR score, the lower the temperature; ear base and RT were lower in 
GR 3 piglets than all others (P < 0.05). RT was correlated with ear base at more time-points 
(3) than any other measure. An IR image from the base of the ear taken during the hour 
after birth could be a reliable, non-invasive method of assessing piglet temperature, and 
identifying piglets with a lower thermoregulatory ability.

Keywords: Infra-red thermography, rectal temperature, thermoregulation, growth 
retardation

Introduction

Hypothermia is a cause of neonatal mortality in piglets. Interventions such as drying 
piglets at birth and placing them near a heat source (heated lamp or mat) helps them 
to increase their body heat quickly and avoid hypothermia. In addition, providing energy 
supplement should enhance the thermal status of piglets (Muns et al., 2010). However, 
providing energy to piglets is rather costly and labour intensive. Thus piglets most in need 
of supplementation should be identified, as well as the time at which they need it most 
(e.g. if there is a time when their temperature is likely to drop). One method which can be 
used to carry out these objectives is to monitor piglets’ temperature during the first hour 
post-partum.

The use of a digital thermometer for measuring rectal temperature has been widely 
validated and used in research on piglet viability. Recently, infrared thermography 
imaging has gained interest as a non-invasive technique to measure thermal status of 
piglets. Soerensen et al. (2014) validated the use of the human skin emissivity value of 
0.98 for infrared skin measurements on sows. However, the authors highlighted that 
hairy skin areas or skin with no blood perfusion would have a lower emissivity value. A 
validation study was conducted by Kammersgaard et al. (2013), in which thermal images 
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and rectal temperatures of piglets were taken at different times between birth and 48 h 
post-farrowing. Tabuarici et al. (2012) found that the temperature of the base of neonatal 
piglets’ ears had a strong positive correlation with their rectal temperature, which suggests 
this part of the body as being comparable to rectal temperature when assessing thermal 
status using infra-red thermography.

However, even if thermal imaging has good potential for assessing thermal status of piglets, 
it may not be able to fully replicate the accuracy of rectal temperature recording to acquire 
core body temperature. This is due to the potential confounding effects of environmental 
temperature, huddling of piglets, and presence of birth fluids etc. Indeed, Llamas Moya 
et al. (2006) found that skin temperature was not correlated with birth weight, but was 
influenced by the huddling behaviour of the piglets and their location relative to a heat 
source. It is also possible that birth fluids could influence measurements, as the emissivity 
of wet skin is different from emissivity of dry skin. It is therefore advised that piglets 
should be dry before taking thermal images and that their behaviour (huddling, feeding, 
walking) should be observed.

The present study investigated the use of an Infra-Red Thermography camera to measure 
piglet temperature at several time points during the hour after birth, relative to the rectal 
temperature (gold standard). In addition, this study aimed to identify characteristics of 
piglets failing to thermoregulate within 1 h post-partum.

Material and methods

Data collection

This study was conducted in the pig research facilities of Teagasc Moorepark Research 
Centre, in Fermoy, Co. Cork, Ireland. Piglets were born in conventional farrowing pens (250 
× 181 cm) containing a sow crate (225 × 60 cm), a heat pad (155 × 37 cm; 2/3 covered), a 
water cup and a feeder for piglets. Minimum and maximum room temperatures were 
monitored daily. Room temperature was maintained at around 23 °C around farrowing 
and decreased by 0.5 °C/week until weaning. 

At birth, 32 piglets (from five litters) were dried and isolated in a plastic box prior to 
acquiring the first thermal image (at 06:00 ± 02:19 min post-partum), using a FLIR T420 
Infra-Red camera. The plastic box represented a controlled environment for the IRT 
technique, since the temperature and the air flow were the same for all piglets inside 
this box. Before acquiring pictures, reflected room temperature was measured as the 
mean temperature of a crunched aluminium foil (emissivity = 1), and air temperature 
was recorded at the time of each image. These parameters are of high importance for the 
correct analysis of the thermal images.

Rectal temperature was recorded immediately after the first image was taken, and piglets 
were then weighed and scored for growth retardation (GR; 0-3). The GR score was attributed 
based upon on the number of characteristics associated with intra-uterine growth 
retardation which were displayed by the piglets. These characteristics were classified by 
Hales et al. (2015) as having a dolphin-shape head, bulging eyes and wrinkles around the 
snout. A score of 0 indicated no GR while a score of 3 indicated severe GR. 

Thermal images were acquired at 15, 30 and 60 min post-partum, always followed by the 
taking of a rectal temperature. Images of the piglets’ backs were taken at 1 m distance from 
the piglet with an angle of 70˚ (Figure 1a). Thermal images were always taken before rectal 
temperature in order to minimise handling of the piglets, and potential transmission of the 
experimenter’s heat. In addition, the experimenter wore plastic gloves to further ensure 
insulation of her hands’ heat and minimise handling bias. The time spent handling the 
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piglets was recorded, especially at birth when the piglets had to be dried. Piglets’ behaviour 
was recorded in between each image acquisition. In particular, the duration of walking, 
suckling and huddling behaviours were recorded, as well as the time spent on the heat mat.

Figure 1. (a) Schematic representation of the positioning of the camera for image acquisition and (b) 
Example of the infra-red thermography images acquired from piglets

Thermal image analysis

Thermal images were processed with Thermacam Researcher Pro 2.0. Point measurements 
were placed at the bases and the tips of piglets’ ears, and an area was drawn on their 
back between the shoulders and the rump (see Figure 1b). From this area, the minimum, 
maximum and average back temperatures were recorded. Temperature data were then 
entered in an Excel file and analysed normally.

Statistical analysis

Data were analysed using the software SAS 9.4. The statistical unit was the piglet. Pearson 
correlation tests were performed to investigate the relationship between rectal temperature 
and temperatures obtained from the thermal images of the piglets’ ears (tip and base) and 
back (minimum, maximum and average). General Linear Models (GLM, PROC MIXED) were 
used for the investigation of effects of GR score and time post birth on temperature data. 
The random effect of sow and the repeated effect of time were taken into account in all 
models. The effect of sex and weight were initially included in all models as covariates, but 
only sex was kept in the model analysing the minimum temperature of the back.

Results and discussion

Correlations 

Table 1 presents the correlations between rectal temperature and the thermal data acquired 
from the images at different time points. Temperatures of the ear base were positively 
correlated with rectal temperatures at birth, 30 and 60 min post-partum. Temperatures 
of the ear tip were positively correlated with rectal temperatures at birth and 30 min 
post-partum. The maximum and average temperatures of the back area were positively 
correlated with rectal temperatures at 30 and 60 min post-partum. At 15 min post-partum, 
none of the data from thermal images were correlated to the rectal temperature. 

These results suggest that back and ears are areas of interest for an approximation of 
the body temperature using infra-red thermography. Nevertheless, when looking at the 
evolution of thermal status of piglets across time, there seems to be differences between 
information obtained from the rectal temperature and information obtained from 
thermal imaging. These differences possibly reflect different mechanisms at play in the 
thermoregulation process (e.g. heat evaporation and relocation).
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Table 1. Pearson correlations coefficients between rectal temperatures and data from thermal 
images (temperature of the ear tip, ear base, and minimum, maximum and average back 
temperature) obtained at birth and 15, 30 and 60 min post-partum (pp). *P < 0.05, **P < 0.001

Ear tip Ear base Min. back Max. back Average back

Birth 0.52* 0.47* 0.19 0.29 0.30

15 min pp 0.16 -0.04 -0.14 0.00 -0.04

30 min pp 0.48** 0.88** 0.24 0.82** 0.75**

60 min pp -0.17 0.61** 0.21 0.59** 0.56**

Factors influencing thermal status

There was an effect of time on all the temperature data, but this effect was different 
depending on the measurement type. Rectal temperature decreased between birth and 
15 min post-partum, remained low until 30 min post-partum, and then increased so that 
it was similar to that at birth by 60 min post-partum (overall time effect: F3,71.5 = 39.33, P 
< 0.001; Figure 2). All back temperatures (Table 2) and ear base temperature (overall time 
effect: F3,72.6 = 34.18; Figure 3a) increased over time. However, the temperature recorded at 
the ear tip of piglets decreased between birth and 15 min post-partum, and then increased 
(overall time effect: F3,75.2 = 7.66; Figure 3b). These results could indicate that, in the course 
of thermoregulation process, piglets reallocated heat from the extremities to the vital 
organs to maintain their (core) body temperature (Whittow et al., 1962).
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Figure 2. Mean (± S.E.) rectal temperature of neonatal piglets during the first hour after birth. Different 
letters indicate significant differences (A,B P < 0.001)

Table 2. Mean (± S.E.) maximum, minimum and average temperatures of the back area of the 
piglets, according to the time after birth. Different superscript letters indicate significant differences 
(a,b P < 0.05; A,B P < 0.001)

Birth  
(6 min)

15 min  
post-partum

30 min  
post-partum

60 min  
post-partum F statistics P-value

Max.
34.3 A 

(± 0.36)
34.9 A 

(± 0.34)
35.8 B 

(± 0.34)
36.9 C 

(± 0.34)
F3,69.3=35.59 < 0.001

Min.
29.6  

(± 0.35)
28.7 A 

(± 0.29)
29.2 a 

(± 0.28)
30.3 Bb 

(± 0.28)
F3,75.4=6.31 < 0.001

Avg.
33.1 A  

(± 0.40)
33.4 A 

(± 0.39)
34.1 B  

(± 0.39)
35.2 C 

(± 0.39)
F3,73.6=37.55 < 0.001
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Figure 3. Mean (± S.E.) temperature during the first hour post-partum at the ear base (a) and ear tip (b) 
of neonatal piglets. Different letters indicate significant differences (a, b P < 0.05; A, B P < 0.005)

Overall, the level of growth retardation affected rectal temperature (F3,24.6 = 7.75, P < 0.001; 
Figure 4a) and temperature of piglets’ ear base (F3,24.6 = 4.9, P < 0.01; Figure 4b), and the 
maximum and average temperature of piglets’ back (Table 3). Piglets with the most severe 
level of growth retardation had lower temperatures than piglets with no growth retardation 
or an intermediate level of growth retardation. This suggests that piglets with severe 
growth retardation might have greater difficulty in maintaining good thermoregulation 
compared with piglets who are not affected by growth retardation. This could be due to 
their smaller size, with consequently lower energy reserves at birth and a greater surface 
to body mass ratio which increases heat loss (Herpin et al., 2002). 
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Figure 4. Mean (± S.E.) rectal temperature (a) and temperatures of ear base (b) of piglets according 
to their growth retardation (GR) score (0 = no GR, to 3 = severe GR). Data presented are the average 
of all temperatures taken during the first hour post-partum. Different letters indicate significant 
differences (P < 0.05)

Table 3. Mean (± S.E.) maximum, minimum and average temperatures of the back area of the 
piglets, according to their growth retardation score (score 0 = no growth retardation, score 3 = severe 
growth retardation). Different superscript letters indicate significant differences (P < 0.05)

Score 0 Score 1 Score 2 Score 3 F statistics P-value

Max. 35.6 (± 0.40) 35.9 (± 0.36) 36.1 (± 0.34) 34.3 (± 0.52) F3,23.7 = 4.61 <0.05

Min. 29.2 (± 0.33) 29.5 (± 0.28) 29.9 (± 0.23) 29.3 (± 0.52) F3,40.6 = 1.1 NS

Avg. 34.2 (± 0.44) 34.2 (± 0.41) 34.4 (± 0.40) 33.0 (± 0.53) F3,25.8 = 3.78 <0.05

Conclusions

Infra-red images of the base of the ear of neonatal piglets seem to be a valid non-invasive 
measure of their thermal status. Images taken during the first hour post-partum could be 
used to determine piglets with difficulties to ensure their thermoregulation. The benefits 
of using IRT are that the measure is non-invasive, and thus likely to be less stressful 
for piglets than taking of rectal temperature. This is especially important as it is the 
piglets which are likely to be more vulnerable (i.e. having difficulty thermoregulating) 
that the measure is attempting to identify. Use of this measure could prove important in 
determining which piglets need special attention after birth (e.g. energy supplementation, 
split suckling, etc.) and thus contribute to reduced mortality and improved welfare for 
vulnerable piglets. A disadvantage of the method is the cost of the equipment needed to 
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carry out the measure, but this may break even with improvements in technology, and 
the potential cost savings associated with reduced mortality. Moreover, besides its use in 
commercial pig farming, there is ample scope for IRT to be used in a research setting as 
an alternative to rectal temperature, which not only reduces stress for piglets, but also 
contributes to promotion of the 3R’s (reduction, replacement and refinement) in animal 
research.
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Abstract

Animal welfare is important and Europe has invested a lot in methods to score or monitor 
animal welfare in commercial livestock houses. A main objective of Precision Livestock 
Farming (PLF) is to deliver a tool for active mangement of livestock to improve animal 
welfare and health and to make livestock farming more animal economically, socially 
and environmentally sustainable. The importance of well managed animal welfare is 
not limited to the ethical viewpoint but is also crucial to realise a more efficient process 
to produce animal products. When considering the metabolic energy balance in a 
homeothermic living organism, there are different components: basal metabolism, the 
thermal component, the physical component related to movement or delivering power, 
the production term (meat, milk, eggs) and finally the mental component. When applying 
the stress monitoring, developed for humans, on animals we see that we can monitor 
frustration of horses in real-time. This indicates that real-time animal welfare monitoring 
based upon physiological signals becomes a realistic pathway.

Introduction 

Being a technology driven method PLF takes time for technical people to tune it to the 
essential part which is the animal. Meanwhile it is a challenge for so called ‘animal people’ 
(farmers, veterinarians, animal scientist, nutritionlists, immunologists, etc.) to embrace the 
potential that this technology has to offer. Animal scientists use many indicators related to 
a whole range of dissorders from abnormal behaviour, diseases, production failure to poor 
emotional states (Botreau et al., 2007). Scientists have developed an overall assessment by 
manual scoring of animal welfare in livestock houses in the field. This method is interesting 
as a reference method or as a gold standard or for audio-visual labelling of animals in 
the livestock house. The approach is however not applicable for continuous monitoring of 
animal welfare since the scoring is done by human observers (Botreau et al., 2009). 

Since 2003, when the first ECPLF2003 was organised, the proceedings of the eight bi-annual 
conferences count over 1,000 publications. Many more per-reviewed papers have been 
published from which a high number measure components related to animal welfare. 
With the use of cameras, microphones and sensors, several methods have been developed, 
tested and validated to monitor components related to animal welfare. For broilers it was 
shown that animal feature variables like distribution and activity, measured by cameras, 
are useful to detect over 95% of all noted problems in broiler houses. Gait analysis tools 
were developed by using cameras and accurate feed intake, monitoring was realised with 
cameras while vocalisations were analysed for abnormal sounds (Aydin, 2017; Du et al., 
2018). For fattening pigs, continuous sound analysis was developed to detect infection and 
this became a successful commerical product (Berckmans et al., 2015).

For pigs there were many examples of using PLF technology monitoring animal welfare 
related components such as detection of aggression (Oczak et al., 2014), gait analysis, 
weight and water intake (Viazzi et al., 2014; Oczak et al., 2014; Kashiha et al., 2013 and 
2014; Ismayilova et al., 2013). For cows, PLF systems for body condition scoring, lameness 
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monitoring, mastitis and ketosis monitoring and feed intake were developed (Van Hertem 
et al., 2014). We have to confess that most of the technologies so far did not make it yet to 
large scale applications in livestock houses. So far we have no overall solution to monitor 
animal welfare in real-time with a scientically based method. The challenge remains to 
get an overall animal welfare monitor based upon objective measurements. 

The objective of this paper was to test whether the real-time monitoring of the metabolic 
energy balance offers opportunity for continous and real-time monitoring of the mental 
state of animals while they are active.

Materials and methods

Experimental protocol 

The experimental protocol was checked and approved by the ethical commission of the 
Catholic University of Leuven and the Purdue Animal Care and Use committee (Protocol 
#111200040). Experiments were done on two individually-housed Large White x Yorkshire 
pigs, each weighing 20 kg. The pig was placed in a Pig Turn experimental pen (DeBoer et al., 
2015) with enough space (1.12 m2) for an individual animal while wearing a sensor integrated 
into a harness (Zephyr BioHarness 3). The animal’s movement was measured with a 3D 
accelerometer positioned on the belly of the pig (100 Hz, ±16 G) while heart rate was measured 
with a belt around the torso just behind the front legs (1 Hz, 25-240 BPM, +- 1 BPM accuracy). 
Video recordings were taken during the entire experiment to capture animal responses.

During three consecutive days, four experiments were done per day where two types of 
stressors were applied: a negative stressor and a positive stressor. The negative stressor 
was a loud sound (120 dB) played for two seconds. The positive stressor was a towel thrown 
in the test facility as a toy for the pigs to play with (see Table 1). 

Table 1. Time schedule of the different stressors

9 AM 9:30 AM 10 AM 10:30 AM

Day 1 Scare (1) Towel (1) Scare (2) Towel (2)

Day 2 Scare (1) Towel (1) Towel (2) Scare (2)

Day 3 Towel (1) Scare (1) Scare (2) Towel (2)

Method: decomposition of heart-rate in different components

A gold standard for measuring stress, beside questionnaires for humans and audio-
visual scoring of animals, is a combined measurement of EEG, ECG, respiration rate, skin 
conductivity, blood analysis and/or saliva analysis. Several methods have been tested to 
measure stress based upon physiological data and most of them still need a combination 
of heart rate with respiration rate or more variables (Hovsepian et al., 2015).

In the past, it was already shown that there is a dynamic relationship between the central 
nervous system and the expression of emotions and that physiological variables offer 
potential for monitoring stress (Darwin, 1872; Porges, 1995). The decomposition of heart 
rate components in mental and physiological or physical components (basal metabolism, 
movement, power, production, thermal component) remains a challenge on moving 
subjects, which leads to the consequence that most methods for stress monitoring based 
on heart rate are limited to non-moving subjects.

We use an algorithm to decompose the total heart rate into three different components: 
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the baseline, the physical component and the mental component. The assumption in the 
method is that the animal is acting in the aerobic zone of metabolic energy production. 
This means that the inhaled air is brought into the blood in the lungs. Then the heart is 
pumping the blood to the cell level where the metabolic energy is produced. This means 
that the level of heart rate is a measure for the possible total production of metabolic 
energy. This metabolic energy is used for the basal metabolism (HRBM), for the thermal 
component (HRTHERM) to keep the body at constant temperature, for the movement energy 
(HRMOV), for production (HRPROD) and for the mental component (HRMENT). This can be written 
as:

HRTOTAL = HRBM + HRTHERM + HRMOV + HRPROD + HRMET                                               (1) 

Before and during the experiment, the temperature around the animal was kept constant 
and since this was a short-term experiment we assumed that the production term did not 
vary enough during the experiment. We can simplify the equation (1) leading to (2):

HRTOTAL = HRBM +  HRMOV + HRMENT                                                                    (2) 

Since every animal is individually different and time varying in the responses to different 
stressors, the equation must adapt to the individual animal and for this individual be 
dynamically updated in time.

The measured variables are HRTOTAL and MOVEMENT. The HRBM, normally estimated during 
night sleep, was estimated here before and during the experiment since that is the non-
varying baseline within the signal of total heart rate. 

By monitoring in a synchronized way, animal movement using a 3D accelerometer and 
heart rate, the dynamic responses of total heart rate and movement to stressor can be 
measured. 

To quantify the dynamic response of heart rate to movement during the responses to 
stressors, a single-input single-output (SISO) linear discrete transfer function model was 
fitted to the data, using Equation 3:

y(k) = 
B(z-1) 
A (z-1)

 
 u(k - δ) + ξ(k)                                              (3)

The terms A(z-1)=1 + a1 z-1 + ⋯ + an z
-n and B(z-1) = b0

 + b1
 z-1 + ⋯ + bm z-m are the polynomials 

of the transfer function. In these terms the a1,…, an are the n a-parameters of the nth order 
A polynomial, and b0,…, bm are the m+1 b-parameters of the mth order B polynomial. z-1 is 
the backward shift operator, y is the output (heart rate) and u is the input (movement). k is 
the time instant of the data point, δ is the time delay, and ξ is the noise of the output error 
model, which is assumed to be white. By estimating the physical component and basal 
metabolism of heart rate we finally can also identify the mental component HRMENT 
showing the mental response to the offered stressors. For a detailed description of this 
method we refer to the dynamic analyses as used for mental monitoring for humans 
(Berckmans et al., 2007). 
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Figure 1. Top: Heart rate and estimated components of Pig 2 on Day 2. Bottom: Raw activity and heart 
rate as measured by the Zephyr Bio Harness 3

Analysis of the mental component of heart rate to positive and negative stressors

The analysis was focused on the response of the mental component in heart rate to the 
different stressors. The moment at which each stressor was applied was determined based 
upon using labelled videos where the stressor was visible. The data were segmented in blocks 
around each stressor (between two minutes before and two minutes after). Visual qualitative 
analysis of each response was grouped per pig and per type of stressor (positive or negative).

A statistical analysis was performed for each pig, per type of stressor. The monitored 
mental heart rate response was grouped together in three groups. The first one contained 
the data from one minute before application of the stressor until the moment of stress. 
The second group contained the data from the moment of stress until one minute after. 
The third group contained the data from one minute after application of the stressor until 
two minutes after.

It was statistically tested whether groups were significantly different. With the Shapiro 
Wilks test, the normality of each group was tested (Shapiro et al., 1965). The Friedman test 
was used to compare three matched groups from a non-Gaussian population (Friedman, 
1937). Finally, the Wilcoxon test was used to check whether at least one group was 
significantly different in a post hoc test (Siegel, 1956).

Results and discussion

Response of mental heart rate component to the negative stressor

The applied negative stressor (loud sound) generated in both pigs a clear increase in the 
mental component in heart rate after the loud sound was played. Soon after it went back 
to baseline levels (see Figure 2). The mental component of heart rate can be explained by 
the animals being scared and this was clearly measurable in real time with sensors on the 
animal.
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Figure 2. Response of mental component in heart rate of both pigs to the negative stressor (scare with 
loud sound, applied at time 0)

Response of mental heart rate component to the positive stressor

The applied positive stressor was the access to a towel that generated a playing of the 
pigs with towel. There was a small increase in the mental component after the towel was 
thrown in the pen, and the pigs starts playing with it. Most clearly visible for Pig 2 (see 
Figure 3).

Figure 3. Response of mental component in heart rate of both pigs to the positive stressor (playing 
with towel thrown in the pen at time 0)
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Quantitative statistical analysis of mental responses to negative and positive stressors

The short loud sound as a negative stressor generates a scared response with a 
corresponding mental heart rate response. The mental component in heart rate increased 
on average by 13.3 BPM for Pig 1 and by 6.2 BPM for Pig 2 after applying the scare stressor. 
This increase was found to be significantly different (Figure 4).

After the negative stressor was stopped, the mental component decreased again by on 
average 9.4 BPM and 4.4 BPM for Pigs 1 and 2, respectively.

The access to a towel as a positive stressor results in the pigs playing with the towel. There 
was an increase in the mental component when the pigs started playing with the towel that 
was thrown in their pen. In the two minutes after the towel was given, the mental heart 
rate increased on average 6.3 BPM and 8.5 BPM for Pigs 1 and 2, respectively, compared to 
the period one minute before the stressor was applied (see Figure 4 and Table 2). 

Figure 4. Response of mental component in heart rate to negative (left) and positive (right) stressor

Table 2. Response of mental component in heart rate (Mean ± SD, BPM) to external stressors for 
two pigs. abc indicate significant differences between the groups (p < 0.01, a: 1 minute before, b: 1 
minute after and c: two minutes after)

Scare Towel

1 min. before 1 min. after 2 min. after 1 min. before 1 min. after 2 min. after

Pig 1 18.8 ± 8.0bc 32.1 ± 16.6ac 22.7 ± 12.4ab 15.7 ±± 6.9c 16.8 ± 7.8c 22.0 ± 7.2ab

Pig 2 24.7 ± 10.9b 30.9 ± 15.0a 26.5 ± 8.4 25.1 ± 12.8bc 29.1 ± 11.9ac 33.6 ± 14.6ab

Conclusions

It was possible to estimate the mental component in heart rate of pigs while they were 
moving using wearable sensors on the body of pigs. Two pigs were exposed to a negative 
and a positive stressor to test whether the method allows to measure mental responses 
to stressors.

Both pigs respond clearly to the negative stressor. In the period of one minute after the 
stressor was applied, the mental component of heart rate increased significantly (P < 0.01) 
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with on average 13.3 BPM and 6.2 BPM for Pigs 1 and 2 respectively, compared to the 
period one minute prior. In the period of two minutes after the stressor was applied, the 
mental component decreased by on average 9.4 BPM (P < 0.01) and 4.4 BPM for Pigs 1 and 
2, respectively. The mental response to this applied negative loud sound as a stressor was 
a fast response, only detected immediately after the stressor is applied.

The mental component heart rate of both pigs also responded to the positive stressor, but 
in a different way. In the period of two minutes after the stressor was applied, the mental 
component increased significantly (P < 0.01) with 6.3 BPM and 8.5 BPM for Pigs 1 and 2, 
respectively, compared to the period one minute prior to the stressor.

The mental response to the towel as a positive stressor generated a slow response, but 
this may be affected by the experiment. The towel was not removed, so the pigs were 
continuously playing with it, as opposed to the negative stressor, which was only applied 
for a very short period (2 s).
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Abstract

Developments in Precision Livestock Farming (PLF) offer opportunities for automatic animal 
monitoring technology to enable farmers to detect and control the health and welfare 
status of their animals at any given time. This paper aims to form a discussion around 
the proposal of an automatic cattle monitoring system which uses camera technology to 
identify important attributes relating to animal health and farm management at a herd 
level as well as at the level of the individual animal. Such a system will allow the farmer’s 
eyes and ears to be replaced wherever a camera can be placed sufficiently close to monitor 
individual animals.

The system aims to have the capability to recognise cow features from her visual 
appearance alone which allows for more independent operation and more flexible 
installation requirements. The system should operate in real-time and be sensitive to the 
smallest deviations in appearance. This means the farmer can be promptly alerted to 
potential health issues enabling quicker remedy. The accurate measurement of individual 
cow nutritional requirements has huge potential when coupled with precise, labour-saving 
automatic concentrate feeding systems and parlour systems. It opens the possibility for 
the relationship between feed nutrients and the attributes measured by the system to 
be discovered for each individual cow. This results in more efficient use of concentrates 
exactly in accordance with the cow’s needs. The system is an essential element of a PLF 
approach which aims to improve efficiency, animal welfare and environmental friendliness 
in farming.

Keywords: real-time recognition, image analysis, computer vision

Introduction

The dairy sector is constantly evolving in response to rapidly increasing demand for high-
quality dairy products as well as increasing social pressure for better efficiency and 
environmental sustainability. These changes have resulted in a demand for technologies 
that can reduce costs and labour inputs while increasing farm productivity. An 
important aspect of farm automation that is currently being researched is the area of 
automated animal monitoring by computer vision. In this paper, we discuss the essential 
requirements of an automatic cattle monitoring system with the ability to identify each 
animal as well as important attributes relating to cow health and performance. Accurate 
visual verification of animal ID in feeding bails and milking parlours will ensure correct 
integration with existing automation equipment such as on-cow activity monitoring 
devices, yield monitoring sensors, automatic feeding systems and automatic drafting 
systems. Long-term monitoring of each animals’ attributes can yield key information for 
animal husbandry, ethological studies and the development of PLF tools.

Precision Livestock Farming (PLF) can be defined as real-time monitoring technologies 
aimed at managing the smallest manageable production unit’s temporal variability, known 
as ‘the per animal approach’ (Halachmi and Guarino, 2016). Automatically monitoring 
cattle by intelligent camera surveillance technology could be one of the most important 
works in PLF. With intense advancements in computer vision and AI, there has arisen an 
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array of opportunities for these technologies to transform the agricultural sector. This 
paper will discuss these advances and how they can improve efficiency particularly in the 
application of computer vision in PLF. 

Artificial Intelligence and Computer Vision in Dairy Farming

Artificial Intelligence is one area which has advanced significantly in recent years and there 
is an opportunity for this new technology to be applied in a wide array of applications in PLF. 
Intelligent camera surveillance algorithms can be divided into three parts: object detection 
and identification algorithms, object tracking algorithms, and behaviour analysis algorithms. 
The core element of any of these algorithms is a feature extractor. Up to recent times, the 
identification of pose-invariant features of objects required many hours of fine-tuning by 
human experts for each application. For many decades, classical computer vision techniques 
advanced very slowly until they were superseded by deep learning in 2015. The development 
of Convolutional Neural Networks (CNNs) has had a tremendous influence in the field of 
Computer Vision (CV) in recent years and is responsible for a big jump in the ability to 
recognise objects. This burst in progress has been enabled by an increase in computing 
power, as well as an increase in the amount of data available for training neural networks. 

3D Vision

Recent works involving the use of 3D vision in agricultural applications have been reviewed 
based on the recent economic affordability and technological capabilities on offer from optical 
3D sensors (Vázquez-Arellano et al., 2016). Image segmentation of traditional 2D images is 
problematic in real farm conditions. The use of depth information from a 3D camera makes 
changing backgrounds and shadows less intrusive and enhances the automatic segmentation 
of different cows as demonstrated by van Nuffel et al. (2015). The sensitivity of the camera 
to natural light, frame rate and field of view are specifications which are continually being 
upgraded by advancing technology in the field (O’Mahony et al., 2017).

The precision and applicability of measurements gathered from a 3D camera (cameras 
being placed approximately 0.5 m from the cow) were assessed by (Salau et al., 2017) 
where teat lengths and heights of ischial tuberosities, i.e. the pins of the cow’s pelvis, were 
calculated from the 3D coordinates. Measurements taken with cattle standing still showed 
a standard error range from 0.7 - 1.5 mm for teat length and 2.4 - 4.0 mm for the heights of 
the ischial tuberosities. The accuracy decreases when the animal is moving to 1.8 - 3.2 mm 
and 14 - 22.5 mm respectively, for each type of measurement. Therefore, the technology is 
practical for determining accurate measurements for assessing traits in cattle.

Animal Monitoring Applications

Real-time identification of cattle attributes is challenging, but the increasing availability 
and sophistication of technology make automated monitoring of animals with computer 
vision practicable. The following section reviews computer vision-based approaches and 
algorithms which have been implemented for automated scoring of cattle with respect to 
animal identification, lameness and Body Condition Score (BCS) classification.

Animal Identification

Automatic animal identification can be made through different methods which can be 
classified as mechanical, electronic and biometric. 

Typical mechanical methods include branding, tattoos, ear notching, and ear tags and do 
not lend themselves to automation. RFID is the leading form of electronic identification 
in dairy cattle, in fact, Electronic Identification (EID) which uses RFID is mandatory for 
breeding sheep in Ireland and for cattle in some EU member states. As well as ear tags, 
devices such as boluses, neck-mounted tags and leg-mounted tags are also used as RFID 
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transponders. The latter two devices offer greater signal strength and reliability at the cost 
of greater size and price. RFID transponders can also possibly fail and become detached 
from the animal and incur a fixed cost per animal.

Biometric identification methods including iris scanning, retinal images and DNA analysis 
are intrusive to animals and incur a much higher cost compared to other approaches. 
Biometric identification methods used for animal identification include iris scanning, 
retinal images and DNA analysis. Machine Vision has been used in preliminary studies to 
read ear tags (Velez et al., 2013), identify facial features (Kumar et al., 2015), identify muzzle 
features (Awad, 2016; Kumar, Singh, et al., 2017), identify 3D shape features (Rind Thomasen 
et al., 2018) and identify cows from overhead (Andrew et al., 2018), (Bercovich et al., 2013).

As summarised by Andrew et al. (2018), algorithmic biometric identification was first proved 
on muzzle images using traditional feature-description algorithms such as Scale-Invariant 
Feature Transform (SIFT) or Speeded-Up Robust Features (SURF). These semi-automated 
solutions were improved by approaches which detect the muzzle within the image and 
classifying on the detected regions alone to achieve 93.3% identification accuracy. Later 
Kumar, Pandey et al. (2017) implemented deep learning to achieve an accuracy of 98.99%.

However, identification by muzzle pattern requires a high-resolution camera, good lighting 
and a camera to be placed in close proximity to the cow meaning it is not very practical. 
By placing the camera further away and performing identification from cattle facial 
representations based on Local Binary Pattern (LBP) texture features, recognition rates up 
to 95% have been achieved (Cai and Li, 2013).

Cattle identification has also been performed based on tailhead images, allowing the camera 
to be moved further still from potential fouling and damage. Bercovich et al. (2013) formulate 
a novel body shape signature from the coat patterns of Holstein Friesian cattle and use 
Fourier descriptors to achieve an accuracy of 99.7%. In more recent work, Andrew et al. (2018) 
demonstrate that computer vision pipelines utilising deep neural architectures are well-
suited to perform automated detection of Holstein Friesian cattle (achieving 86.6 accuracy) 
as well as individual identification (achieving 98% accuracy) in agriculturally relevant setups, 
i.e. in indoor cattle housing and in outdoor situations with the use of a drone. 

While machine vision methodologies for cattle identification have been demonstrated 
in the literature, the methods developed to date require a lot of human effort to align 
the reference cow IDs with the images used to train the system. Another critique is 
that while identification by overhead cameras is very practical, many of the systems 
developed have only been proven on Holstein Friesian cattle which are distinctive for 
exhibiting individually-unique black & white (or brown & white) coat patterns, patches 
and markings over their bodies. Such a system is unlikely to be effective on cattle breeds 
without individually-unique coat patterns. Although visual identification systems are 
advantageous in terms of applicability, cost-effectiveness and precision, most of the 
image processing algorithms used in these solutions are influenced by external conditions 
such as variable light conditions, reflections and lens fouling. Changes in animal posture 
and change in size according to distance are other possible issues. To overcome these 
challenges, 3D cameras seem to offer a solution and preliminary work done by Arslan et 
al. (2014) proves the applicability of 3D cameras to the problem albeit with a small test set.

Although using biometric identifiers has proved suitable for use in computerised 
identification systems, it raises additional challenges in terms of identifier capturing, 
identification accuracy, processing time, and overall system operability (Awad, 2016). For 
instance, in a purely automatic deployment of a cattle identification system requires for 
the ground truth cow IDs to be established by some means. One solution is to interface 
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with an RFID Identification System but who is to say that the IDs retrieved from this system 
are accurate? If erroneous IDs are collected the system is thrown off, therefore there needs 
to be some means of manual intervention to automatically identify and alert the farmer to 
erroneous matches between the vision system and the external reference system.

Lameness Detection

As lame cows produce less milk and tend to have other health problems, finding and 
treating lame cows is very important for farmers. Lameness persists as a specific welfare 
concern and although the true level of incidence it is unknown, the typical average value 
is 50 limb cases per 100 cow-years (Archer et al., 2010).

The active monitoring and prevention of lameness at a herd level often requires the 
involvement of a vet or some other trained observer. However, lame cows are often 
undiagnosed until the problem has become severe. Sensors (vision and non-vision) that 
measure behaviours associated with lameness in cows can help by alerting the farmer 
of those cows in need of treatment. Automated monitoring solutions avoid animal 
interference or handling, and observer bias. Moreover, automatic sensing can spot things 
humans cannot by accumulating observations over extended periods of time, in some 
situations 24 hours a day, in contrast to human observers who look at animals for a 
few minutes or even seconds. The state-of-the-art in automatic lameness detection is 
summarised in Table 1 under categories such as the size of the test dataset, the degree of 
automatization, the type of camera and the accuracy achieved.

Table 1. Past Vision-based Locomotion Scoring Research

Features Reference
Number 
of cows 
tested

Automated Accuracy 
(%)

Trackway overlap, hoof step time and spine arch 
(Berckmans 
et al., 2008)

15 No

Hoof step time and corresponding time between 
hoof combinations 

(Bahr et al., 
2008)

15 No

Spine curvature and head angle 
(Poursaberi 
et al., 2011)

1,200 No 92

The range of motion of the front hooves and the 
release angle of the front hooves 

(Pluk et al., 
2012)

No

Hook bones and spine 
(Abdul 
Jabbar et al., 
2017)

No

A body movement pattern score individualized to 
each cow

(Viazzi et al., 
2014).

No 91

Curvature angle of back around hip joints and 
back posture measurement 

(van Hertem 
et al., 2018)

Yes

Hoof location determined by CNN 
(Gardenier 
et al., 2018)

Yes

Despite the amount of research, no efficient automated lameness detection system is 
available on the market yet. Most research on lameness detection focuses on the detection 
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of severely lame cows, often ignoring mildly lame cows or considering them non-lame. On 
the other hand, the practical feasibility of also detecting the mildly lame cases should be 
investigated on farms. This might result in custom-made lameness detection systems that 
are adjustable depending on the degree and severity of mildly and severely lame cases 
on that farm and the preferences of the farmer for specific characteristics of the system. 

Van de Gucht et al. (2017) have simulated the effect of detection performance (percentage 
missed lame cows and percentage false alarms) and system cost on the potential market 
share of three automatic lameness detection systems relative to visual detection: a system 
attached to the cow, a walkover system, and a camera system. Based on survey responses, 
systems attached to the cow had the largest market potential but were still not competitive 
with visual detection. Increasing the detection performance or lowering the system cost 
led to higher market shares for automatic systems at the expense of visual detection. The 
willingness to pay for extra performance was €2.57 per cow for every 1% fewer missed lame 
cows, €1.65 per cow for every 1% fewer false alerts, and €12.7 per cow for lame leg indication. 

Table 2. Past Vision-based Body Condition Scoring Research

Features Reference
Size of test 

dataset 
(images)

Automated/ 
3D/2D

Accuracy 
(%) or R 
statistic

Hook angle, posterior hook angle, 
depression

(Bewley et al., 2008) 834 No/2D 92.79

Wither height, hip height, body 
length and hip width

(Tasdemir et al., 2011) - No/3D
BCS not 

estimated

Goodness of fit of a parabolic 
shape of the segmented image

(Halachmi et al., 2008), 
(Halachmi et al., 2013)

172 Yes/2D R=0.94

‘Pins’, base of the tail, dishes of 
the rump, hips, and backbone

(Weber et al., 2014) - No/3D -

Principal component analysis (Fischer et al., 2015) 25 No/3D R=0.96

14 individual features per cow, 
derived from cows’ topography

(Spoliansky et al., 2016) 2,650 Yes/3D 74%

Area around the tailhead and 
left and right hooks 

(Lynn et al., 2017) 130 Yes/2D -

Body mass, hip height and 
withers height

(Nir et al., 2017) 107 Yes/3D
R2 = 0.946 
for body 

mass

3D surface of cows back and 
fitted sphere 

(Hansen et al., 2018) 95 Yes/3D -

Features determined by CNN on 
pre-processed depth images

(Rodríguez Alvarez et 
al., 2018)

503 Yes/3D 78%
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Body Condition Scoring

Body Condition Score (BCS) is an indirect estimation of the level of body reserves, and its 
variation reflects cumulative variation in energy balance. It interacts with reproductive 
and health performance, which are important to consider in dairy production but not easy 
to monitor.  Manual visual BCS is subjective, time-consuming and requires experienced 
employees. The state-of-the-art in automatic BCS estimation is summarised in Table 2 
under categories such as the size of the test dataset, the degree of automatization, the 
type of camera used and the accuracy of scores within 0.25 of manual BCS reference.

Discussion 

This review of the state-of-the-art research in Cow ID, locomotion score and BCS estimation 
shows a trend towards more automated approaches which make use of 3D cameras and 
deep learning for automatic feature extraction, improved accuracy and more reliable 
operation. Many of the works have focused on Holstein Friesian cattle and a system is yet 
to be developed which can be universally applied to any breed. Another point of note is 
that variables such as lactation stage and parity have been shown to have an effect on BCS 
and locomotion which may need to be accounted for in the development of such a system 
(Weber et al., 2014; van Hertem et al., 2018).

Conclusions

This paper identifies the essential technologies and considerations for the development 
of an automatic cattle monitoring system which uses camera technology to identify 
important attributes relating to cow health and performance. The system should have 
the capability to recognise cow features from her visual appearance alone which allows 
for more independent operation and more flexible installation requirements. The 
system would be limited to indoor environments where the required communications 
infrastructure between camera and base can be easily installed. However, the system 
should provide real-time insights to allow decisions to be made at critical points in a 
pasture-based management system – when the cow is being fed concentrates, when the 
cow is being milked and when the cow is being drafted. The algorithms should also make 
use of AI for improved accuracy and reliability in a diverse range of conditions considering 
that poor lighting and lens fouling are likely to occur in farmyard environments. The 
potential for the system to extract appearance attributes of cattle is an interesting one 
and could be invaluable in integrating with feeding systems to manage cow nutrition 
more effectively and alerting the farmer to ill health promptly.
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Abstract

In this research, we investigate whether a cow’s future state such as calving, sickness 
or even death can be predicted based on its history of recorded fertility and disease 
events. In particular, we show how Markov for discrimination models (MFD) can estimate 
the posterior class probabilities and how deep learning algorithms such as Long Short 
Term-Memory networks (LSTM) can improve the classification accuracy. Additionally, 
we also investigate whether data augmentation with pictorial information can enhance 
the predictive performance even further by using convolutional neural networks 
(CNN). Results show that an ensemble model incorporating sequential as well pictorial 
information performs best and that the model is able to accurately predict future states 
such as calving, mastitis, pregnancy and death. The framework presented in this research 
can be used to enhance current animal monitoring systems with better animal welfare 
and higher financial returns for the farmer as a result.

Keywords: Deep learning, sequence classification, animal monitoring, computer vision, 
Markov for discrimination

Introduction

As a major livestock producer, the EU is directly affected by the global need for more 
sustainable food production (Gerber et al., 2013). The common currency in developing 
solutions to all of these challenges is improved animal production efficiency (Beukes 
et al., 2010; Beauchemin et al., 2008; VandeHaar & St-Pierre, 2006). In particular, the use 
of precision livestock farming (PLF) technologies for genetic selection and early disease 
detection has shown a lot of promise (Rutten et al., 2013; Banhazi et al., 2012; Berckmans, 
2014). In this study, we contribute to the literature by showing how systematically recording 
fertility and disease events can indeed be helpful in improving existing animal monitoring 
systems. We propose a multiclass model which forecasts a probability distribution over 12 
possible life events. More specifically, we show how traditional techniques such as Markov 
for discrimination models can use historical sequences of disease and fertility records in 
order to predict a cow’s future state. Additionally, we investigate whether more advanced 
recurrent neural network algorithms are better able to uncover the complex data patterns 
hidden in the event sequences. Finally, we examine if augmenting a cow’s history of events 
with pictures can enhance the predictive performance even further by making use of 
convolutional neural network models. The use of pictorial information in animal health 
analysis has been used before in order to predict body condition scores (Halachmi et al., 
2013; Alvarez et al., 2018), detect lameness (Poursaberi et al., 2010; Zhao et al., 2018) and 
mastitis (Berry et al., 2003). While most of these studies were conducted as experimental 
designs and made use of complex video camera setups and expensive equipment such as 
thermal scanners, we worked with pictures taken by the farmers with their smartphones, 
which to our most recent knowledge, has not yet been applied in the context of animal 
monitoring systems.
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Materials and methods

Data

The raw data was collected from an online platform, built for farmers to store, monitor and 
analyse data on their livestock (www.mmmooogle.com). More specifically, the platform 
allows farmers to map the evolution of a cow’s life by systematically recording its current 
life condition, optionally accompanied by one or more pictures taken from the cow. In 
total, we collected 222,756 recordings of 22 unique events from 49,671 different cows 
coming from six different herds. For 26,903 of these events, one or more pictures were 
available. The aggregated data consisted of a collection of timelines of events and pictures 
for each cow that was registered on this platform.

The data used in this study consisted of a collection of timelines of events, with some 
events accompanied by one or more pictures. In order to predict the next event, a model 
could be trained to find a relationship between the sequence’s last occurring event and 
all the previous ones, and deploy it on new unseen sequences. The problem with this 
approach, however, is that if the sequence lengths differ such as in this study, it will not be 
possible to train such a model, since several observations would have a different number 
of predictors. This was handled by making use of a sliding window.

One problem that often arises with classification tasks is class imbalance, where some 
classes severely out represent the others (Garcia & He, 2009). This can drive models to 
become biased towards the large classes and ignoring the smaller ones (Chawla et al., 
2004). One particular set of techniques that has often been found to be very effective in 
coping with this problem, are sampling methods (Laurikkala, 2001; Weiss & Provost, 2001; 
Estabrooks et al., 2004). These techniques modify the data such that the data distribution 
eventually becomes balanced. This study used random up-sampling, which augments 
each minority class by randomly sampling observations from their own distribution, until 
they are as large as the majority class (Garcia & He, 2009).

Modelling

The goal of the research is to predict the next life event of a cow given its history of events 
as well as pictorial information. Figure 1 describes the data preprocessing stage including a 
Markov discrimination model, a recurrent and convolutional neural network model. These 
models were trained on the sequential data of events as well as the pictorial information 
to estimate the class posterior distribution. Additionally, ensembles of the aforementioned 
models and different evaluation criteria were used for model assessment and selection.

Figure 1. Schematic overview of the methodology used in this study



Precision Livestock Farming ’19      355

To compare the predictive performance of the different models, we utilised three evaluation 
measures: accuracy or Percentage Correctly Classified (PCC), weighted accuracy (wPCC) 
and the top-3 accuracy (Top-3 PCC). 

Results

First of all, we found that the Long Short Term-Memory (LSTM) recurrent network model 
trained on the imbalanced dataset outperformed all other models in terms of PCC and 
Top-3 PCC. While the Markov for discrimination models MFD-1 and MFD-2 their PCC and 
Top-3 PCC ranged from 67% to 68% and from 87% to 88% respectively, the LSTM achieved 
a PCC of 75% and a Top-3 PCC of 95%. By balancing the dataset, the LSTM achieved a much 
lower PCC of 60%, but increased the wPCC from 42% to 58%, the highest value achieved 
among the stand-alone models. This clearly indicates how balancing the data improved 
the model’s performance in identifying the smaller classes. The ensemble of both LSTMs 
achieved a PCC, wPCC and Top-3 PCC of 73%, 51% and 94%, exceeding both MFD models 
and their ensemble in all evaluation metrics. Hence, these results suggest that recurrent 
neural network models are better able to uncover the complex relationship between a 
cow’s historical sequence of events and its future state. 

The sequential data of fertility and health records contained more predictive power 
towards a cow’s subsequent state than the models solely trained on pictorial information. 
However, we saw that the CNN trained on the balanced dataset was particularly good 
at identifying mastitis, with a class specific PCC of 59%. On top, we observed that the 
CNN model trained on the balanced dataset was among the best models in identifying 
impending death, with an accuracy of 97%. The CNN’s good performance in identifying 
diseases and animal death could be explained by the fact that farmers may be more likely 
to take a large number of high quality pictures in case of pending animal disease or death 
than during more trivial situations. Hence, these results show that augmenting historical 
sequence data with pictorial information can be beneficial for predicting the animal’s 
subsequent life event.

Discussion

The main objective of this study was to provide a framework which could be used to 
enhance current animal monitoring practices. While previous research primarily applied 
specialized and expensive equipment for its data collection such as AMS, sensors and 
thermal scanners, our framework made use of rather cheap data sources. More specifically, 
we used fertility and disease records as well as pictures taken with a smartphone, all being 
registered by the farmer on an online and user-friendly platform. Moreover, while other 
studies primarily focused on predicting binary outcomes such as having mastitis or not, in 
this study a multiclass classification algorithm is presented, which predicts a probability 
distribution over 12 different life events of a cow. These algorithms are in general much 
harder to train since these must model multiple decision boundaries and require more 
data observations. The results discussed showed that the ensemble of the LSTM and CNN 
trained on sequential as well as pictorial information performed best (Table 1). 

Table 1. Final model results on test set summarized by PCC, wPCC and Top-3 PCC

Model Dataset PCC wPCC Top-3PCC

LSTM & CNN Balanced 0.58 0.46 0.88
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The results in Figure 2 show that the final model was able to identify mastitis as the cow’s 
next life event with 68% accuracy. Accurate mastitis detection is currently one of the most 
crucial monitoring tasks found on dairy farms. Nevertheless, current mastitis detection 
systems still do not perform well enough to be applied in practice according to many authors 
(Hogeveen et al., 2010; Jensen et al., 2016; Martin et al., 2018). It has been suggested though that 
a combination of different data source would be beneficial for mastitis detection systems, as 
the disease is associated with many changes in the cow as well as in the milk (Hogeveen et al., 
2010; Hogeveen, 2005). This was also illustrated in this study, where we showed that both the 
historical sequences of life events and the pictorial information explained distinct factors 
of variation of mastitis. Hence, augmenting the production data used in previous research 
with the data proposed in this study could help to improve current mastitis detection 
performances, as it would provide a more complete set of indicators for the disease.

Figure 2. Confusion matrix of the final model on the test set with the true labels on the Y-axis and 
the predicted labels on the X-axis

In addition to that, we were able to predict the culling or death of an animal, as indicated by 
exit, with 83% accuracy. Modeling the optimal moment to cull animals has been an emerging 
topic over the last decade, as it is important for managing dairy production response and 
profitability. Too frequent culling results in excessive replacement expenditures, while too 
slow culling may cause milk production, reproduction or genetic improvement to become 
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impaired (Hadley et al., 2006). The model presented in this research, however, predicts 
the probability of a cow being replaced, whether it is voluntary or not. As such, these 
predictions could be incorporated in current optimization frameworks and enhance culling 
strategies. At the same time, they could help to alert farmers and farm collaborators for 
pending culling or death events, which could motivate preventive measures to be taken.

Finally, it should be noted that although most other studies made use of data records 
extracted from AMS and sensors, most farmers today don’t have access to these automated 
monitoring systems. In particular, it was estimated that by 2014 only 5% of Canadian dairy 
farms had installed AMS, while in Europe the largest adoption rate was found in Denmark, 
with 24% of the farmers making use of this technology (Barkema et al., 2015). The low 
adoption rate of these monitoring systems may include the high installation cost, the 
farmer’s uncertainty about applying the new technologies and the risks and costs associated 
with maintenance (Jacobs & Siegford, 2012; De Koning & Rodenburg, 2004). Hence, a lot of 
livestock producers still have insufficient data to produce satisfactory data-driven decision 
making. The framework presented in this study, however, could facilitate the collection of 
data records, as it is based on a cheap and user-friendly software platform. Moreover, given 
the final model’s Top-3 accuracy of 88%, a farmer could quite accurately be provided with a 
cow’s three most likely subsequent states. Together with the farmer’s personal experience, 
this could facilitate a more accurate, consistent and standardized documentation of a cow’s 
history of events, which in turn provides the opportunity to improve animal monitoring.

Conclusion

In this study, we showed how consistently recording fertility and disease events as well 
as pictures can be used for predicting a cow’s subsequent life event. More specifically, we 
illustrated how traditional sequence models such as MFD can predict a cow’s future state 
based on its history of recorded events. Moreover, we found how recurrent neural network 
models can be exploited to uncover these complex data patterns with higher accuracy. 
Nonetheless, the best performance was yielded by combining a LSTM and CNN model 
trained on sequential as well as pictorial information. Hence, the results obtained in this 
research not only confirm the need for a more standardized data input of fertility and 
disease events, they also show how other non-production data sources such as pictures 
could improve current animal monitoring systems even more, which may in turn lead to 
improved decision making for optimal herd management.
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Abstract

There have been many changes in technologies in recent years which have increased 
the sources of data available. Examples of this would include the smart phone, robotics, 
artificial intelligence, Internet of Things (IoT) devices and sensors.

As a result, ICBF has been actively developing a series of APIs to exchange data with third 
party devices and applications, and in particular, an API is being developed to make it easy 
for the Irish farmer to access and record data on their animals through these devices. 

The ICBF Herd APIs are a suite of RESTful (Representational state transfer) services 
available to software and sensor providers that allows data to be exchanged with the ICBF 
database and enhance the data services available to farmers.

The services available include the details of animals on the farm; milking recording, 
fertility, weight and health data, as well as genetic and genomic evaluation data. These 
services can be used by tools which help with on-farm decision-making and make it easier 
to record data the animals.

Keywords: API, REST, IoT, database, web services, genetic evaluation, data recording

Introduction

The Irish Cattle Breeding Federation (ICBF) was formally set up in 1998, and is a non-
profit organisation charged with providing cattle breeding information services to the Irish 
dairy and beef industries. ICBF applies science and technology to ensure that farmers 
and industry make the most profitable and sustainable decisions, through the use of the 
services provided from the ICBF cattle breeding database.

These services include the ICBF Herd APIs, which are a set of web services available to 
software and sensor providers to provide data services to farmers. They are built using 
REST (Representational state transfer) and JSON (JavaScript Object Notation).

Web Services

ICBF has made available a comprehensive set of RESTful services which expose herd 
related data that can be used by software providers to enhance the features they provide 
and to send data to the national cattle breeding database. Access to the services are 
controlled by making them available under various scopes, providing access to each scope 
only as required. 

RESTful API Structure 

ICBF uses a PHP based API builder called Apigility (https://apigility.org) which simplifies the 
creation and maintenance of useful, easy to consume and well-structured APIs. Apigility 
structures the services according to the Hypertext Application Language (M Kelly, 2011) 
specification which readily achieves the Richardson Maturity Model Level 3 (M Fowler, 
2010). This ensures that each resource contains relational links, and that a standard, 
identifiable structure for embedding other resources is used. See Figure 1 for an example.
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Request: 
 
GET /v2/herd-fertility/insemination?animal_id=IE123456760549 HTTP/1.1 
Host: apitest.dev64.icbf.com 
Accept: application/json 
Authorization: Bearer c68faab0cb81b71f70c6552dbedaf2802517668e 
Cache-Control: no-cache 
 
Response: 
{ 
  "_links": { 
        "self": { 
            "href": "/v2/herd-fertility/insemination?animal_id=IE123456760549&page=1" 
        }, 
        "first": { 
            "href": "/v2/herd-fertility/insemination?animal_id=IE123456760549" 
        }, 
        "last": { 
            "href": "/v2/herd-fertility/insemination?animal_id=IE123456760549&page=1" 
        } 
    }, "_embedded": { 
        "insemination": [ 
            { 
                "id": "12334", 
                "animal_id": "IE123456760549", 
                "activity_date": "19-NOV-14" 
                "editable": "UD", 
                "_links": { 
                    "self": { 
                        "href": “/v2/herd-fertility/insemination/12334" 
                    } 
                } 
            } 
        ] 
    }, 
    "page_count": 1, 
    "page_size": 100, 
    "total_items": 1, 
    "page": 1 
} 

Figure 1. Example of a request for insemination data of a given animal

The services available are summarised in Table 1. Most of services provided allow the user 
to read, create, update and delete data in real-time. It is possible filter the data returned 
from the read requests in order to limit what is returned. The filters available typically 
consist of one of the following: start date, animal identifier or the ID of the resource. 

The start date filter will limit the data returned to only records recorded or changed since 
that date. The animal identifier filter will return all data recorded on that animal for that 
service and the if the ID is provided; the service will only return that record. 
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Table 1. Overview of Herd APIs currently available from ICBF

Scope Service Methods available Description

Herd 
Details

Animal 
Details

Read
The animals currently in the herd and their 
details such as birth date, sex, breed, arrival 
date, etc.

Purpose Read | Update
The purpose of the animal, either beef or dairy, 
which is typically calculated using criteria 
such as the breed of the animal.

Culling
Read | Write | 
Update | Delete

Animals that have been marked for culling are 
available with this service. The reason for the 
culling must also be provided.

Herd 
Fertility 

Heat
Read | Write | 
Update | Delete

The heat data recorded on animals in the herd.

Inseminations 
Read | Write | 
Update | Delete

The insemination data recorded on animals in 
the herd. This includes data that are recorded 
by AI technicians using ICBF’s handheld 
system.

Pregnancy 
Diagnosis

Read | Write | 
Update | Delete

Data detailing whether an animal is pregnant, 
empty or pregnant with twins. Optionally, days 
in calf can be included.

Expected 
Calving

Read

Based on the available insemination and 
pregnancy diagnosis data, predications are 
made on the expected calving date of the 
animal.

Herd 
Evaluations

Beef Read
The beef evaluations of animals in the herd, 
e.g. maternal and terminal indexes etc.

Dairy Read
The dairy evaluations of animals in the herd, 
e.g. EBI, milk and fertility indexes

Herd 
Weight

Live Weight
Read | Write | 
Update | Delete

The weight data recorded on the animals in 
the herd. Where the data has been provided by 
a mart, the price paid can also be included.

Herd 
Health

General 
Health

Read | Write | 
Update | Delete

Illnesses and other health issues recorded 
against the animals. With mastitis and 
lameness, the quarter affected is also 
recorded.

Herd 
Lactation

Period
Read | Write | 
Update | Delete

Lactation / calving data recorded on the 
animals in the herd, including milk recording 
information. Dry off dates can be recorded 
and updated. The treatment used to dry off an 
animal can also be included.

Herd 
Survey

Animal
Read | Write | 
Update | Delete 

Surveys on animals typically need to 
be completed as part of Department of 
Agriculture schemes such as the Beef Data 
and Genomics Programme (BDGP). This service 
allows for the recording of many surveys on 
animals such as calving ease score, cow and 
bull docility.
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Authorisation and Authentication 

Authorisation and Authentication with the API is handled using oAuth 2.0 which is an 
industry standard protocol for authorisation. OAuth 2.0 focuses on client developer 
simplicity while providing specific authorisation flows for web applications, desktop 
applications, mobile phones and other devices (oauth.net/2).

A particularly important advantage of using oAuth 2.0 is that it keeps the farmer’s 
authorisation details away from the client devices which are typically considered to be 
insecure. It does this with a series of unique token exchanges. This ensures that if the 
client device becomes compromised, the farmer’s authorisation details are still safe.

The farmer has full control of what organisations have access to their data through an 
authorisation web portal available on www.icbf.com.

Conclusions

The suite of API’s made available by ICBF allows for the sharing and recording of farmer 
recorded data across many software solutions and devices. These APIs have many wide-
ranging advantages for the agricultural industry, greatly enhancing the features that can 
be provided. The data collected and shared increases the accuracy of genetic evaluations 
which leads to breeding more profitable cattle.
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Abstract

Although social acceptance of digital farming technologies is of paramount importance, 
very little research has been conducted in this area so far. An online survey in Germany 
provides first results. The composition of the pre-quoted sample (n = 2,012) is representative 
of the population living in Germany in terms of gender, age, size of place of residence, 
and education. In addition to the relation with, knowledge of, and general attitude and 
perception of agriculture in Germany, the acceptance of digital farming technologies, 
including sensors for livestock farming, was inquired. First, the rating of statements was 
conducted on a very general level. Then, respondents were queried on their opinions on 
the use of sensors for livestock farming and on public financial support as a means to 
foster their adoption. In the last part of the online survey, respondents were asked for their 
spontaneous associations with pictures showing digital farming technologies for animal 
husbandry. In their general attitude toward digital farming technologies, respondents 
are mostly positive. The approval of the use of sensors for livestock farming and even 
the consent for public funding of famers using these sensors is high. When confronted 
with pictures of digital technologies for dairy farming (e.g. milking robot), however, the 
emotional component becomes apparent, which partly results in negative statements by 
respondents.

Keywords: social acceptance, dairy farming, digital farming technologies, survey

Introduction

Agriculture has made great progress in terms of digitalisation, which contributed to 
overall increased efficiency (e.g. Bos et al., 2003). However, although society sees many 
positive aspects of modern agriculture today (as indicated for the Dutch population by 
Boogaard et al., 2008), it also has negative connotations (Boogaard et al., 2011b). Modern 
animal husbandry and progressive forms of agriculture are often criticised by society, 
partly for leading to a loss of values and traditions (Scott, 2006). Therefore, consumers and 
society as a whole are increasingly paying attention to agricultural production, resulting 
in growing social expectations regarding animal welfare and environmental protection. A 
general opinion in the sector confirms that digital farming technologies (DFT) can make a 
valuable contribution to dealing with these issues.

Although social acceptance of digital farming technologies is of paramount importance, 
very little research has been conducted in this area so far. In many cases, the economic 
and environmental impacts of technologies and production processes are analysed, but 
the social component is neglected (Boogaard et al., 2011b). However, this would be relevant 
because agriculture certainly presents an area of tension. Studies have also proven that 
society has concerns about modern livestock practices (e.g. Boogaard et al., 2011b). However, 
many studies on social acceptance focus on single aspects such as animal welfare (e.g. 
Deemer & Lobao, 2011; Kendall et al., 2006).

Therefore, the aim of the present study is to gain a deeper understanding of society’s 
acceptance and attitudes toward digitalisation in agriculture in Germany. Therefore, we 
pose the following questions: (1) What is the attitude of society toward the use of digital 
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technologies in agriculture? (2) To what extent is there an agreement to provide farmers 
with public funding to foster the dissemination of these technologies in practice? (3) Which 
factors explain differences in response behaviour and thus acceptance of digitalisation? 
(4) What concerns does the population have regarding digital technologies in dairy farming 
in particular?

Materials and methods

The data necessary to answer these research objectives was obtained through an online 
survey. A set of questions was elaborated to answer the relevant research questions of 
the study. The composition of the pre-quoted sample (n = 2,012) is representative of the 
population (18 years and older) living in Germany in terms of gender, age, size of place 
of residence, and education. First, Likert scales were used to determine the respondents’ 
relationship with, and knowledge of, agriculture and its production processes in Germany. 
Furthermore, the general attitude and perception of agriculture in Germany were 
questioned. The survey participants were then introduced to a number of digital farming 
technologies, their functions, and their potential for more sustainable production. The 
rating of statements was conducted on a very general level but in some cases also addressed 
specific technology, including sensors for livestock farming. With regard to the sensors 
for livestock farming, the survey was directed to single-animal sensors for attachment 
to the animal to monitor appropriate parameters such as behaviour (e.g. activity). Based 
on this, the respondents were queried about their opinions on the use thereof and on 
public investment subsidies as a means to foster their adoption (as will be the case in 
Bavaria, Germany). In the last part of the online survey, respondents were asked for their 
spontaneous associations with pictures showing digital farming technologies for animal 
husbandry. The pictures showed a cow during the milking process in a milking robot 
and a feeding robot feeding cows in a barn, respectively. For each of the two presented 
pictures, the respondents could state up to three spontaneous associations. They were 
not given any additional information about the respective pictures of DFT. The stated 
spontaneous associations of the respondents were intended to shed light on motivations 
and concerns in society. In particular, negative connotations can help identify reasons for 
a lack of acceptance of these technologies. For each of the pictures, all entries suitable 
for evaluation were grouped into categories with similar terms and thoughts. As far as 
possible, we consistently used the same categories for both pictures and assigned them a 
connotation.

Results 

With regard to their relationship with agriculture, 8% of survey respondents state that 
they have some working experience in the agricultural sector, while 92% have none. In 
total, 33% indicate that they have personal contact with at least one farmer, with whom 
19% also talk about agricultural issues; for the remaining 14%, agriculture is not a topic 
of conversation.

Respondents rate their knowledge about present-day agriculture itself as mediocre to 
rather low. In particular, the self-assessment questions cover their knowledge about crop 
production, animal husbandry processes, and the latest machinery and equipment used 
in agriculture. Nevertheless, for all three items, a higher share of respondents indicate 
that they have very good or good knowledge about present-day agriculture (13% and 20%, 
respectively) with only (8%) indicating that they have working experience in agriculture 
(8%).

The general attitude of the survey participants toward agriculture is quite positive, and 
values linked to agriculture also seem to play a relevant role. On average, respondents 
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indicate that they have a generally positive attitude toward agriculture in Germany. 
Family farm structures, preservation of the environment for future generations, and farm 
animals welfare are most valuable and relevant to them. Related to this, respondents 
prefer organic products to conventionally produced products on average. A high number 
of respondents agree that farmers should have more free time and combine modern 
technology with positive feelings.

The general perception of agriculture in Germany is rated less distinctively by the 
respondents than the general attitude toward agriculture. The agreement that German 
farmers pay great attention to the welfare of their animals and protect the environment 
is modest in both cases. Similarly, there is low agreement that the image of German 
agriculture in the media is too negative. For all of these three items, a high proportion of 
undecided respondents (43–45%) emerged.

General attitude toward the benefits of digital farming technologies 

In their general attitude toward DFT, respondents are mostly positive (see Figure 1). A 
majority of respondents sees the benefits of using DFT primarily as an improvement in the 
quality of life for the farming family (74% totally agree or rather agree). Furthermore, they 
also see the potential to enable more environmentally friendly production (62% of them 
totally agree or rather agree) and improve animal welfare and animal health (56% totally 
agree or rather agree). The survey participants’ agreement that DFT bring consumers and 
farmers closer together is only moderate (36% totally agree or rather agree). Respondents’ 
opinions are differentiated concerning the question of whether DFT leads to alienation of 
the farmer from his soil and animals. It should be noted in this context that a relatively 
high share of undecided respondents (between 23 and 44%) are found for all of the items 
in this category.

Figure 1. General attitude toward the benefits of digital farming technologies

Support of technology use and consent to public funding of sensors for livestock farming

The approval of the use of sensors in livestock farming is very high, with 77% of the 
respondents fully agreeing or rather agreeing. In addition, the consent to public funding of 
farmers using sensors for livestock farming is also high (66% totally agree or rather agree). 
However, there is a high share of undecided survey respondents in both items (20 and 25%, 
respectively) (see Figure 2).
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Figure 2. Support of technology use and consent to public funding of sensors for livestock farming

Both general attitudes of the population in Germany toward DFT and the specific case of 
sensors for livestock farming show that socio-demographic factors and the relationship 
with agriculture had little or no impact on how the questions were answered. This applies 
equally to the level of knowledge about present-day agriculture and its production 
processes. Rather, it becomes clear that the consent to DFT technologies (including 
sensors for livestock farming) is higher among respondents whose general attitudes to 
agriculture are more positive (among other things, animal welfare and environmental 
protection are considered to be very relevant and modern technology is combined with 
positive feelings). Likewise, respondents who had a stronger trust in or a more positive 
perception of agriculture in Germany had a more positive attitude toward DFT in general 
as well as a higher acceptance of sensor use in livestock farming.

Spontaneous associations

For the most part, the spontaneous associations in response to the pictures of the 
milking and feeding robot, respectively, could be grouped into similar categories. In both 
pictures, terms belonging to the categories technology, automation, robotics, and digitalisation 
were mentioned. Furthermore, many general terms related to dairy farming, but also to 
milking and feeding were associated with the pictures. Many respondents perceived the 
two technologies as ‘innovative’ and ‘futuristic’, from which the rather positively rated 
category future and progress was derived. One of the most frequently mentioned categories 
is reduced workload and efficiency by means of DFT. In this context, respondents associated 
terms were used such as ‘effective’, ‘fast’, and ‘higher precision’ of agriculture (for example, 
in the distribution of feed in the barn). However, a ‘loss of jobs’ was also mentioned several 
times in this category. The issue of industrial agriculture plays a relevant role in both of 
the two presented dairy farming technologies. In this regard, respondents were worried, 
for example, about ‘exploitation of the animals’, ‘alienation’ (in terms of ‘impersonal’, ‘no 
relation to the animal’), ‘factory farming’, and ‘animal as a matter’. Terms concerning 
to animal cruelty are frequently found with the picture of the milking robot. For example, 
‘animal suffering’, ‘tight’, ‘poor cow’, ‘not animal-friendly’ and ‘imprisoned’ are among the 
terms used in this category. In general, both pictures had a high share of negatively rated 
spontaneous associations. 

Discussion

The surplus of positive attitudes of the survey participants toward agriculture in Germany 
found in this study confirms the findings of other studies (Köcher, 2009; Helmle, 2011; 
Kantar EMNID, 2017). Furthermore, it turns out that the general attitude of the respondents 
toward digitalisation in agriculture is mostly positive. Due to the high relevance of animal 
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welfare and environmental protection in society, DFT that can contribute to these issues 
are highly accepted. The active agreement of the survey participants to public funding for 
livestock sensors as a means to foster their adoption confirms this as well. The welfare of 
animals is given high priority not only in this survey but also in other studies (Boogaard et 
al., 2011b; Macnaghten, 2004; Köcher, 2009).

According to our findings, accepting digital technologies in agriculture and agreeing to 
their funding is based on a good general attitude toward farming, while positive perception 
and trust in agriculture are decisive influencing factors. It is based on values and beliefs 
that shape peoples’ attitudes and decisions, including agricultural issues (Boogaard et al., 
2011a; Manski, 2004; Lusk et al., 2014). 

Agriculture is perceived by society as an innovative sector (Boogaard et al., 2008). The 
spontaneous associations confirm that the addressed digital technologies for dairy farming 
are considered by many people to be innovative and relevant to the future. Nevertheless, 
society’s attitude toward modern agriculture, including modern animal farming, is 
ambivalent (Boogaard et al., 2011a), as it also creates many negative impressions in society. 
Modern technologies for dairy farming, for example, are connoted negatively with animal 
welfare and the idea of industrial agriculture, as was revealed by a high number of negative 
associations with the presented pictures thereof, especially the loss of naturalness and 
tradition as a function of modernity in livestock raises concerns (e.g. Boogaard et al., 2011a). 
A high number of general terms of modern dairy farming in the spontaneous associations 
also show that criticism is not necessarily related to digital technologies but rather to 
the general forms of modern dairy husbandry. For example, barn housing is criticised as 
opposed to grazing and also the preservation of family farms is an important aspect for 
society and thus often addressed (e.g. Boogaard et al., 2011a).

In order to increase the social acceptance of digital technologies in agriculture, one 
approach could be to provide society with objective information on the need for DFT 
and their potential for more sustainable production processes. However, it is not only the 
knowledge of the population that is decisive since a higher level of knowledge does not 
necessarily lead to higher social acceptance (see also e.g. Wuepper et al., 2018). Rather, 
building trust between consumers and farmers, for example through direct contact, is 
necessary for a more positive perception of agriculture in society and therefore can lead 
more easily to a higher acceptance of new applied DFT.

Conclusions

The results of the survey confirm that the German population has increasingly moved 
away from agriculture and that society is less aware of the current agricultural production 
processes. If the potential of digital technologies in terms of animal welfare is explained, 
respondents react favorably to modern digital technologies. When confronted with pictures 
of digital technologies for dairy farming, however, the emotional component becomes 
apparent, which in part results in negative statements by respondents. One approach to 
increase social acceptance of (digital) dairy farming lies therefore in providing society 
with neutral information on digital farming technologies, on the one hand, and in building 
trust between consumers and farmers, on the other hand.
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Abstract

The overall objective of this study was to improve the reproductive efficiency of lactating 
dairy cows and to improve the resulting total farm profit. The hypothesis is that a dairy farm 
can substantially improve its economic and environmental performance by interacting, 
adopting and applying integrated, data-driven analytics and new technology. This paper 
presents a tool which was designed with a view to comparing the reproduction efficiency 
between farms with and without individual cow sensors (MooMonitor+, Dairymaster, 
Kerry, Ireland). The MooMonitor+ system accurately identifies when the animal is in heat. 
The tool was developed using dynamic programming in R (Shiny) and shows the changes of 
costs, revenues and net-return. The tool includes five panels (Reproductive Performance 
Indicators, Fertility General Report, Level of Milk Production, Summary and Economic 
Impact, Comparison with Farms using MooMonitor+). The model calculates from the 
first  Day In Milk and stops when the last calf is born after successful insemination of 
each cow. The tool was tested using real data from farms. Differences in pregnancy rate 
of 20% (Farm 1) and 7% (Farm 2) (without MooMonitor+) and average pregnancy rate 27% 
(current average of farms with MooMonitor+) were recorded. The tool showed that this 
translated to farm profits of +124 (Farm 1) and +276 (Farm 2) EUR/Cow/Year, respectively. 
This improvement is partly caused by factors such as decreased breeding cost, decreased 
risk of culling and replacement costs, and increased milk production per cow. 

Keywords: cost, fertility, individual cow sensor, profit

Introduction

The economic gains of improving reproductive performance arise from higher milk 
productivity leading to increased milk sales and potentially higher milk income over 
feed cost, greater calf sales, lower replacement and mortality costs and lower relative 
reproductive costs. These factors seem to be the most important determinants of economic 
reproductive efficiency (Giordano et al., 2012; Galvao et al., 2013). Highly productive farms 
tend to have good fertility; farms with poor fertility tend to be less productive and at the 
herd level, the high productivity is no excuse for poor fertility (Meadows et al., 2005). The 
main economic impact of an increased calving interval on milk production is due to two 
effects. Firstly, increased calving interval means that the average production per cow per 
day will reduce as cows spend proportionally more time in late lactation where yields 
are lower and, secondly, during late lactation the margin between milk income and feed 
costs is lower and thus the profit margin per litre is less (Krpalkova et al., 2014). Whatever 
system a farm uses, whether it is a seasonal spring-calving farm or a completely non-
seasonal permanently housed farm, poorer fertility means that cows take longer to get 
pregnant. They are, therefore, at an increased risk of not being pregnant at the end of 
the breeding season (for the seasonal herd) or when they’ve been calved too long (in the 
non-seasonal system) (De Vries, 2004). The relationship between milk production and feed 
consumption is complex and interacts with many factors such as the herd structure, feed 
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price and the shape and persistence of lactation curves (Cabrera, 2012). Cabrera (2012) and 
Galvao et al. (2013) reported a combined synergistic and antagonistic effect of reproductive 
performance and milk income over feed cost at varying levels of 21-d Pregnancy Rate (PR). 
The gain in income over feed cost (US$) varied between +$9 (Giordano et al., 2012) and 
−$2.4 (Galvao et al., 2013) per 1% increase in 21-d PR. The number of days open may be one 
of the best indicators of current reproductive efficiency. Days open can be influenced by 
factors such as length of voluntary waiting period, heat detection accuracy, semen quality 
and breeding technique, nutrition, cow fertility, disease, or weather (Krpalkova et al., 2016). 
The number of services per conception is directly related to the conception rate in a herd. 
Conception rate influences days open because if a cow does not conceive, she will be open 
for an additional estrous cycle (21 days) (Valergakis et al., 2007). The cost of dairy AI straws 
is fairly consistent between AI companies, ranging between €15 and €25 depending on 
the bull used (Valergakis et al., 2007). It means that cows with an additional five services 
per conception with an approximate cost of AI straw of €20 per cow will cost €100 more 
(Valergakis et al., 2007). However, the cows are not serviced at each estrus cycle of extended 
days open, due to poor heat detection, but the loss is possible to calculate based on cost 
per extra day open (Kalantari and Cabrera, 2015). An economic value of US$ 3.2 to US$ 
5.1 per cow per day was calculated in US dairy farms, when average days open increased 
from 112–166, heifer replacement being the main determinant of the total value (De Vries, 
2006). Services per conception and days open will continue to rise, if problem cows are not 
culled (Krpalkova et al., 2014). Conception rate problems may be caused by heat detection 
accuracy, length of voluntary waiting period, semen handling, semen quality, time of 
insemination, insemination techniques, reproductive tract infection, nutritional status, 
fertility, or weather (Krpalkova et al., 2016).

Dairy farm profitability depends on a herd’s reproductive performance, but this relationship 
is complex. Farmers and consultants can easily assess reproductive performance by 
benchmarking pregnancy rate (i.e. 21 d pregnancy rate) or other reproductive metrics, 
but they find it difficult to measure the economic impact (e.g. profitability) of changes in 
reproductive outcomes (Cabrera, 2012). This paper presents a tool that was designed with 
a view to comparing the reproduction level between farms with and without individual 
cow sensors (MooMonitor+, Dairymaster, Kerry, Ireland). The MooMonitor+ system 
accurately identifies when the animal is in heat. Precise identification of heat and good 
timing of artificial insemination resulted in improved heat detection rate, conception 
rate, pregnancy rate and finally, percentage of culled cows due to low fertility. The tool 
introduces the new technology (MooMonitor+ system) and calculates the differences in 
reproductive management within the same period regarding the economics of reproductive 
management.

Materials and methods

Individual cow sensor (MooMonitor+)

MooMonitor+ system improves farm profitability by decreasing labour requirements for 
farm personnel, improving reproductive performance and minimising losses due to missed 
heats. The cows wear a neck collar with the attached individual sensor (MooMonitor+). 
Current average pregnancy rate of farms using Moomonitor+ is 27% (Table 1).

Farms and data

The dataset consisted of two farms without MooMonitor+ system. Basic parameters were 
calculated based on the date of events in the created tools and are provided in Table 2. 
The initial structure of data in farms without MooMonitor+ includes date of events such 
as calving, heat, bred, pregnancy check, pregnancy, sign do-not-breed, cows in bullpen, 
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died and sold cows and abortion of cows. The dataset did not include milk yield and 
economic values. Only last or previous calving with the most subsequent information 
of cow was selected. Cows were removed from calculation if they remained open for all 
evaluated period and their DIM was lower than 250. Evaluated economic impact of current 
management in the farm and subsequent possible improvement due to accurately 
identified heat and good timing of artificial insemination with the system MooMonitor+ 
were calculated based on variables shown in Table 1. All the averages (Table 1) come 
from Eurostat (https://ec.europa.eu/eurostat), Teagasc (https://www.teagasc.ie/), MilkBot 
Model (Ehrlich 2011) or monitoring of Dairymaster customer farms and were used as a 
baseline for a final economic evaluation and can be changed according to conditions and 
records of evaluated farms and current averages of farm without MooMonitor+. These 
data were used for calculation of economic output (i.e. Income Over Feed Cost (IOFC), Cull 
cost, Reproductive Cost, Replacement Cost, Total Calves, Net Return) with current and 
subsequent improved management (MooMonitor+ system, pregnancy rate 27%). 

Table 1. Average input variables of the model

Variables name Average value

MilkBot1 model (lactation curve)

Average milk yield (kg/cow/d) 1 33

Average milk yield 305 d (kg/cow) 1 10 311

Peak milk (kg) 1 39

Peak day (d) 1 67

Improved reproductive management with MooMonitor+, PR (%)2 27

Voluntary waiting period (d) 2 42

Body weight of lactating cows (kg/cow) 2 560

Milk fat content (%)2 4

Feed price (EUR/kg feed) for lactating cows 2 0.23

Feed price (EUR/kg feed) for dry cows 2 0.20

Milk price (EUR/kg milk) 2 0.35

Heifer replacement value (EUR/heifer) 2 1,000

Average reproduction cost (EUR/cow/mo) <20% PR 2 27

Average reproduction cost (EUR/cow/mo) >20% PR 2 45

Cull cow value (EUR/cow) 2 600

Calf value (EUR/Calf) 2 200

1 The MilkBot function (Ehrlich, 2011) was used to fit milk production curves.; 2 Source: Eurostat, Teagasc or 
monitoring of Dairymaster’s farms.; PR=pregnancy rate

The degree of improvement in pregnancy rates and the time it takes to realise these 
improvements when using the MooMonitor+ depends on several different factors. The 
overall condition of the farm, as well as components such as culling policy, labour, age 
at first calving, body condition score, calving difficulties, management of negative energy 
balance, overall health status of cows and heifers, management of infertile and non-
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cycling cows, environmental conditions, facilities, and so on, can all have an impact. The 
MooMonitor+ system can improve pregnancy rates within one year if the problem is the 
identification of heats and the timing of artificial insemination.

Model and parameters

The model, developed in R (Shiny package), was designed with a view to compare 
reproduction levels between farms with and without the MooMonitor+, and to show 
the changes of Costs, Revenues and Net Return. The tool was developed using dynamic 
programming and includes five panels listed below.

1. Reproductive Performance Indicators

Important reproductive performance indicators were graphically expressed (i.e. 
distribution of heat interval, DIM at first breeding, times bred, breeding interval (Equation 
1), distribution of pregnant cows (%) from eligible cows to be bred according DIM and 
percent of cows meet the target (optimal) in days open and DIM at first breeding (Table 2 
and Figure 1). 

 BI = (DOPN - DIM1B) / (1 - TB)     (1)

where BI = breeding interval; DOPN = days open; DIM1B = DIM at first breeding; TB = times 
bred.

Table 2. Average of reproductive indicators

Indicators
Farm 1 Farm 2

Mean Median Mean Median

Heat interval (days) 102.1 79.5 85.6 67.6

Breeding interval (days) 1 76.2 0 21.3 0

DIM at first breeding (days) 102.4 78 147.3 132

Times bred (n) 1.1 1 1.1 1

Days open (days) 2 104.4 82 125.5 107.0

Heat detection rate (%) 29.7 30.8 18.7 18.4

Service rate (%) 29.7 30.8 14.1 12.8

Conception rate (%) 65.5 83 51.3 72.0

Pregnancy rate (%) 19.7 24 7 9

Number of cows (n) 1,186 3,623

1Mean of Breeding Interval (days) was calculated only with values > 0 (Equation 1); 2 Mean of Days open (days) was 
calculated only for pregnant cows

2. Fertility General Report

All the events, such as ageing, involuntary culling, abortion, getting pregnant, calving 
etc. were adjusted to 21 d cycles according to date. The resulting table includes two 
dates (from and to) and the sum of cows in each state of mentioned 21 d cycles and 
calculated percentage of selected rate: heat eligible cows, heat, heat detection rate, total 
insemination, service rate, pregnancy eligible cows, pregnancy, conception rate, pregnancy 
rate and abortion.

3. Level of Milk Production
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The MilkBot function (Ehrlich 2011) was used to fit milk production curves. The MilkBot predicts 
milk yields (Y) as a function of time after parturition. Four parameters: a (scale), b (ramp), c 
(offset), and d (decay), control the shape of the lactation curves (Ehrlich 2011). Details of the 
MilkBot model can be found here: http://dairysight.com/milkbot/model.). Average values for 
the Holstein breed during all evaluated lactations were used as initial values. 

    

[2]

Equation 2 was used to describe milk production curves for an average of all lactations 
according to the breed. In the model, it is possible to change all the milk parameters 
according to the current milk yield level in the evaluated farm. Milk production was also 
adjusted to decrease by a fixed factor of 5, 10 and 15% by month of pregnancy 5, 6, and 7, 
respectively, based on the methodology of De Vries (2004). Daily milk production was then 
calculated by summing up average milk production from Equation 2 and possible pregnancy 
milk depression based on fixed factors, always with the consideration of the milk class. 

4. Summary and Economic Impact

The model used the average reproductive cycle of dairy cows of 21 d as the length of stage 
to better evaluation of reproductive management. Therefore, all the events, such as ageing, 
involuntary culling, abortion, getting pregnant, calving, starting a new lactation, milk 
production etc. were adjusted to 21 d cycles. Cows were ordered in 21 d cycles according 
to days in milk and days in pregnancy. The calculation started by placing a group of cows 
from first DIM and continued by moving it forward through all the defined states until the 
last calf was born in the first reproduction period. 

The model calculated costs and revenues in two steps in order to compare current and 
improved management with MooMonitor+ system. Step 1 - all open cows after first calving 
moved through all 21 d stage from their first DIM (based on real data), Step 2 - all open 
cows after second calving moved through all 21 d stage from their first DIM (simulation 
of relevant management). Only calved cows from the first step were included in the 
calculation. The net return (€/cow/day) was calculated as follows:

                                         
  [3]

where d = DIM with 21 d steps; n = number of 21 d steps (differ based on evaluated farm); 
p = pregnancy and, NR is the net return; IOFC is milk income over feed cost; CV is income 
from calves, CC is the culling cost, which is the difference between the salvage value of the 
culled cow and the replacement heifer price, and RC is the average reproductive cost based 
on relevant management (Table 1). Results from this panel are shown in Table 2 and Table 3.

5. Comparison with Farms using MooMonitor+

Pregnancy rate was changed in the MooMonitor+ system in both previous steps according 
to the average value in Table 1. Improvement in involuntary culling, due to new technology 
MooMonitor+, was not included in the calculation. However, all cows with sign do-not-
breed were not removed from the herd and were calculated as open (cows bred eligible) in 
the calculation of MooMonitor+ system. The voluntary waiting period was assumed to be 
42 d to follow the 21 d stage length of the model. Cows were eligible for insemination from 
42 d in the system of Moomonitor+ system to the day when the last calf was born in the 



Precision Livestock Farming ’19      375

simulation process. According to a study by Kalantari and Cabrera (2015), it was assumed 
that herds with poor reproductive performance have invested less on management and 
facilities, which resulted in poor detection of estrus and/or worse overall conception rates. 
Thus, based on the estimated average 21 d PR, different reproductive cost (€/21-day) were 
assigned to each herd. Reproductive cost for farms with < 20% 21 d PR used €0.90/d and 
farms with > 20% 21-d PR used €1.50/d. However, both reproductive costs €0.90/d and 
€1.50/d and subsequent results are shown below in Table 3. 

Results and discussion

Several authors have developed methodologies to estimate the financial cost of delayed 
pregnancy in dairy systems, based on computer simulation models (Groenendaal et al., 
2004; Meadows et al., 2005; De Vries, 2006; Kalantari and Cabrera, 2015). Although the 
use of those models made it possible to achieve quite realistic results, the real data from 
farms was not used in these studies, which could make it difficult to comprehend by users. 
Thus, the methodology presented in this study was focused on developing a simpler tool 
to calculate the economic values based on real data. It is possible to change the average 
input variables in the tool listed in Table 1, making it useful to analyse different scenarios 
on the farm. The calculation showed the differences in reproductive management within 
the same period of the same cows, i.e. without data of new replacement due to culling. 
A decrease in the number of days between calving and conception (increased pregnancy 
rate), also known as days open, is typically associated with increased profitability in dairy 
cows (De Vries, 2006).

Table 3. Final reproductive economic analysis (EUR/Cow/Year)

Comparison
Farm 1 Farm 2

IOFC RC CC CV NR IOFC RC CC CV NR

Current 
management

2,716 91 108 79 2,596 2,520 143 161 56 2,271

MooMonitor+ 
System

2,815
86 / 
1441 102 93

2,720 / 
2,6621 2,666

83 / 
139

122 86
2,547 / 
2,4911

Difference +99 +5/531 -6 +14 +124 / 661 +146 -60/41 -39 +30 +276 / 2201

1 Different average reproductive costs were used according to different levels of pregnancy rate (< 20%, €0.90/day / 
> 20%, €1.50/day). (Equation 1).; NR is the net return; IOFC is milk income over feed cost; CV is income from calves, 
CC is the culling cost, which is the difference between the salvage value of the culled cow and the replacement 
heifer price, and RC is the average reproductive cost based on relevant management

Our study showed similar results where the net return increased by €124 or €66 (Farm 1) 
and €276 or €220 (Farm 2) per cow and year depending on the average of reproductive cost 
per day used (€0.90/day or €1.50/day, respectively; Table 3). However, the improvements 
were in both cases due to better pregnancy rate and also more cows were bred eligible in 
MooMonitor+ system (cows with sign do-not-breed were included in MooMonitor+ system 
calculation). In the example shown in this paper (Table 3), the culling costs were higher 
than reproductive cost in both farms with current management. According to Cataneo et 
al. (2015), infertility culling costs are the main cause of the involuntary days open after 120 
days, whereas milk yield losses became the main determinant from 180 days. De Vries (2006) 
reported that cow replacement cost due to infertility represented the highest proportion of 
the total cost. Simulation of calculation according to average values of pregnancy rate of 
MooMonitor+ system decreased the culling cost and reproductive cost and increased milk 
income over feed cost and income from calves in both evaluated farms (Table 3). 
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For example, Giordano et al. (2012) aimed for very detailed construction of the reproductive 
programs including all the specifics related to reproductive costs evaluation (such 
as the cost of labour for estrus detection and injection, hormones for synchronization 
and pregnancy diagnosis) and daily reproductive dynamics of the herd. Kalantari and 
Cabrera (2015) included reproductive costs as a random parameter into the model and the 
assumption was that the herd with good reproductive performance has invested more. 
In the current study, reproductive costs were calculated as the sum of the average cost 
per day open with the same assumption. Reproductive costs at 15% 21-d PR level were 
approximated $40 per cow/year (Giordano et al., 2012), $114 per cow/year (Giordano et al., 
2012) and in current study with 20% 21 d pregnancy rate (Farm 1, Table 1) €91 per cow/
year. Income over feed cost increased in both farms with MooMonitor+ by €99 (Farm 1) 
and €146 (Farm 2) per cow per year. However, some studies showed that milk sales could 
decrease with increasing 21 d PR from 10–30% ($4,285 vs 4,184 per cow and year; Galvao et 
al., 2013). This could be explained to a large extent due to a lower proportion of lactating 
cows when higher 21 d PR, which results in lower milk production. Other factors can be the 
shape and level of milk lactation curves Kalantari and Cabrera (2015). Our study showed 
that productivity of an individual cow might increase in better reproductive performance, 
but the way it interacts with herd structure (percentage of dry cows and lactating cows) 
and thereby, influencing the overall herd’s milk production was not evaluated in our study. 
The distribution of remaining open cows in management without MooMonitor+ according 
to DIM for Farm 1 is shown in Figure 1 (44% open cows by 100 DIM and 31% open cows by 
150 DIM). The distribution of remaining open in management without MooMonitor+ cows 
according to DIM for Farm 2 is shown in Figure 2 (72% open cows by 100 DIM and 63% open 
cows by 150 DIM). 

Figure 1. Reproductive analysis based on DIM from 1st panel (Farm 1, current management)
DIM = days in milk, Open = remained open cows; Heat = % of cows seen in heat and not bred, Bred = % of bred 
cows and not pregnant, Preg = % of pregnant cows
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Figure 2. Reproductive analysis based on DIM 1st panel (Farm 2, current management) 
DIM = days in milk, Open = remained open cows; Heat = % of cows seen in heat and not bred, Bred = % of bred 
cows and not pregnant, Preg = % of pregnant cows

Conclusion

The proposed methodology has demonstrated to be a simple tool for monitoring the 
financial impact of different reproductive scenarios in a dairy herd. Our study revealed 
the economic impact of better reproductive performance on an individual cow level. 
Poor fertility means that cows spend longer producing lower amounts of less efficiently 
produced milk with increased culling risk and this will negatively affect the net return 
of those cows. The tool then introduces the new technology (MooMonitor+ system) and 
current averages of pregnancy rate of 27% and subsequent economic impact of accurately 
identified heat and good timing of artificial insemination.
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Abstract

Good reproductive performance is based on a reliable estrus detection and determination 
of the optimum insemination time. Nowadays, estrus detection is often challenging for 
farmers because of a decreased duration of the visual signs of estrus, a less expressive 
estrus behaviour and a high proportion of estruses occurring during night hours. Hence, 
various technical devices were developed to assist the farmers in estrus detection.

The company Smartbow GmbH (Weibern, Austria) developed the sensor system SMARTBOW 
for a wireless, continuous and real-time monitoring of dairy cows. The electronic ear tag 
contains an accelerometer for detecting head and ear movements in x-, y- and z-axis. 
Machine learning algorithms process the incoming data, analyse it for the expression of 
specific behaviours and activity levels and use the information for a purpose built decision 
function. Actually, data are available on an animal’s activity, rumination and localisation 
inside a barn. The estrus detection function is primarily based on increased activity 
combined with distinct behavioural changes. Thresholds were developed by the company 
and the accuracy of the system for estrus detection was internally evaluated, so far.

In this independent study, the SMARTBOW system was installed in a large commercial 
dairy farm in Slovakia, housing approx. 2,700 Holstein Friesian cows. Retrospectively, 579 
estrus events were used to evaluate the accuracy of estrus alerts generated by the system. 
Sensitivity, specificity, positive and negative predictive values, accuracy, and error rate for 
detecting estruses were 97%, 98%, 96%, 94%, 96%, and 2%, respectively.

In summary, the SMARTBOW system is suitable for reliable estrus detection in confined 
dairy cows.

Keywords: cow, reproduction, estrus detection, accelerometer

Introduction

Detecting cows in estrus as well as getting cows pregnant are two major challenges in 
herd management of dairy cows (Denis-Robichaud et al., 2018). With increasing herd 
sizes, the available time per animal is continuously decreasing (Barkema et al., 2015). 
Furthermore, the percentage of animals expressing standing estrus has declined to 50%, 
with an average duration of approximately 5 h (Dobson et al., 2008). To achieve satisfactory 
estrus detection rates it is recommended to observe animals several times per day (Saint-
Dizier & Chastant-Maillard, 2018). This, however, is quite time-consuming and requires 
the skills and knowledge of farmers and their employees of behavioural signs of cows in 
estrus, which are often not self-evident to paid farm workers. 

Nowadays, several tools for estrus detection are available (Rutten et al., 2013). The company 
Smartbow GmbH (Weibern, Austria) developed an ear-attached activity monitoring 
system. The SMARTBOW ear tag contains a 3D-accelerometer which collects data from 
cow head and ear movements that are processed and used for continuous automated 
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real-time monitoring. This technology has been evaluated and is commercially available 
for estrus detection, rumination monitoring (Borchers et al., 2016; Reiter et al., 2018) and 
localisation (Wolfger et al., 2017).

The aim of this study was to evaluate the ear tag based 3D-accelerometer system 
SMARTBOW to detect cows in estrus. For this, reproductive performance data were 
retrospectively compared with estrus alerts generated by the sensor system.

Material and methods

All study procedures were approved by the institutional ethics committee of the University 
of Veterinary Medicine Vienna, Austria, in accordance with the national authority 
according to § 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 – TVG 2012 
(BMWFW-68.205/0004-WF/V/3b/2016), as well as by the Slovakian Regional Veterinary 
Food Administration.

Herd description

The study was conducted on a Slovakian dairy farm, housing approximately 2,700 
Holstein-Friesian cows. The average energy corrected milk yield (based on 4.0% butterfat 
and 3.4% protein) was 9,260 kg per cow and year. Cows were kept in freestall barns with 
pens for approximately 250 animals each, equipped with full concrete floors and high bed 
cubicles. All animal related events (e.g. estrus, artificial inseminations, clinical diseases, 
treatments) were entered into the herd management software DairyComp  305 (DC305, 
Valley Agricultural Software, Tulare, USA) by responsible farm personnel. Heifers were 
kept on another farm site, thus, only multiparous cows were included in this study. 

Reproductive management

Reproductive management procedures were defined in the farm specific standard operating 
procedures (SOP) and not changed for this study. The voluntary waiting period was set at 
50 days in milk (DIM). Estrus detection was performed with an automated monitoring 
device (CowManager Sensoor, Agis, Harmelen, Netherlands) and by visual observation by 
farm personnel during preparation for milking or by AI technicians in the pens. Artificial 
insemination (AI) was carried out by two AI technicians based on the am-pm rule 
(Trimberger, 1948). Cows not detected in estrus and not bred by 64 DIM were subjected to 
a standard Ovsynch protocol (Pursley et al., 1995). A Resynch protocol was initiated 1 week 
before pregnancy check and was continued for non-pregnant cows. Pregnancy diagnosis 
was performed between 39–45 days after AI by the herd veterinarian by ultrasound and 
confirmed approximately 90 days after AI by transrectal palpation of the uterus and its 
contents by an AI technician. Animals excluded from inseminations were classified as ‘do 
not breed’ as they were generally excluded from the breeding program for various reasons 
or they did not get pregnant within 200 DIM. 

SMARTBOW system

For study purposes, two pens of the farm were equipped with indoor receivers (SMARTBOW 
WallPoint). The ear tag was attached to the study animals in the middle of the right ear. 
Acceleration data (range -2 g to +2 g) of head and/or ear movements of the animals were 
recorded with a frequency of 1 Hz and sent in real-time to the receivers. Receivers were 
connected with a local server (SMARTBOW FarmServer), on which data were processed 
and analysed. When specific parameters (calculated on activity) and behaviour changes 
exceeded a defined threshold, an estrus alert was generated.
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Study design and definition of terms

Inseminations resulting from an Ovsynch protocol were excluded from statistical analyses. 
The comparison between induced and natural estruses was not the intention of this study. 

An estrus followed by AI that resulted in pregnancy was defined as ‘golden standard’ 
(GS). In our data set of GS events, abortions after diagnosed and confirmed pregnancies 
remained in the data set. In addition to GS events, which represent the highest reference 
level, we defined estrus events with an estrus interval of 18–25 d as ‘true estrus’ (TE) 
events, independent of whether estrus was followed by AI or pregnancy (Figure 1). This 
interval is close to the described range for duration of estrus (Forde et al., 2011) and 
accounts for findings that the physiological estrus interval increases with parity and milk 
yield (Remnant et al., 2015).

Figure 1. Example for assigning generated estrus alerts () or not generated alerts () of the 
SMARTBOW system

For the evaluation of the performance of the SMARTBOW system, GS and TE events 
were determined retrospectively, based on reproductive performance data (i.e. estrus, 
insemination) entered into DC305 and matched with generated estrus alerts by the 
SMARTBOW system. If an estrus alert coincided with a GS or TE event, the alert was 
classified as ‘true positive’ (TP). Multiple alerts, which end and start times, respectively 
occurred within 36 hours were considered as single alert. More than 85% of multiple alerts 
occurred in a timeframe of one to four hours and more than 90% within one to nine hours. 
In the case that no estrus alert was generated during a GS or TE event, it was classified 
as ‘false negative’ (FN). An estrus interval was classified as ‘true negative’ (TN), when no 
estrus alert occurred, and as ‘false positive’ (FP), when an estrus alert occurred during an 
estrus interval (Figure 1).

Statistical analyses

To evaluate the performance of the SMARTBOW system for estrus detection, sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and 
error rate (ER) were calculated with Microsoft Excel (MS Excel, version 14.0, Microsoft 
Corporation, Redmond, USA). Details are presented in Table 1. 
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Table 1. Parameters used for evaluating the performance of the SMARTBOW system

Parameter1 Calculation2 Definition3

Sensitivity TP / (TP + FN) x 100
Proportion of identified GS / TE events among all GS 
/ TE events

Specificity TN / (TN + FP) x 100
Proportion of non-alerted estrus intervals among all 
estrus intervals

PPV TP / (TP + FP) x 100
Proportion of detected TE events among all 
generated alerts

NPV TN / (TN + FN) x 100
Proportion of non-alerted non-estrus events among 
all non-alerted events

Accuracy
TP + TN /  
(TP + TN + FP + FN) x 
100

Proportion of identified events among all events

ER FP / (FP + TP) x 100
Proportion of false estrus alerts among all generated 
alerts

1PPV = positive predictive value; NPV = negative predictive value; ER = error rate; 2TP = true positive; FN = false 
negative; TN = true negative; FP = false positive; 3GS = golden standard; TE = true estrus

For further statistics, the software package SPSS (version 24, IBM Corporation, Armonk, 
NY) was used. The level of significance was defined as P < 0.05 for all statistical tests. 

Results

Cows or events were excluded if study animals left the study area too early or because of 
inseminations induced by an Ovsynch protocol. For the evaluation of the estrus detection 
performance of the SMARTBOW system, a total of 316 GS events in 316 cows and 263 TE 
events divided by 142 estrus intervals in 116 cows were used. It was possible that more 
than two TE events occurred per cow and that two subsequent TE events were followed 
by another TE event after 18–25 days. Estrus was detected in 306 of 316 GS events with 
the SMARTBOW system, resulting in a sensitivity of 96.8%. Additional results for TE are 
presented in Table 2.

Table 2. Test characteristics of the SMARTBOW (SB) system for detecting estrus events

Events1 Cows SB results True (+) False (-)
Statistics2%

Se Sp PPV NPV

GS 316 Alert (+) 306a n.a.3

96.8 n.a. n.a. n.a.
No Alert (-) 10a n.a. 

TE 116 Alert (+) 254  6  

96.6 97.7 95.8 93.8
No Alert (-) 9 

 
136  

1GS=Golden standard events; TE =True estrus events 2Se=Sensitivity; Sp=Specificity; 
PPV=Positive predictive value; NPV=Negative predictive value; 3n.a.= Not available
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Discussion

Precision dairy farming technologies have a tremendous potential to improve health, 
welfare, and reproduction in dairy cattle (Barkema et al., 2015). An increase in average 
herd size, the limited availability of skilled workers, and pressure on efficient farm 
management are factors for developing automated farm monitoring systems. These 
factors are encouraging considerations for farmers to adopt automated estrus detection 
systems (Gargiulo et al., 2018). 

The objective of this study was to evaluate the suitability of a novel ear-attached 
accelerometer system for estrus detection in indoor housed dairy cows. As the highest 
level of reference, GS events in this study were confirmed by pregnancy and, hence wholly 
certifying that cows had been in estrus. The sensitivity for GS events was 97%. Compared 
to outcomes from other studies using progesterone measurements as the golden standard, 
sensitivity ranged from 63–71% for pedometers (Roelofs & van Erp-van der Kooij, 2015), 
from 76–80% for neck collar activity-meters (Roelofs et al., 2017), and from 56–84% for 
collar-mounted accelerometers (Løvendahl & Chagunda, 2010). As an additional reference 
level that is independent from AI outcome, TE events were defined in our study. Results 
showed that sensitivity for detecting TE events with the SMARTBOW system was quite 
similar to the detection of GS events. This demonstrated that the SMARTBOW system is 
suitable for automated estrus detection in dairy cows. 

The PPV in this study was calculated as 96% and was greater than in other studies where 
the PPV ranged from 71–74% for pedometer (Roelofs & van Erp-van der Kooij, 2015) and 
from 84–92% for neck collar activity-meters (Roelofs et al., 2017). The specificity of the 
SMARTBOW system (98%) is comparable with the results for neck collars (99–100%) and 
leg activity-meters (100%) in indoor kept dairy cows (Roelofs et al., 2017). 

Conclusion

By recording an increase of activity as well as specific changes in animal behaviour, the 
sensitivity, specificity, PPV, NPV, accuracy, and ER of the SMARTBOW system for detecting 
estrus events were 97%, 98%, 96%, 94%, 96%, and 2%, respectively. Hence, the system is 
eligible for an automated detection of estrus events in indoor housed dairy cows. Further 
studies should investigate the effect of different conditions of housing (e.g. pasture-grazed, 
outdoor-pad), and floors and surfaces (e.g. slatted floor, rubber, sand) on the performance 
of estrus detection by the SMARTBOW system. 
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Abstract

It can be a challenge for beef and dairy farmers to predict when a cow is close to calving, 
to move her to a calving pen in time and to properly monitor and assist the calving. The 
objective was to evaluate how a calving alert system, attached to the tail, affects the cow. 
The system monitors the tail’s movements, and the farmer is notified via a text message to 
the mobile phone approximately one hour before calving. A case-control and an interview 
study were carried out. In the case-control study, cow behaviour was observed during and 
after the procedure of attaching the sensor on the tail. Controls were equally prepared, 
but the sensor was attached and then immediately removed again. The ethogram protocol 
contained behaviours like, for example, back arching, tail lifting, fidgeting and kicking. The 
case-control study had to be discontinued due to the sensors causing damage to the cow’s tail 
and therefore, there were too few cows included in the study to be able to determine if there 
were statistical differences between the test and control cows. In the interview study which 
included 15 interviewed farmers, 80% stated that the cows’ behavioural reaction was negative 
when the sensor was attached. Almost all farmers had observed damage to the tails after 
using the sensor and 20% had observed such severe damage that amputation was necessary. 

Keywords: Animal welfare, behaviour, cow, monitoring 

Introduction

In beef production, spring is a hectic period for many farmers, as calving is often 
concentrated to a limited period of time, with stress and too little sleep as common 
consequences. Farmers have also stated that the work around calving is one of the most 
risky and stressful work operations on the farm (Geng et al., 2013). The increased workload 
with the pregnant cows can have negative consequences on the farmer’s working 
environment, but also financial consequences and animal welfare problems if calves or 
cows die. Therefore, there is a need for technical aids that can facilitate the supervision 
of pregnant cows in both beef and milk production. A sensor that monitors the cow and 
alerts the farmer when it is time for calving is an aid that could complement the human 
supervision and the calving calendar, thereby contributing to decreasing stress levels and 
distress by the farmer during the calving period and a better utilised working time. Such 
a supplement may also reduce the risk of losing cow or calf as a result of complications 
during calving, as a more precise calving time allows the farmer to detect calving at an 
early stage and assist at the right moment when needed. There are various types of calving 
alert systems available on the market that have been tested and evaluated in previous 
studies, e.g. detectors that measure the cow’s activity level, position and the rumination 
frequency, contractions of the uterus, tail lifts and detectors that measure temperature 
vaginally (Canger et al., 2008; Clark et al., 2015; Saint-Dizier & Chastant-Maillard, 2015; 
Ouellet et al., 2016). It is important that these types of animal monitoring sensors are user-
friendly, reliable and do not adversely affect the animal’s health or well-being.

The company Moocall has developed a sensor that constantly monitors the activity of 
the cow with a sensor technique that measures the tail’s movements. By measuring the 
movement pattern of the tail, indications of obstetric pain can be recorded, and the system 
sends a text message to a mobile phone on average one to two hours before calving.
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The objective of this study was to evaluate how a calving alert system, attached to the 
tail, affects the cow’s behaviour and welfare. Further, the objective was to investigate how 
farmers, who have used the product, experience how it functions and the pros and cons 
with using the calving alert system. 

Materials and methods

Moocall is a commercially available sensor that is attached around the tail of the cow. The 
sensor costs approximately €300 and subscriptions for the first year are included. After 
the first year, an annual subscription cost is charged. The sensor is 15 cm long and weighs 
250 g. The standard strap is 16 cm long, but there is a longer strap that fits larger breeds, 
and which can be ordered through the company if necessary. The sensor is provided with 
a rubber insert on the inside, and there is an extra rubber insert that can be used if the 
tail is slim. Since this study started, the company has developed a new rubber insert. The 
main difference is that the new insert is larger and has rubber gripping studs that are 
angled instead of standing straight. The sensor is placed on the cow’s tail in front of the 
vulva, where it is attached around the tail with a specially designed locking system. The 
strap is tightened with a lever on the locking system, and according to the manufacturer’s 
instructions, the strap should be tightened by moving the lever back and forth 1-2 times. 
Moocall calving sensor detects tail movements and when increased activity and higher 
tail lift are detected, the farmer is informed via SMS to one or two phone numbers. The 
sensor works for all breeds and works everywhere in the world where there is a GSM signal. 
No additional hardware is needed, but a subscription needs to be renewed annually. The 
sensor has a rechargeable battery that is charged with a USB cable that connects under 
a waterproof cover. The battery life is 30+ days and the device sends an SMS alert when 
there is 15% battery charge left. 

A case-control study and an interview study with farmers were carried out. In the case-
control study, cow behaviour was observed during and after the procedure of attaching 
the Moocall calving sensor with the older rubber insert on the tail. Controls were equally 
prepared, but the sensor was first attached and removed again within 30 seconds. The 
ethogram protocol contained behaviours like, for example, back arching, fidgeting, kicking 
and tail lifting.  Direct observations of the cow’s behaviour were conducted during two 
periods for the control cows and three periods for the test cows. The first observation 
period was when attaching the calving alert system on the tail, the second observation 
period began when the cow was released from the chute and the third observation period 
was approximately 60 minutes after the cow had been released from the chute. Each cow 
(including controls without a sensor and test cows with sensor attached) was observed for 
five minutes during the second observation period, when the cow was on pasture. Thus, 
it was only the test cows that were observed in the third observation period and the total 
observation time was 15 minutes per test cow and 10 minutes per control cow, in addition 
to the time when the sensor was attached to the tail. 

An interview study with farmers was carried out with 15 of 21 farmers that either used the 
sensor frequently, only used the sensor occasionally or had stopped using the sensor. The 
interviews were semi-structured telephone interviews, which included eight questions 
about the calving period and 25 questions about the calving sensor. The interviews included 
topics such as why the farmer used the calving sensor, how the farmer experienced the 
work situation around calving and how the calving alert system facilitates the work of 
matching cow and calf as well as the pros and cons of the technology. The interviews were 
recorded and transcribed and then analysed by compiling the answers to each question 
in the interviews.
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Results and discussion

The case-control study had to be discontinued due to the sensors causing tissue damage to 
one cow’s tail. As the tail damage was noted within the first four test cows, there were too 
few cows included in the study to be able to determine if there were statistical differences 
in behaviour between the test and control cows. However, the practical experience from 
the case-control study indicated that it was difficult to know how hard the sensor should 
be fastened to the tail and there was no control function to ensure the strap was not 
tightened too hard. Of the four devices tested, one fell off after just three minutes and 
two fell off during the first day. The fourth sensor was taken off the day after attachment, 
and tissue damage and tourniquet marks were observed on the tail where the sensor had 
been attached. The time it took to attach the sensor to the tail was on average 1.3 minutes, 
but varied between 22 seconds up to 5.3 minutes. The reason for the longer attachment 
time for some cows was that they had very thick tails which made it difficult to fasten the 
locking system properly. Removing the sensor only took 3-8 seconds per animal.

Of the 21 Swedish farmers who had bought the calving alert system, 15 agreed to participate 
in the telephone interview. Three of the interviewed farmers used the sensor at the time of 
the interview, five used it but not routinely, and seven had stopped using the sensor. One 
farmer had used both the new and the older version of the rubber insert, otherwise the 
farmers had used the older model of the rubber insert. Six of the interviewees were women 
and nine were men. According to the interviewed farmers, the Moocall calving sensor 
functioned well technically and not many false alarms were experienced. In accordance 
with the manufacturer’s manual, there were usually two alarms before calving began. 
All farmers found it easy to attach the sensor to the tail, but 93% had experienced that it 
was difficult to know how tight the sensor should be attached, and that there was a tiny 
distinction between the sensor being fastened too tight or too loose. 

Several of the interviewed farmers pointed out that they did not let the sensor sit on as 
long as recommended in the Moocall manual due to the risk of tissue damage to the 
tail. If the calving sensor has to be taken off after just a few hours to allow the tail to 
rest and thereby avoid tail damage, both the usability and the possible time savings are 
reduced. It also indicates that the sensor may be best suited for dairy herds, since dairy 
cows are more used to being handled than cows in beef production. However, dystocia, i.e. 
calving complications, is more common in cows of beef breed than in dairy cows, which 
means that there may be greater benefit with a calving alert system in herds with beef 
production. Furthermore, in beef herds natural covering is most common, which entails 
additional challenges with the Moocall calving sensor, as it is more difficult to predict the 
expected calving date. Not knowing the exact date of fertilisation increases the risk of 
attaching the calving sensor too early prior to calving or not putting it on in time before 
the calving.

Results from the interview study showed that 80% of the interviewed farmers stated that 
the cows’ behavioural reaction was negative when the sensor was attached to the tail and 
that the reaction lasted up to one hour after it was attached. The farmers had observed 
that the cows fidgeted or waved the tail more. Pain behaviour in cows can be very difficult 
to observe as cows have the ability to radiate calmness despite possible pain (Mee, 2008; 
Bech Gleerup et al., 2015). Most of the farmers (87%) had observed damage to the tails after 
using the sensor, e.g. tourniquet marks (87%), swelling (53%), wounds (33%) or that the tail 
had died and was amputated (20%). According to the interviewed farmers, the tail injuries 
could last up to several months. Of the six farmers who declined to participate in the 
interview, four stated that they had stopped using the calving alert system because it gave 
tissue damage and tourniquet marks on the tails and one farmer stated that after reading 
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the instructions, he decided that the sensor would be too time consuming to use. The one 
farmer who had tested both the old and the new model of the rubber insert found that the 
newer model was easier to attach to the tail and did not fall off as often, but according to 
the farmer, the new rubber insert did not solve the problem of strangulation of the tail.

The results of this study showed that there were both advantages and disadvantages with 
the calving alert system. The main advantages, according to the interviewed farmers, were 
that it facilitated a better monitoring of the calving and thus, allowed the farmers to assist 
the calving in time when needed. The timing to initiate calving assistance is important, as 
there is a risk of doing more damage if the ligaments are not sufficiently stretched (Mee, 
2008).

Conclusions

The main conclusion is that the calving alert system, in its current design, cannot be 
recommended as it may cause damage to the cows’ tails. There is a need for functioning 
calving detectors both in dairy and beef production, which is why a further development 
of the existing Moocall calving sensor is encouraged. A better designed locking system 
with an added control function to ensure the correct tightness of the strap as well as user 
recommendations with the welfare of the cow in focus (e.g. decreased maximum time the 
sensor should be attached to the tail) are examples of needed improvements. 

The studied calving alert system functioned well technically according to the interviewed 
farmers, but the risk of tail damage indicates that the cows may experience discomfort 
by the sensor and that using the sensor can be associated with welfare problems for the 
cows.
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Abstract

Epidemiological data establish that lameness is second only to mastitis as dairy industry’s 
most prevalent and costly animal welfare issue. Farmers using automatic lameness 
detection (ALD) system for continuous, accurate detection, coupled with proper treatment 
can reduce economic losses from lameness. It is reasonable to assume that the cost of 
lameness would vary with its severity. So our first objective was to estimate the cost 
of different lameness severity levels as a function of milk production, lameness risk, 
conception probability, mortality and treatment cost using a dynamic programming model. 
Our second objective was to conduct a cost benefit analysis for an ALD system which can 
reduce production losses through early detection of lameness, when compared to human-
detection. The optimal profit per cow per year under assumed expenses and revenues 
reduced from $426.05 (when lameness incidence was assumed to be near 0%) to $388.12 
when lameness incidence was assumed to be 19.7% (7.5% moderate and 12.2% severe 
cases). Cost per case was $192.54 at 19.7% lameness incidence. We used an operational 
framework which compared the lameness costs between human and ALD systems with 
25%, 50% and 75% net avoided costs (NAC) for the 10 yr lifespan, at low, medium and high 
lameness prevalence scenarios. The break-even cost per cow per yr for using automatic 
LDS versus human LDS ranged from $13 (low incidence and 25% NAC) to as high as $99 
(high incidence and 75% NAC) and justified the investment in automatic LDS with default 
price and 10 yr lifespan.

Keywords: Dairy cows, lameness severity, automatic lameness detection, economic 
modeling

Introduction

Lameness is a costly animal welfare and production problem burdening dairy producers 
worldwide (Green et al., 2002; Booth et al., 2004). Economic losses due to lameness depend 
on the cause of lameness (Bruijinis et al., 2010; Cha et al., 2010); average cost estimates 
range from $120 for a case of foot rot to $216 for sole ulcer. Major contributors to economic 
loss due to lameness include lost milk production (Enting et al., 1997; Warnick et al., 2001), 
reproduction problems (Hernandez et al., 2001; Machado et al., 2010), increased mortality 
and culling (Booth et al., 2004; Machado et al., 2010), and treatment costs (Cha et al., 2010). 
To estimate the cost of a lameness case, parameters relating to these factors (i.e. milk 
loss, fertility decline, mortality and treatment cost) are needed. The cost of lameness 
would presumably vary with its severity (Hernandez et al., 2005; Bicalho et al., 2008). Not 
much research however, has been published on the economic consequences of lameness 
severity in dairy cattle (Bruijinis et al., 2010) at the individual cow level. Hence, our first 
objective was to estimate the cost of different lameness severity levels at individual cow 
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level, as a function of milk production losses, lameness risk, pregnancy rate, mortality 
and treatment cost. Timeliness of detection, diagnostic accuracy, and efficacy of therapy 
are key factors limiting production losses associated with lameness (Hernandez et 
al., 2005). The challenge is to accurately identify lameness at its onset to enable early 
therapeutic and preventive intervention. Effective reduction in prevalence can occur 
with the use of automatic lameness detection (ALD) systems that enable producers to 
accurately recognise lameness and then develop producer-driven programs of early and 
efficacious intervention (Whay et al., 2002; Barker et al., 2010). Farmers’ adoption of such 
ALD systems mainly depends on their cost, sensitivity and specificity (Van De Gucht et al., 
2017, 2018). Hence our second objective was to estimate the cost of lameness at different 
ALD system efficiencies for various plausible prevalence rates of lameness. Additionally, 
the net avoided costs (NAC) by the ALD system (due to different efficiencies) were used to 
conduct a cost benefit analysis for ALD investment at different ALD system prices, system 
efficiencies, herd sizes and lameness prevalences.

Materials and methods

We adapted an existing dynamic optimisation and simulation model (DP; Cha et al., 
2010) in order to estimate the cost of lameness for cows with three different severities of 
lameness, namely for sound cows, moderately lame cows and severely lame cows. The 
model was further adapted to estimate the cost of lameness at different prevalences and 
different reductions in production losses due to the use of an ALD system with three 
different efficiencies.

Dynamic programming process

The DP model was constructed as a 3-level hierarchic Markov process using the multi-
level hierarchic Markov process (MLHMP) application program interface (Kristensen, 
2003). Hence a cow’s life is described in numerical terms as three levels as shown in Figure 
1. The three levels are namely: 1) At the founder (parent) level a cow can be in any of the 
five permanent (i.e. genetic potential) milk yield categories (kg): -5, -2.5, 0, +2.5, and +5 
deviations (denoted by striped ovals (“a”) at the left of the figure) from the mean level 
of milk production per day. The state variable at the founder level described the genetic 
potential of a cow and was permanent throughout the cow’s life span. 2) The child level 
had eight different stages (child squares), each of which denotes one whole lactation. 3) 
The grandchild levels were divided into 20 (only seven grandchild squares are shown in 
Figure 1) stages of one month lactation length. As a cow moves from stage to stage, her 
state changes. We assume that decisions (replace, keep, treat or inseminate) are made 
at the end of each stage (month), and the effects of lameness occur in the following 
stage. The model gives the policy that maximizes the net present value (NPV) from a 
cow present in all combinations of stages and states mentioned above and their potential 
replacements (average-producing heifers), over a specified time period (one year, in the 
case of the current study). It involves choosing an arbitrary set of decision rules for each 
state at each stage, and solving a set of equations describing the expected future rewards 
over an infinite number of stages so that a decision which maximizes the NPV is reached 
in the last stage.
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Figure 1. Schematic representation of the structure of the dynamic programming economic model 
used in this study to determine the costs and optimal management strategies for cows with different 
severities of lameness (Cha et al., 2010)

Model parameters

A generalised linear mixed model (PROC MIXED in SAS, version 9.2; SAS Institute Inc., 
Cary, NC; Gröhn et al., 2004) was used to estimate the effects of the lameness scores on 
milk yield in multiparous cows, based on the two year epidemiological data available from 
a Pennslyvania farm. All other input parameters (milk yield loss in primiparous cows, 
pregnancy rate, treatment cost, lameness incidence risk) were obtained from the literature. 
Economic and technical input parameters, many of which are beyond the farmer’s control, 
were retained as in Cha et al. (2010). The average cost of lameness is the difference in the 
average net returns per cow per year for a herd with lameness, and the net returns per 
cow per year for a herd with no lameness. The average cost per case of lameness was 
calculated by dividing the cost of lameness by the percentage of lameness cases.

Cost benefit analysis for the automatic lameness detection systems

We used the conceptual framework described by Van De Gucht et al. (2018) to estimate 
the net avoided cost (NAC) of the ALD system, using the assumption that an ALD system 
with a given efficiency will detect lameness early and the corresponding early therapeutic 
intervention will reduce the lameness induced production losses. The default system 
(HD system) had the default production losses. The ALD systems with 25%, 50% and 75% 
efficiencies were assumed to have 75%, 50% and 25% of the default production losses due 
to early intervention. Cost benefit analysis for two different machine costs ($10,000, and 
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$50,000) were done. As the prevalence of lameness can vary highly among dairy herds, 
our analysis considered herds with three different prevalences. In the herd with low 
prevalence we assumed 25% subclinical and 20% clinical cases. The herd with medium 
prevalence had 75% subclinical and 43% clinical cases. The herd with high prevalence 
had 125% (more than 1 case per cow per year) subclinical and 65% clinical cases. As herd 
size is also a relevant variable which can affect the economic value of ALD systems, we 
calculated the year of breaking even for the ALD system investment (out of the 10 year 
system lifespan) under 12 different herd sizes (a herd size of 100 to a herd size of 1,200). As 
ALD system investment, ALD system efficiency, ALD system lifespan, lameness prevalence 
and herd size affect the economic decision to adopt the ALD system, our cost benefit 
analysis investigated the year of breaking even for an ALD system in 216 (two machine 
prices, three machine efficiencies, three lameness prevalences and 12 different herd sizes) 
scenarios.

Results and discussion

Lameness cost in default scenario 

In the default scenario run, lameness incidence in the herd was assumed to be 0% (ideal 
situation). Here, the optimal profit (average across all cow characteristics) per year (i.e. the 
net return per cow per year) under assumed expenses and revenues (model inputs) was 
$426.05 (Table 1). We next ran a scenario approximating an “average” herd, in which the 
total lameness incidence was assumed to be 19.7% (comprised of 7.5% moderate cases 
and 12.2% severe cases). The profit (net return) per cow per year decreased from $426.05 
to $388.12. Lameness was assumed to be detected using visual locomotion score in this 
scenario. The average cost per lameness case was $192.54 under this scenario (Table 1).

Cost of lameness for low, medium and high prevalence herds 

As a general principle net returns per cow decreased as the prevalence rates increased. 
Hence net returns per cow per year were $344, $231, and $139.18 for scenarios with low, 
medium and high prevalences of lameness respectively (Table 1), under the case where 
HD systems (for default production losses assumed) were used for lameness detection. 
As a result of increased prevalence, the average cost of lameness was $82.05, $195.05, and 
$286.87 (Table 1) in low, medium and high prevalence scenarios respectively. As prevalence 
increased across the scenarios the optimal proportion of cows to be treated decreased 
from 94.34% (low prevalence) to 92.34% (high prevalence). As a rule of thumb when the 
efficiency of the ALD system improved, the net return per cow per year improved and as a 
result the average cost of lameness decreased. At 25% efficiency, the herd net returns were 
$357.30, $257.40, and $172.78 (Table 1) for low, medium and high prevalence scenarios, 
respectively. A similarly increasing pattern in net return could be seen in scenarios with 
50% and 75% efficiency within each prevalence level.

Cost benefit analysis of automatic lameness detection machine

The break-even cost of an ALD system with 25% efficiency per cow was $13.3 ($82.05 - 
$68.75), $26.4 ($195.05 - $168.65) and $33.6 ($286.87 - $253.27) for the low, medium, and 
high prevalence scenarios, respectively, under the assumed production loss estimates our 
model used (Table 1). As the efficiency of the ALD system increases the maximum amount 
chargeable per cow will increase, as can be inferred from Table 1. As the benefit from 
investment in an ALD system is cumulative over the years (limited by system lifespan), 
we calculated the cumulative gain (NAC by the ALD system – cost due to lameness in HD 
system) for 18 scenarios (three prevalences, three ALD system efficiencies, two different 
herd sizes). A discount rate of 5% was considered for this investment analysis. In the 1,000 
cow herd the investment in ALD broke even by year 5 for all nine scenarios, when the 
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cost of the ALD machine considered was $50,000 (with 10% annual maintenance cost). In 
the case of a 250 cow herd, the $50,000 investment in ALD did not break even in five out 
of nine scenarios (mostly the low (25%) efficiency scenarios). Figure 2 shows the year in 
which investment in ALD systems will break even for 216 scenarios (12 herd sizes, three 
machine efficiencies, two different ALD system prices, three different levels of lameness 
prevalence), out of which 194 scenarios broke even within the system lifespan of 10 years. 
Within the scenarios with the same ALD system price, the year of breaking even was 
early as the prevalence rate as well as the ALD system efficiency increased, for the same 
herd size. In the case of a 100 cow herd, a $10,000 ALD machine did not break even in 
low prevalence with a 25% efficiency, but broke even in years 6 and 4 for medium and 
high prevalence scenarios respectively. As the ALD system cost increased from $10,000 to 
$50,000 the herd sizes less than 800 did not break even in low prevalence, 25% efficiency 
scenarios (Figure 2). Hence, as a general rule of thumb, low ALD system price, at high 
herd size, high prevalence of lameness and high ALD system efficiency broke even at the 
earliest time.

Figure 2. Year (number on top of each bar) in which investment in an automatic lameness detection 
machine (over a human detection system) breaks even, for a 10 year planning horizon at 12 different 
herd sizes and at three different prevalences of lameness (Low – subclinical (SC) (25%), clinical (C) 
(20%); Medium – SC (75%), C (43%); High – SC (125%), C (65%)) at three different lameness detection 
efficiencies (25%, 50% and 75% reduction in production losses as a result of earlier detection). Two 
different costs of machine ($10,000, and $50,000) were tested. A yearly maintenance cost of 10% of 
the cost of the machine was used as well. NBE (No break-even year) refers to the scenarios where 
investment in the machine did not break even during the 10 year planning horizon
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Conclusions 

We used a dynamic programming model to estimate the average cost of lameness at both 
cow and herd level. The costs of lameness severities were dependent on the lameness 
induced production loss parameters used as inputs to the model. An operational framework 
which captured the complex interplay between the drivers affecting the economic value of 
automatic lameness detection systems was used to conduct a cost-benefit analysis of using 
such systems. A wide range of herd sizes, system efficiencies, system costs and lameness 
prevalences were tested. An investment in automatic lameness detection systems was 
justifiable in most of the scenarios investigated. Once more precise estimates of reduction 
in production losses due to the use of automatic lameness detection systems for different 
herds are available, more precise economic value estimation could be conducted by 
combining our customizable DP model and the operational framework used in this study. 
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Abstract

Detection of lameness, which is commonly caused by diseases of the claws and limbs, is 
an important factor for animal welfare. The presented study is part of a project aiming 
to develop a system which is capable of an automated diagnosis of lameness in cattle by 
analysing their footfall sound. Data were generated from cows walking along a test track 
situated outside the stable where eight piezoelectric sensors recorded their walking speed 
and the footfall sound of their steps. Locomotion of the animals was scored and they were 
graded using a three-scale scoring system (LS1 = non-lame; LS2 = uneven gait; LS3 = lame). 
Subsequently, the cows were examined by a hoof trimmer. The mean walking speed at the 
test track was significantly higher in cows with LS1 (0.96 m/s) compared to animals with LS2 
(0.76 ms-1) and LS3 (0.82 ms-1). The standard deviation of volume in the recorded footfall 
sound signal (SDFS) was considered as a factor for the force of cow’s footsteps. Therefore, a 
higher value of SDFS describes an increased difference between a sound signal and no sound 
signal. Actually, cows with non-infectious diseases showed lower SDFS (0.017 dB) than healthy 
ones and those affected by infectious disease (both = 0.021 dB). This result confirmed the 
assumption, that in particular, cows with non-infectious diseases have a greater sensitivity 
to pain and demonstrate a less forceful respectively loudly gait pattern. These first findings 
clearly show the potential of footfall sound analysis for lameness detection.

Keywords: lameness detection, dairy cattle, acoustic analysis, footfall sound

Introduction

Lameness is a widespread health problem in dairy production and so an early detection is 
an important factor for animal welfare. Most commonly, lameness is caused by diseases 
of the claws and limbs (Van Nuffel et al., 2015). In turn, these diseases cause pain to the 
animals and that leads to a change in their natural behaviour and their normal gait to 
reduce discomfort (Scott, 1989; O’Callaghan et al., 2003; Ito et al., 2010). As the cows try 
to relieve the affected and painful limb, they change the weight distribution by shifting 
their weight to a healthy leg. Furthermore, they take shorter and more careful steps. The 
assessment of locomotion is the most common method to detect lameness. But this visual 
observation is complicated, in particular, with the ever increasing size of dairy farms and 
the reduced time available for observing the cows (Pastell et al., 2010). For this reason, 
there is growing interest in supporting automated methods to detect lameness. 

Previous studies used the changes in the normal movement as mentioned above and, 
referring to this, developed various tools with the aim of improving the assessment of 
lameness. Kujala et al. (2008) analysed measurements of force sensors which recorded the 
weight on each leg while the cows were standing in the milking robot. Their system was 
particularly able to detect severely lame cows affected by non-infectious diseases such 
as sole ulcers and white line disease. As a major drawback they concluded that these 
force sensors need to be checked regularly and frequently need to be repaired. Maertens 
et al. (2011) analysed data from cows while walking over a force-sensitive mattress and 
presented a kinematic gait analysis. They suggested further research was required 
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concerning variables of asymmetry and speed for detecting lameness. Other approaches 
for gait analysis include computer vision concepts which use information from video 
recordings and evaluate movement patterns such as the distance of the hind hoof from 
the fore hoof position (Song et al., 2008), the arching of cows back (Poursaberi et al., 2010) 
or touch and release of the fetlock joint (Pluk et al., 2012). 

To our knowledge, currently no practical-systems for an automated diagnosis of claw 
lesions exist. Therefore, the aim of our study was to provide first insights into implementing 
a system which is capable of distinguishing healthy animals from those affected by claw 
lesions by analysing their footfall sound on farm (Volkmann et al., 2019). Walking on a 
solid surface, as can be found in most cattle housings, produces footfall sound signals. 
It was hypothesised that this footfall sound varies in various parameters according to 
the gait of each animal. Therefore, in this study the parameters walking speed as well as 
differences in the maximum recorded volume of footfall sound (representing the weight 
loaded on each leg) were implemented and evaluated in detail in order to detect cows 
affected by claw lesions.

Material and methods

Data collection

The study was conducted in a free-stall barn where the lactating cows were housed in 
two sections. One section of the stall consisted of slatted flooring and was equipped with 
a milking robot. The other section was a deep straw barn and the cows were milked twice 
a day in a milking parlour. The experimental set-up was placed outside the stable with a 
22 m long test track which was partly covered with three elements of slatted floor. In the 
middle of the three slatted floor elements (length: 3.1 m; wide: 0.8 m) eight piezoelectric 
sensors (ICP accelerometer; PCB Group Inc., New York, USA) were attached and the signals 
of the footfall sound of the cows were recorded with a measuring device from IMC® (imc 
CS-3008-N, imc Messsysteme GmbH, Berlin, Germany) with a frequency of 50 kHz. The raw 
sound files were edited using the IMC® Famos Signal Analysis 7.0 software and passed 
through a filtering process. The main focus of this filtering process was the detection of 
the steps and the differentiation of step events from the background noise of the entire 
experimental set-up. At the end of the described test track, the weight of each cow was 
measured with a weighing platform (ID5000, Tru-Test Limited, Alberta, Canada). To 
habituate the cows to this new gangway they had to pass the test track at least twice. After 
the trial runs, all lactating cows walked consecutively along the test track, their footfall 
sound was recorded and they were filmed laterally by video (Camcorder GC-PX100BE, 
JVC KENWOOD Corporation, Kanagawa, Japan). Simultaneously, the animals were rated 
by a trained observer with a previously validated three-stage locomotion scoring system 
(Volkmann et al., 2018). Animals with a confident walk and a perfect gait pattern were rated 
with score 1 (LS1). Cows with a slightly asymmetric gait and unequal weight-bearing were 
assessed with score 2 (LS2). Clearly lame animals on one (or more) limbs were given score 
3 (LS3). Three days after recording and locomotion scoring, the hooves were examined by a 
professional hoof trimmer. All diagnostic findings concerning claw disorders were directly 
recorded in accordance with the key code of the German Agricultural Society (DLG, 2014). 
Afterwards, on the basis of the diagnosed type of diseases from all four legs, the animals 
were grouped according to the three-level system as follows:

•	 Group 0: cows without any disease,

•	 Group 1: cows affected by non-infectious disease,

•	 Group 2: cows affected by infectious disease.
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If the cows were affected by both infectious and non-infectious diseases, they were rated 
with regard to the severity of the disease and, subsequently, grouped concerning the claw 
lesion with the higher severity.

Statistical analysis 

Statistical analysis was performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 
The variable walking speed (WS) and the standard deviation of volume in the recorded 
footfall sound (SDFS) were tested for normal distribution to select a suitable statistical 
procedure. Afterwards, WS and SDFS were analysed with a general linear mixed model 
(PROC GLIMMIX) considering the potential influencing factors: group of housing (section 1 
vs section 2), parity number (1 - 6), bodyweight, locomotion score (LS1, LS2, LS3) and type 
of disease (Group 0, 1, and 2). Multiple comparisons of least squares means (LSMEANS) 
were performed using the post-hoc Tukey test. The results of the statistical tests were 
considered to be significant at P-values < 0.05.

Results and discussion

Installing the test track outside the stable offered the advantage of having a straight alley 
for observation and recording. However, this arrangement also resulted in an increased 
agility of the cows, even though they had been acclimatised to the test track in advance. 
Thus, data of cows stopping, running or jumping on the measurement zone had to be 
deleted, as this resulted in errors. Overall, data were generated from 144 animals, but the 
footfall sound of 76 animals (housing section 1: n = 36 and housing section 2: n = 40) was 
considered as useful and was analysed. Although, in other studies, two days were sufficient 
for an adaption to the test track (Flower et al., 2007), the habituation phase in our study 
was not long enough. The analysed cows in the present study reached an average parity of 
three (min = 1; max = 6) and an average bodyweight of 685 kg (min = 538 kg; max = 880 kg). 

Figure 1. Mean walking speed (WS) of the cows 
with regard to the degree of rated locomotion 
score. Level of statistical significance between 
the LSMEANS is indicated by the number of 
asterisks (** < 0.01; *** < 0.001)

Figure 2. Mean walking speed (WS) of the cows 
with regard to the diagnosed type of diseases 
(group 0 = no diseases; group 1 = non-infectious 
diseases; group 2 = infectious diseases). Level of 
statistical significance between the LSMEANS is 
indicated by the number of asterisks (* < 0.05)

The average time for passing the measuring section was 3.68 s (min = 2.12 s; max = 5.46 
s; SD = 0.75 s). Accordingly, the cows covered the distance of the test track of 3.1 m at a 
walking speed (WS) of 0.84 ms-1. This result exactly corresponds to the speed on concrete 
floor, measured in the morning, in the study of Zillner et al. (2018). But the walking speed 
is generally slower than in other studies. Telezhenko and Bergsten (2005), who compared 
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the speed on different floor types, determined a walking speed of 0.97 ms-1 on slatted 
concrete floor and Chapinal et al. (2010) even measured 1.42 ms-1 in non-lame cows. These 
differences may result from varying recording methods or the missing human escort 
walking behind the cows to encourage them. A further explanation for the reduced speed 
in the present study can probably be found in the low motivation of the cows to return to 
the stable after milking to start with feed and water intake. In our study, the cows had to 
walk the test track in the morning, but two hours after the morning milking.

The mean WS was significantly affected by the rated locomotion score (P = 0.0001) and the 
type of claw lesion (P = 0.0466). The comparisons of LSMEANS showed differences between 
LS1 (0.96 ms-1) and LS2 (0.76 ms-1) (P ≤ 0.0001) as well as between LS1 (0.96 ms-1) and LS3 
(0.82 ms-1) (P = 0.0062), whereby the cows rated with LS1 were the fastest ones (Figure 1). 
This result confirms the findings of the locomotion score, with animals with lower score 
representing a smooth as well as faster gait pattern and it corresponded to results by 
Chapinal et al. (2009). They reported that walking speed is negatively correlated with the 
numerical gait score. Moreover, they considered that it is difficult to state whether gait 
changes are a consequence of slow gait or impaired gait results at a slow pace. 

Cows affected by non-infectious diseases like sole ulcers (0.81 ms-1) showed a slower walk 
than those without diseases (0.83 ms-1) (P = 0.5649) and those with infectious disease 
(0.96 ms-1) (P = 0.0146) (Figure 2). Accordingly, Flower et al. (2005) measured shorter strides 
and reduced speed of cows with sole ulcers compared to healthy animals. Likewise, gait 
alterations in general – changes in walking speed included – were more evident in cows 
with sole ulcers than in animals without any lesion (Blackie et al., 2013).

The mean standard deviation of volume in the recorded footfall sound signal (SDFS) was 
0.019 dB (min = 0.009 dB; max = 0.049 dB; SD = 0.007 dB). The higher this value was, the 
louder the difference between a footfall sound signal and no signal. SDFS was affected by 
the locomotion score (P = 0.0014) and the comparisons of LSMEANS showed significant 
differences between LS1 (0.024 dB) and LS2 (0.017 dB) (P = 0.0032) as well as between LS1 
(0.024 dB) and LS3 (0.018 dB) (P = 0.0060), with animals classified to the non-lame ones 
(LS1) showing the highest SDFS (Figure 3). Accordingly, Maertens et al. (2011) found that 
all kinematic variables differed between the given gait scores. These kinematic variables 
from their study also described nothing but cows’ locomotion by measuring, for example, 
stride length, abduction, step overlap or asymmetry. Hence, it is quite explicable that the 
average SDFS in our study was different between the levels of locomotion score.

Furthermore, the variable ‘types of diseases’ tended to have an influence on SDFS with P = 
0.0721. The comparisons of LSMEANS revealed that animals with non-infectious diseases 
(Group 1 = 0.0017 dB) showed significantly lower SDFS (P = 0.0366) than cows without any 
disease (Group 0 = 0.021 dB) (Figure 4). Our findings support previous results showing claw 
lesions to affect the way cows distribute their weight on the affected respectively healthy 
leg (Pastell and Kujala, 2007; Rushen et al., 2007). Furthermore, these results support the 
statement of Passos et al. (2017) that especially non-infectious diseases, such as sole ulcers, 
have clear impacts on the strain on limbs and particularly cows affected by non-infectious 
diseases have a greater sensitivity to pain. These lame cows adopt the best compensatory 
movements to minimise their pain and, therefore, show less variation in their movement 
(Blackie et al., 2013). The findings from the presented study confirm that with decreasing 
SDFS. 

In summary, with SDFS in the recorded signal interpreted as a variable for the loudness 
or weight load of cows’ footstep, these first results clearly show the potential of footfall 
sound analysis for lameness detection. 
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Figure 3. Mean standard deviation of volume in the 
footfall sound (SDFS) with regard to the degree of 
rated locomotion score. Level of statistical significance 
between the LSMEANS is indicated by the number of 
asterisks (** < 0.01)

Figure 4. Mean standard deviation of volume in the 
footfall sound (SDFS) with regard to the diagnosed 
type of diseases (group 0 = no diseases; group 1 = non-
infectious diseases; group 2 = infectious diseases). 
Level of statistical significance between the LSMEANS 
is indicated by the number of asterisks (* < 0.05)

However, the performance of the system has to be validated with more cows and on other 
farms, where the system could be installed inside the stable (e.g. on the way back from 
the milking parlour). Also, further work is required to assess the footfall sound of cows 
concerning the number and uniformity of their steps to improve analysing the recorded 
signal. Moreover, it should be noted that for this first practical approach only one data set 
was examined using the method of mean comparison. To improve the evaluation of this 
method in terms of lameness detection, more parameters should be considered.

Conclusions

As visual monitoring of locomotion on farm is time-consuming and, thus, cost inefficient, 
the aim of the presented study was to develop a system which is capable of detecting claw 
lesions in dairy cows on farm by analysing their footfall sound. This current investigation 
shows that the used measurement installation can record cows’ individual footfall sound 
without any noise interference. The analyses of the recorded sounds can be used to 
successfully distinguish between cows without claw lesions and those animals affected by 
non-infectious disease, which are considered as particularly painful ones. Further research 
is required on this system to improve the measurements on a farm and especially a more 
detailed interpretation of the recorded footfall sounds. 
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Abstract 

Pain assessment is a key component to evaluate and a prerequisite to improve cattle 
welfare. Therefore, alleviating pain is becoming an increasingly important aspect in 
routine veterinary practice. This study aimed at measuring the effect of ketoprofen in 
cattle affected with limb pathologies during the time period when ketoprofen is thought 
to be active (24 h). Gait scoring and validated automated tools of weight bearing and gait 
analysis were used for evaluation. A single administration of ketoprofen significantly 
reduced the differences across limbs at walking and standing one hour after being 
administered, but no longer after 18 hours. 

Key words: cattle, ketoprofen, limb pathologies, pain, welfare

Introduction 

Cattle lameness is a painful disorder, with an important welfare and economic impact. 
As cattle are prey species with a stoic character, they rarely show overt signs of pain until 
the stimulus is severe. Therefore, recognition and assessment of pain in cattle remain 
challenging (Coetzee, 2013). Cattle practitioners, as well as claw trimmers and farmers, 
might underestimate the sensitivity of pain in cattle compared to other species (Becker et 
al., 2013). Consequently, valid and reliable methods for pain assessment of the locomotor 
apparatus in cattle are needed. Foot pathologies induce a hyperalgesic state and produce 
a range of inflammatory mediators at the site of the pathology, including the release of 
prostaglandins, thromboxanes and leukotrienes. Ketoprofen was shown to moderately 
reduce hyperalgesia of lame cows in the recovery period after therapeutic claw trimming 
(Whay et al., 2005), improving the weight distribution between sound and lame legs 
(Flower et al., 2008) and decreasing the weight shifting across the rear legs (Chapinal et al., 
2010; Novak et al., 2016). The newly developed tools for objectively assessing the cows’ gait 
represent a promising approach to detect cows with foot pathologies and even very slight 
cases of lameness (Nechanitzky et al., 2016; Alsaaod et al., 2017). Therefore, the aim of this 
study was to evaluate the effect of the NSAID Ketoprofen (Rifen® Streuli AG, Switzerland) 
during the time period when ketoprofen is thought to be active (24 h) on cows affected 
with limb pathologies using gait scoring and validated automated tools of weight bearing 
and gait analysis.

Material and methods

Ethics statement:

The study protocol was approved by the animal experimentation committee of the canton 
of Bern, Switzerland (permission #25601).

Animals and inclusion criteria

A total of 41 lame cattle referred to the clinic for Ruminants, Vetsuisse-Faculty, University 
of Bern, Switzerland, were included in this study. The inclusion criteria for the study 
animals were: cattle with unilateral fore- or hindlimb lameness, referred to the clinic 
for further assessment of this health problem. Cattle must not exhibit any relevant 
systemic concentration of analgesics at the beginning of the study. “No relevant systemic 
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concentration of analgesics” was defined as those animals with an analgesic pre-treatment 
less than 4.5 × the elimination half-life time ago.

Data collection

The study was performed as blinded, randomised, and placebo-controlled clinical trial. 
Cattle were randomly allocated to either the ketoprofen (group K; n = 21) or placebo 
group (group P; n = 20), receiving one dose of ketoprofen (3 mg/kg of BW i.v.; Rifen® Streuli 
Pharma AG, Switzerland, http://www.streuli-pharma.ch/) or an equivalent volume of 
sterile isotonic saline solution (NaCl 0.9% steril® Laboratorium Dr. G. Bichsel, Interlaken-
Switzerland), respectively. Three data collection time points - before treatment (basis; T0), 
one hour (hr) after treatment (T1) and 18 hours (hrs) after treatment (T2) were defined. 
The locomotion was scored using a one to five numerical rating system, where 1 = non-
lame and 5 = severely lame; (Flower and Weary, 2006). The weight distribution parameters 
(weight distribution and SD of the weight derived from a 4-scale weighing platform as 
described by Nechanitzky et al., 2016). The platform consisted of four recording units (0.78 × 
0.55 m), with one hermetically sealed load cell each (HBM, Hottinger Baldwin Messtechnik 
AG, Volketswil, Switzerland) and covered with individual rubber mats of 1 cm thickness. 
Cattle were given 5–10 minutes to get used to standing quietly on the balance. When they 
were standing with each limb positioned on the appropriate unit, the weight measurement 
was started manually. Total data collection time was five minutes at a frequency of 10 Hz 
and the weight of the four limbs measured independently.

The cows were equipped with two stand-alone 3D accelerometers (400 Hz; USB 
Accelerometer X16-4; Gulf Coast Data Concept, Waveland, USA), which were fitted at 
the level either of both metatarsi or both metacarpi, depending on the location of the 
pathology. The gait variables of the cow pedogram (kinematic outcome = stance phase 
duration; kinetic outcome = foot load and toe-off) were extracted, using the validated 
Cow-Gait-Analyzer as described by Alsaaod et al., 2017. 

Statistical analyses

Data analysis was performed at the cow level, and all included variables that represented the 
difference across the contralateral limbs of the affected limb pair, and the measurements 
at 1 hr and 18 hrs were compared to the baseline. A repeated measures ANOVA was used 
to determine the differences between groups K and P. All variables including locomotion 
scores were considered as “continuous variables” to perform the ANOVA. A Bonferroni 
corrected P-value was calculated; the significance value was set at P ≤ 0.05 (without 
Bonferroni adjustment). The variables were analysed using the software package NCSS10 
(NCSS LLC, Kaysville, UT).

Results and discussion

At T1 only the relative stance phase duration and the weight distribution showed 
significant differences between group K (mean ± SD; 3.85 ± 5.77 and 7.76 ± 7.95) and group 
P (-1.51 ± 2.94 and 0.827 ± 8.6) (P = 0.001 and 0.002), respectively. Group K had significantly 
lower differences across the contralateral limbs at T1 as compared to group P. However, 
neither the gait variables nor the weighing platform variables showed differences between 
group K and P at T2. Ketoprofen was reported as rapidly exiting the bloodstream to enter 
the tissue compartment at the site of inflammation, where it is pharmacologically active 
(Landoni et al., 1995). An effect of ketoprofen on locomotion scores was not found. The 
results of locomotion scores support previous findings, which reported that the objective 
assessment of gait, weight bearing and activity has been shown to be more sensitive than 
gait scores as a method of evaluating the effect of ketoprofen (Chapinal et al., 2010). 

The results of this study reveal that measuring stance phase duration of the cow 
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pedogram while cows are walking and weight bearing across limbs while standing show 
great potential as automated methods for evaluating the effect of NSAIDs on motion and 
weight bearing characteristics of the musculoskeletal apparatus of lame cattle.

Conclusions

A combination of stance phase duration at walking and weight distribution at standing was 
the best set of parameters to determine the effect of ketoprofen. A single administration of 
ketoprofen significantly reduced the differences across the limbs at walking and standing 
after one hour of administration, but this effect was not detectable after 18 hrs. It must be 
mentioned that treatment of foot disorders should not be restricted to administration of 
NSAIDs but focus on early treatment of the cause of lameness. Otherwise, deterioration of 
the primary disease and overload of the affected limb will be supported.
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Abstract

The present study aimed to investigate the influence of body posture on the physiological 
traits in lactating dairy cows under thermoneutral conditions. Data were collected from 137 
lactating Holstein Friesian dairy cows (1st to 8th lactation; 40.7 ± 6.8 kg milk per day and 132.6 
± 70.4 days in milk) housed in a loose, naturally ventilated barn from June 2015 to December 
2016. Respiration rate (RR, hourly visually counted), heart rate (HR, twice a day by stethoscope), 
and rectal temperature (RT twice a day measured with a veterinary digital thermometer) 
were used as physiological traits. Cow body posture (standing vs lying) was documented 
during the data collection. Data were analysed for differences between factor levels with 
repeated measurements of linear mixed models (α = 0.05). Lying cows had higher (P < 0.001) 
RR (34.22 ± 0.31 breaths per min; bpm) and HR (85.07 ± 2.23 beats per min) than standing 
cows (RR: 29.16 ± 0.23 bpm, HR: 82.33 ± 2.27 beats per min). Body postures influenced RR and 
HR, but not the RT of lactating dairy cows under thermoneutral conditions. Ongoing studies 
with an automatic RR sensor showed a positive correlation between visual and automatic 
counted RR in lying (r = 0.98) and standing cows (r = 0.99). Continuous measurements of RR 
with an automatic sensor deliver reliable data from the cows. 

Keywords: dairy cow, naturally ventilated barn, standing cow, lying cow, automatic sensor 

Introduction

Atmospheric conditions are major contributors to animal stress in warm and temperate 
climate zone conditions (Legates et al., 1991). Some environmental parameters such as 
temperature, relative humidity which determine the temperature-humidity index (THI) 
have been investigated to identify their effects on cow performance by establishing critical 
ambient temperatures for dairy cows (Thom, 1959, West, 2003). It is well documented that 
the optimal temperature range for dairy cows should be between -0.5–20 °C (Hahn, 1999) 
or for THI values to be below 68 (Zimbelman and Collier, 2011).

Physiological parameters such as respiration rate (RR), heart rate (HR), and body 
temperature have been demonstrated as adequate and timely indicators of heat stress in 
dairy cows (Kadzere et al., 2002, Moallem et al., 2010, Costa et al., 2015a). Among other major 
physiological parameters consulted in the literature, RR and body temperature have long 
been used as a heat stress indicator (Gaughan et al., 2000, Brown-Brandl et al., 2005, Galán 
et al., 2018). However, RR increases earlier than rectal temperature (RT) in cows under hot 
conditions, and a cow’s breathing is the earliest response to fluctuating air temperatures 
(Ferreira et al., 2006, Moallem et al., 2010, Costa et al., 2015b). An increase in RR allows a 
cow to initiate heat dissipation before a significant increase in its body temperature and 
the subsequent changes in normal body functions occurs (Berman, 2005). 

Individual cows’ reactions in susceptibility to hot conditions are challenging the identifying 
of adequate thresholds of heat stress, which are necessary to implement adequate 
measures to assume a real stress level. Gaughan et al. (2000) affirmed that animal-factors 
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as age, sex, genotype, performance, nutrition, time of feeding, body condition, as well as 
previous exposure to hot conditions influence directly the RR of cattle.

If changes in RR can be detected early, targeted measures can be taken to alleviate the 
strain on the animal and thus prevent performance losses and increase the animal 
welfare. The RR is considered as a well suited cow parameter for heat stress, however, the 
common method to count the flank movements visually in cattle is time-consuming and 
labour-intensive (Brown-Brandl et al., 2005, Milan et al., 2016). 

The aim of the present study was to identify responses of respiration rate, heart rate 
and rectal temperature in lactating dairy cows regarding their body posture under 
thermoneutral conditions. In a further study, the correlation between visual and automatic 
RR sensor considering body posture of cows was evaluated.

Materials and methods

Animals, housing and management

The present study was conducted on the dairy farm of the Agricultural Research and 
Education Center for Animal Breeding and Husbandry “Gross Kreutz” in Brandenburg, 
Germany (coordinates: 52°23’47.4”N, 12°46’02.8”E, approximately 56 km west of Berlin, 32 
m above sea level). The climate of this region is predominantly continental. 

The data were collected from June 2015 to December 2016. The data were collected with 
max 30 Holstein Friesian lactating dairy cows per day. During the measurements, the 
health status of the cows was constantly evaluated by a veterinarian who selected only 
healthy cows for the measurements. A total of 137 cows from first to eighth lactation were 
included during the whole experimental period. The cows were milked three times a day 
by an automatic milking system (AMS, Lely Astronaut A4, Maassluis, the Netherlands). 

The animals were housed in a naturally ventilated barn, as already used by Heinicke et al. 
(2018) and by Hempel et al. (2018), aligned in an NE-SW orientation with a floor area of 686 
m2 (13.7 m2 per cow). The feeding alley was 27.7 m long (animal:feeding place ratio of 1:1). 
The herd size in this barn was on average 50 animals. The cows were fed a totally mixed 
ration twice a day. Additional concentrate was fed in the AMS based on individual DIM 
and milk yield. The cows had access to 51 lying cubicles with deep straw bedding, 34 of 
them were arranged in a double row and 17 in a single row. An automatic scraper removed 
manure from the concrete walking alleys approximately once per hour. The waiting area 
in front of the AMS had a slatted floor. 

Animal parameters

The physiological parameters were measured between 07.00 h to 15.00 h (GMT + 01.00 h). 
The time of the data collection was chosen to comprise a representative range from low 
to high ambient temperatures during the day period. Datasets were collected during the 
experimental period, with up to three measurement days per week. The RR was hourly 
observed visually by counting right thoracoabdominal movements for 30 seconds and 
multiplying the value by two (i.e. breaths per minute, bpm). The heart rate (HR) was 
measured twice a day using a stethoscope between fourth and sixth intercostal spaces 
in the breastbone region for 15 seconds and multiplying the value by four (i.e. beats 
per min). The rectal temperature (RT) was taken twice a day using a veterinary digital 
thermometer (Microlife VT 1831, Microlife Corporation, Taipei, Taiwan; range between 32–
44.9 °C), and obtained directly from rectal wall. Cow body posture (i.e. standing vs lying) 
was documented during the data collection.
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Environmental measurements 

Ambient temperature (AT) and relative humidity (RH) of the air in the barn were recorded 
every five minutes with eight data loggers (EasyLog USB 2+, Lascar Electronics Inc., 
Whiteparish, England) positioned at eight locations inside the building at 3.4 m above the 
floor. The temperature-humidity index (THI) was calculated according to NRC (1971) as 
follows: 

THI = (1.8 × Tdb + 32) - (0.55 – 0.0055 × RH) × (1.8 × Tdb - 26) where Tdb is dry bulb temperature 
(in °C) and RH is relative humidity (in %).

Ambient temperature was classified in six different classes as follows: -5 ≤ AT < 0, class 1; 
0 ≤ AT < 5, class 2; 5 ≤ AT < 10, class 3; 10 ≤ AT < 15, class 4; 15 ≤ AT < 20, class 5 and 20 ≤ 
AT < 23, class 6. 

Automatic RR sensor 

A device, based on a differential pressure sensor with a microcontroller that can record RR 
automatically has been developed to make continuous long-term studies possible (Figure 
1, for further description see Strutzke et al., 2019). The reference method used was counting 
the flank movements of a total of six Holstein-Friesian cows. The rear flank movements 
of each cow were recorded by a camera and counted independently of the device by an 
observer. Eight videos of one minute each were recorded per cow. The data analysis was 
done with cows in three different body postures: dozing, lying, and standing. A total of 48 
RR measurements of the device were compared with the counted RR frequencies of the 
video recordings. 

Figure 1. Cow with sensor device attached

Statistical analyses 

Physiological parameters (RR, HR and RT) were considered as dependent variable. Each 
cow was required to have at least 10 test-day records to be part of the analysis. The data 
collected used in the analyses comprehend ambient temperatures between -5 – 23  °C 
during the experimental period considered under thermoneutral condition in dairy 
cows (Spiers et al., 2004). A regression analysis of RR, HR and RT as function of ambient 
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temperature was performed separately for standing and lying cows. The experimental 
design was completely randomized 5% and tested by ANOVA at significance level of 0.05. 
When ANOVA revealed a significant difference in least-square means, a Tukey-Kramer 
multiple comparisons test was performed at P < 0.05. Ambient temperature was classified 
in six different classes as described above. A linear mixed model with repeat measurements 
for each cow was used to test the influences of the ambient temperature and cow-related 
factors (body posture, lactation number and DIM) on physiological parameters. The fixed 
factors in the model were ambient temperature classes and body posture. The interaction 
between body posture and ambient temperature classes was also included. To assess the 
strength of the statistical relationship between the RR generated by the sensor data and 
the visual observation data, a Bravais-Pearson correlation analysis was conducted. To 
describe the agreement between the visual observation and the sensor data, a matched 
pair analysis was performed, which includes a Tukey mean-difference plot and the results 
of a paired t-test.

Results and discussion

Environmental parameters

Table 1 shows mean values of relative humidity and calculated THI in different classes 
of ambient temperature. Mean values of AT, RH and THI during the thermal neutral 
conditions were 13.91 ± 6.09, 82.69 ± 13.85 and 56.64 ± 10.18 (mean ± SD), respectively. 
The environmental conditions for an efficiently dairy production in cows range between 
-0.5–20 °C (Hahn, 1999) or THI values below of 68 (Zimbelman and Collier, 2011). In a study 
with high-yielding dairy cows, the THI considered as thermoneutral conditions was set 
between 55–61 (Garner et al., 2017). 

Table 1. Relative humidity (RH, in %) and temperature-humidity index (THI) according ambient 
temperature (AT, in °C) classes

AT classes RH – Mean ± SD THI - Mean ± SD

-5 ≤ AT < 0 94.96 ± 0.27 28.73 ± 0.26

0 ≤ AT < 5 96.02 ± 0.29 37.85 ± 0.08

5 ≤ AT < 10 91.47 ± 0.23 46.72 ± 0.08

10 ≤ AT < 15 84.22 ± 0.38 54.44 ± 0.09

15 ≤ AT < 20 81.02 ± 0.24 63.86 ± 0.05

20 ≤ AT < 23 62.73 ± 0.48 66.80 ± 0.03

Animal-related parameters

The dataset of 5,281 animal observations from a total of 137 cows during the whole 
experimental period was included into the model. Table 2 shows the mean RR, HR and 
RT of cows in different ambient temperature categories; and the comparison of the 
physiological parameters in standing vs lying body posture. 
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Table 2. Respiration rate (RR, breaths per min); heart rate (HR, beats per min) and rectal 
temperature (RT, °C) of cows depending on different ambient temperature (AT) classes and body 
postures

AT classes
Mean ± SE

RR HR RT

-5 ≤ AT < 0 22,50 ± 0.51 79,32 ± 1.08 37,85 ± 0.08

0 ≤ AT < 5 27,09 ± 0.28 80,58 ± 0.96 38,21 ± 0.03

5 ≤ AT < 10 29,78 ± 0.23 82,69 ± 0.47 38,25 ± 0.02

10 ≤ AT < 15 33,03 ± 0.26 82,15 ± 0.48 38,30 ± 0.02

15 ≤ AT < 20 36,04 ± 0.19 80,31 ± 0.32 38,31 ± 0.01

20 ≤ AT < 23 38,63 ± 0.38 82,27 ± 0.47 38,33 ± 0.02

P-value P < 0.001 NS NS

Body Posture

Standing 29.16 ± 0.23 82.33 ± 2.27 38.07 ± 0.13

Lying 34.22 ± 0.31 85.07 ± 2.23 38.06 ± 0.13

P-value P < 0.001 P < 0.001 NS

A significant difference on RR between all ambient temperature categories was observed 
(P < 0.001). The RR tended to increase among the THI increase (y = 12.099 + 0.382; R² = 
0.54), as well as the HR (y = 81.225 + 0.002; R² = 0.54) and RT (y = 37.894 + 0.007; R² = 0.56), 
however, the environmental categories used in the present study were still under a range 
of thermoneutral conditions. Weather factors are closely correlated with RR reactions in 
cattle (Mader et al., 2006). Zimbelman and Collier (2011) affirmed that the RR increases 2 
breaths per minute (bpm) for each THI unit increase. Normally, the RR in cattle varies from 
15–36 bpm, the HR from 60–80 beats per min and body temperature from 38.0–39.0  °C 
(Rosenberger, 1979, Jackson and Cockcroft, 2008). When the capacity for heat dissipation 
exceeds the range specified for normal activity, the body induces adjustments to avoid 
physiological dysfunction (Kadzere et al., 2002). The present study confirmed that the 
respiration rate starts to increase earlier than the rectal temperature in hot conditions 
under rising air temperatures, which also has an advantage for visual measurements 
(Ferreira et al., 2006, Moallem et al., 2010).

Various factors such as body postures may influence the physiological parameters in 
cows. Our present study showed a significant effect of body posture on RR and HR of 
cows. Lying cows tended to show higher RR and HR in comparison with standing cows. 
Some works confirm that the individual cow factors can influence the physiological 
parameters and susceptibility of dairy cows to heat stress whereby the lying cows, for 
example, may develop heat stress earlier and at a lower temperature threshold than 
standing cows (Gaughan et al., 2000, Berman, 2005). Some authors have suggested that 
the body contours of cows change when they lie down, causing the rumen compression 
on diaphragm and thereby affecting the thoracic organs, especially in the lung capacity 
and respiration effectiveness (Santos and Overton, 2001, Tucker et al., 2008, Reece and 
Rowe, 2017). However, those cow factors were not included in the analysis of the normal 
physiological values, e.g. Rosenberger (1979) and Jackson and Cockcroft (2008), which 
can reduce the precise assessment of heat stress in cattle. Although in the literature has 
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been already mentioned that the straw bedding might increase the heat load in lying 
cows (Angrecka and Herbut, 2017); hence standing cows are more exposed to airflow and 
increase the wind convection (Wang et al., 2018), no significant difference in cows’ RT was 
observed in the present study. 

New automatic RR sensor

The results of the correlation analysis showed a high correlation coefficient and coefficient 
of determination for the RR during lying (r = 0.98, R2 = 0.96, n = 15) and standing (r = 0.99, 
R2 = 0.99, n = 20) between automatic and visual counting. The sensor value appears to be 
the more reliable measure compared with the visual method due to the position of the 
sensor in the nasal cavity, where the pressure sensor really measures the inhalations and 
exhalations of the air into or out of the lung. The continuous measurement of RR in long-
term studies is difficult to implement, can be physically strenuous, and inevitably results 
in miscounts. Nonspecific flank movements, which are not caused by respiration, can also 
result in misinterpretation (Eigenberg et al., 2000). The new sensor enables animal-specific 
and high-frequency recording of respiration and characterisation according to frequency 
and depth. Furthermore, the permanent presence of a person can cause stress and affect 
the RR of the animal, which can confound the measurements.

Conclusions

In conclusion, the present study provides quantified evidence that the physiological 
parameters, especially RR, increase significantly with ambient temperature increase, 
even when the environmental conditions were still under thermoneutral conditions for 
dairy cows. Cows in a lying posture tended to demonstrate higher RR and HR than in a 
standing posture. The study also showed that measuring RR by a differential pressure 
sensor delivers reliable data. Overall, we found that the behaviour of the animals during 
the study was not disturbed by the flexible tube of the automatic sensor, nor was their 
health impaired.
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Abstract

Climate (temperature) control in poultry houses utilises standard environmental 
sensors in only a few locations, providing very crude indoor climate information. As a 
result provision of optimal conditions to all birds is difficult to assess and even more 
difficult to achieve. An autonomous roving sensor platform would be an ideal solution 
to provide these data at a high-density grid for the entire building. This feasibility study 
has clearly shown that a robot sensor platform can navigate through a flock of broilers 
during the majority of the growing cycle even on days with maximum stocking density. 
The 2dimensional environmental data collected for the building, clearly make the case for 
using the robot to assess the uniformity of the climate conditions at any location and time 
thus providing a real-time opportunity to improve the climate conditions experienced by 
the flock of broiler birds.

Keywords: real-time monitoring, autonomous robot, poultry, climate control

Introduction

Poultry meat is increasingly in high demand by consumers across the globe, far more than 
any other meat source. Worldwide, over 60 billion chickens are produced annually (FAOSTAT, 
2015), whilst in the UK alone almost a billion broilers were slaughtered last year; and 60 
million in Ireland (National Statistics, 2016). Food security and high welfare standards are 
key attributes that consumers associate with food quality. However, societal concerns over 
managing animal health and welfare in large poultry flocks are exacerbated by the threat of 
zoonotic disease caused by pathogens infecting poultry. These drivers place huge pressure 
on farmers to satisfy consumer demand for sustainable, safe, nutritious, affordable and 
animal welfare friendly products, while also reducing financial and health margins for error. 

The modern broiler chicken is a product of intensive selection for fast growth and meat 
quality, requiring optimum conditions to perform to its genetic potential. Climate control, 
lighting, stocking density and litter quality are all important and interlinked parameters 
that must be maintained within narrow limits. Deviations from these optima can 
significantly impact on animal welfare, sustainability and profit. For example, localised 
deviations from the optimum temperature range are likely to result in a flock moving to 
the better maintained areas of the poultry shed (huddling), disrupting the normal feeding 
and drinking patterns, reducing weight gain and thus product yield (EFSA Panel on Animal 
Health and Welfare, 2012). Economies of scale and intensification have led to increasingly 
larger and better equipped farms, but also to a reduction in farmer time spent per animal, 
reducing the time spent observing broilers’ performance, health status and behaviour. 
This increases the risk of producers missing food security and welfare issues at an early 
stage, increasing potential for significant financial loss and, in the case of disease and 
zoonoses, enhanced transmission within and between flocks and to humans.

Information and Computer Technology (ICT), combined with state-of-the-art monitoring 
can be used to address the trend of decreasing animal-farmer contact time by assisting 
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farmers in gathering information on their animals, processing and presenting the data in 
a user-friendly manner (Wathes et al., 2008). This will improve not only broiler health and 
welfare, but can also provide an economic advantage to the farmer (Berckmans, 2013). 
Precision Livestock Farming (PLF) aims to continually monitor animals in confinement and 
analyse the data gathered to (i) provide information/alerts to the farmer and potentially, 
(ii) respond to the alert by actively changing relevant control parameters to alleviate 
the impact of the condition triggering the alert (added value). The poultry industry has 
adopted ICT and monitoring technology years ago, e.g. fully automated climate control, 
feeding and bird weighing systems and, although fully interactive growth control systems 
(Demmers et al., 2011; Stacey et al., 2004) are not yet implemented, adaptations from these 
(e.g. Flockman) are increasingly used in the broiler industry.

Currently the basic climate control in poultry houses utilises standard environmental sensors 
for temperature, relative humidity and carbon dioxide in only a few locations, providing 
rather rudimentary indoor climate data on which to base real time climate control. As a 
result, providing optimal conditions to all birds is difficult to assess and even more difficult to 
achieve. Precision livestock farming technologies such as eYeNamic, monitor bird behaviour, 
are increasingly used to mitigate the lack of data, but there is a distinct lack in climate data 
for the area around the birds themselves. An autonomous roving sensor platform would be 
an ideal solution to provide these data at a high-density grid for the entire building.

A recent exploratory study (Dennis et al., submitted) showed it was feasible to operate 
a robot within a flock of broilers and has provided the operational parameters for an 
autonomous platform travelling through a broiler flock without causing negative bird 
behaviours, such as startling. Although many birds did come into contact with the front of 
the robot, and increasingly so with age and bird density, there were very few (17) instances 
during the crop where a bird refused or was unable to move out of the way of the robot. 
A standard protocol was used to move the robot around the bird obstructing its path. 
Standard production parameters (Food Conversion Ratio (FCR), mortality and growth rate) 
appeared to be unaffected by the use of the robot.

The thus developed robot platform was equipped with basic environmental sensors and 
a navigation system, based on previous applications of the robot platform, for instance, 
in the CERN large Hadron Collider in Geneva. The completed prototype robot was tested 
in a commercial broiler production facility to explore autonomous navigation and the 
collection of detailed spatially distributed environmental data. This paper will comment 
on the navigation and present the environmental data gathered. 

Material and methods

Broiler production farm

The commercial feasibility trial with the autonomous robot, took place on a commercial 
broiler farm. Two identical houses were studied - one housed the experimental flock and 
one housed a control flock. The animals in both houses were matched for flock size, strain, 
age, stocking density and general husbandry. Both houses studied were 97.5 m × 23 m and 
had six full-length nipple drinker lines and four full-length pan feeder lines. The feeders and 
drinkers created ‘aisles’ that a stockman, and in the case of the experimental flock, a robot 
could travel down. The arrangement of furniture in the houses was identical. The floor was 
covered in a layer of sawdust prior to the arrival of the chicks and feed was scattered on blue 
paper throughout to encourage chicks to feed. Birds were fed ad libitum. The climate control 
was based on the Fancom MTT system using recommended temperature and humidity 
curves. The light regime provided a 2 h and a 6 h dark in any 24 h period. The EyeNamic 
system (six cameras) provided additional information on bird distribution and activity.
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Animals

At one day old, 45,000 Ross 308 (Aviagen) broiler chicks were placed in both the experimental 
and control house (20 birds/m2). The maximum stocking density was 38 kg/m2. On Day 34, 
the birds were thinned to maintain the stocking density, removing 13,500 birds. The birds 
were depopulated at 40 days of age. The chicks in both houses arrived from the hatchery 
in poor health so were given antibiotics in the first week to recover. Additionally, both 
flocks suffered from bacterial enteritis at approximately 25 days of age and received an 
additional course of antibiotics. ‘Play bales’ (sawdust bales with the plastic covering split) 
were placed in the houses at 15 days of age.

A stockman walked both flocks three times a day for the first 16 days and twice a day for the 
remainder of the cycle. The stockman recorded all mortality (birds found dead and culls). 

Robot platform

The autonomous robot (Figure 1) was based on the standard modular platform developed 
by Ross Robotics and fitted with a prototype cover. This cover was wedge shaped at the 
front to encourage birds to move sideways away from the robot as it approached and was 
high at the front to ensure birds could anticipate its arrival. Forward speed of the robot 
was 0.077 m.s-1 as recommended from a prior trial.

The robot was fitted with a lidar positioning system, optical target recognition system and 
wheel odometry for navigation purposes, video cameras for bird behavioural observations 
and a combined temperature, humidity and carbon dioxide sensor (CozIR, GSS ltd) and a 
sonic anemometer (Windmaster, Gill Ltd), both linked to a modular processing unit on the 
robot. The data were transferred in real-time to a dashboard and stored in a data base.

The anemometer was positioned horizontally at the rear of the robot to ensure airspeed 
was measured at bird level, whilst minimising the effect of the robot on the airflow pattern. 
The CozIR sensor was mounted on the top of the modular processing unit.

Figure 1. Prototype robot moving through flock with navigation stack including cameras at front, 
sonic anemometer and downward facing camera on pole presenting view of chickens directly in 
front of robot. The CozIR sensor is not visible. On the right a stylized image of the robot with the 
measurement axis of the sonic anemometer is shown

Experimental protocol

The robot was driven from the “hutch” along a set route (see Figure 2) twice a day Monday 
to Friday from Day 3 to Day 35. These runs were at approximately 10.00 and 13.30, with 
regular deviations due to technical difficulties with the robot. 
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Figure 2. Layout of the experimental house. The route for a morning run is indicated by ‘M’ and the 
route for an afternoon route by ‘A’. The dimensions of the house were 97.5 m × 23 m and the four 
aisles studied were 2.3 m wide

The robot was under manual control (operators outside of the room) at all times. Staff had 
to enter the room to power up the robot, open the hutch door and replace batteries only. 
Cameras on the robot were used to direct the robot and ensure that no birds were harmed. 
If a blocking bird was encountered the experimenter would pause the robot, and drive 
at the bird again. If the bird remained stationary, an attempt to go around it was usually 
initiated. 

Results and discussion

The robot was tested from Day 3 to Day 35 of this crop of broilers. Unfortunately, technical 
difficulties with the navigation and remote control systems of the robot meant that the 
robot had to be controlled manually, initially from within the shed and from the second 
week remotely from the farm office. Location data generated by the navigation system 
were initially missing and following several hardware and software upgrades proved to be 
very accurate (± 0.010 m) but unstable, with the robot at times losing track of its position 
and unable to regain the correct location information, for instance, resulting in the robot 
thinking it was going in the opposite direction from reality or being over 50 m away. The 
working environment for the robot, e.g. 45,000 growing birds, variable litter conditions 
(uneven), large amount of objects and irregular features e.g. heaters was far more complex 
than anticipated and caused problems for particularly the Lidar system. The remaining 
time during the trial was insufficient to effect the major changes to either the existing 
hardware or introduce alternative location tracking systems. 

Due to the problems with the navigation system, the number of environmental data sets 
with correct location information was limited. The temperature and relative humidity 
component of the CozIR sensor were heavily affected by the heat production of the 
environmental module itself and elements of the modular robot. Nevertheless, initial 
results using the temperature data from the anemometer do show the importance of 
spatial information.

The temperature profile as measured with the sonic anemometer for Day 35, Run 1 (am) is 
given in Figure 3. This clearly shows differences in temperature both by location and time. 
The deviation from the climate control sensors aiming to maintain 23.0 ºC, exceeding 5 ºC, 
was far greater than expected for a modern and well managed commercial building. There 
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were localised hotspots (up to 27.7 ºC) at both ends of the building and cold spots (18.0 ºC) 
near the staff entry door (used before the start and at the end of each run). The hotspots 
clearly indicate insufficient ventilation in these areas, whereas the cold spots could be 
due to staff entering the building, not only bringing in masses of cold air, but temporarily 
disturbing the airflow pattern due to the change in (under) pressure in the shed.

Equally, the airspeed measured (see Table 1 and Figures 4 & 5) clearly showed that the high 
speed inlet jet ventilation system works as expected on a well operated poultry building. 
The air is entering the building through air inlets in the sidewall, directed upward along 
the ceiling, then falling along the centre line of the building and finally, returning over the 
birds to either side wall having been warmed up in the process.

Table 1. The mean airflow as measured during the traverse of the robot over the length of the 
building along the V axis of the anemometer and the X axis of the building (U and V match on runs 
M1 and M3)

Pass
Mean airflow in V direction

m.s-1

Mean airflow in the X direction

m.s-1

M1 -0.3516 + 0.3516

M2 -0.3253 -0.3253

M3 -0.3026 +0.3026

M4 -0.3662 -0.3662

On average, the airspeed along the V axis was 0.33 m.s-1 which is within the comfort zone 
for broilers of this age (Charles, Scragg, & Binstead, 1981). The airspeed over the birds is 
higher towards the side walls (lane M1 and M4) as could be expected due to the airflow 
pattern generated by the high speed inlet jet system. The airspeed at the ends of the 
building appears slightly lower, however, this is well within the variation over time. The 
airspeed in the vertical plane (U) (Figure 4) measured in the lanes was low throughout 
as expected for a well operated inlet jet ventilation system. The centre lane of the shed, 
where a significant downward element of airspeed was expected could not be used due to 
obstruction by air re-circulation fans and “play” bales.

The hotspots in temperature appear to be coinciding with lower airspeed. Due to the 
building design (Tunnel inlets at one end of building, and partially obscured air inlets 
on the other end) might explain the findings to some extent, but this will need further 
investigation of the data before sound advice to ameliorate the issue can be given. 
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Figure 3. Temperature profile as measured with the sonic anemometer for the Day 35 Run 1 (am) in 
comparison to the equivalent temperature from the shed sensors (mean of four sensors) in the top 
graph and plotted against the robot location in the bottom graph

Figure 4. Airspeed profile (U,V and W vectors) as measured with the sonic anemometer mounted on 
the robot for the Day 35 Run 1 (am) over the length of the building for lane M1 only. Overall magnitude 
given for reference. Red line indicates 0 m.s-1
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Figure 5. Airspeed profile for the lateral (V) vectors as measured with the sonic anemometer mounted 
on the robot for the Day 35 Run 1 (am) over the length of the building for lane M1 – M4. Black line 
indicates 0 m.s-1

Conclusions

This feasibility study has clearly shown that a robot sensor platform can navigate through 
a flock of broilers during the majority of the growing cycle right up to days with maximum 
stocking density. However, the autonomous navigation system envisaged for the robot did 
not function properly. Further development and testing of the existing or a new navigation 
system is required.

The 2-dimensional environmental data collected for the building, clearly make the case 
for using the robot to assess the uniformity of the climate conditions at any location and 
time thus providing a real-time opportunity to improve the climate conditions experienced 
by the flock of broiler birds.
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Abstract

The severity of foot pad dermatitis (FPD) is one important indicator for animal welfare 
in turkeys. Classification systems in Germany generally refer to a five-scale scoring (0-
4). The aim of the present study was to describe interactions between visual scores and 
histopathological findings of the underlying pathology. Observer reliability was calculated 
for 600 feet of turkeys which were sampled at the slaughterhouse. Histopathology was 
conducted using 100 feet (20 feet per scoring scale). The size of the lesion was measured 
and feet were analysed histopathologically by examining the occurrence and severity 
grade of different parameters. Correlation between the visual score and the size of the 
lesion was strong (rsp = 0.9). Apart from that, the presented study did not confirm a linear 
increase in the severity of the histological parameters with an increase of the severity in the 
visual score. Ulcerations were found in more than 50% of the feet visually scored as Level 
1 already. For the visual scoring Levels 2-4, all of the feet were found to reveal ulcerations, 
most of the alterations being evaluated as severe. The presented study contributes to a 
better understanding of the pathophysiology of FPD. It also raises the question if, in view 
of animal welfare, threshold values of visual systems have to be adjusted considering the 
histopathological findings. However, further research on the perception of pain regarding 
ulcerations is needed.

Keywords: FPD, foot pad dermatitis, turkeys, histopathology, animal welfare

Introduction

Foot pad dermatitis (FPD), a contact dermatitis of the plantar surface of the bird`s feet 
(Greene et al., 1985), is an important indicator of animal welfare in poultry husbandry. 
Besides other factors like genetics, nutrition and management (de Costa et al., 2014; 
Shepherd and Fairchild, 2010), wet litter is reported to be the main reason to develop FPD 
(Mayne et al., 2007; Mayne, 2005; Martland, 1984). Therefore, in Germany, the occurrence of 
FPD is evaluated at the slaughterhouse, among others, to draw retrospective conclusions 
about the management of litter and animal welfare during the period of husbandry. 

The monitoring of such indirect animal welfare parameters can contribute significantly 
to the improvement of the management of farmed animals in the long-term, which first 
results from the incidence of FPD in broiler chickens in Denmark demonstrate. Here, since 
the introduction of an official monitoring in 2002, a massive decline in the prevalence 
of FPD was shown (Kyvsgaard et al., 2013, de Jong and van Harn, 2012). In the case of 
foot pad assessment at the slaughterhouses in Germany, the scoring of FPD is established 
as a benchmark system, mainly to raise awareness among animal owners, and thus to 
progressively improve footpad health.

FPD is characterised by inflammatory processes and lesions of the skin. These can 
range from hyperkeratosis to necrotic alterations which might be affecting the surface 
and subjacent structures superficially (erosion) or deep (ulceration) (Greene et al., 1985; 
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Martrenchar et al., 2002). With regard to animal welfare, the occurrence of ulcerations is 
highly relevant, as ulceration is most likely to induce pain (Weber Wyneken et al., 2015; 
Haslam et al., 2007; Martland, 1984). Generally, the assessment of the severity of FPD is 
based on a subjective evaluation, scoring the area of the altered foot pad. The standard 
system used in turkeys was developed of Hocking et al. (2008); they propose to use a 5-step 
visual score based on the size of the colour-changed areas on the metatarsal pad. 

Scoring systems have to fulfil a set of requirements: they must be quick and easy to use 
while reflecting the problem in measurable and assessable categories. Therefore, they 
must be clearly defined. As such systems also have to withstand economic competition 
- objectivity and validity are crucial additional criteria (Lund et al., 2017, van Harn and de 
Jong, 2017). Therefore, repeatability between different classifiers should be an essential part 
of each scoring system. In Germany, some turkey slaughterhouses use automated setups 
to assess the severity of FPD in order to objectify such visual scoring systems as far as 
possible. The presented study is part of a collaborative project with the focus on optimising 
and validating one automated, camera-based device, most frequently used in Germany. 

However, the presented study focuses on the visual scoring and does not draw conclusions 
to the automated system at this step. As mentioned above, one important criterion for 
a reliable scoring system would be to reflect the underlying problematic as precise as 
possible. Histopathological examinations can help to assess the severity of footpad 
changes in more detail (Michel et al., 2012). 

Therefore, the aim of the presented study was to describe interactions between visual 
scores and histopathological findings. The main focus was on the detection of ulcerations. 
In order to develop a basis to optimise automated camera-based detection of FPD, this 
study aimed to make a first step by analysing visually inaccessible pathologies and to 
reveal links between the superficial expression and their subjacent characteristics. 

Material and methods

Observer Reliability

Observer reliability was calculated using 600 feet of turkeys (B.U.T 6) sampled at a 
slaughterhouse in Germany. Two hundred feet came from female birds while 400 feet 
belonged to male birds. Feet were randomly collected from the slaughterline and scored 
by two observers using a five scale scoring system adapted from Hocking et al. (2008). The 
definition of the different scoring classes can be found in Table 1. 

Observer reliability was calculated using the “Prevalence-Adjusted Bias-Adjusted 
Kappa” (PABAK). Reliability was valued using the classification of Landis and Koch (1977) 
(PABAK<0.00 = poor; PABAK 0.00-0.20 = slight; PABAK 0.21-0.40 = fair; PABAK 0.41-0.60 = 
moderate; PABAK 0.61-0.8 = substantial; PABAK0.81-1.00 = almost perfect).

Table 1. Scoring classes of the visual scoring system (VS)

Scoring level Definition

0 Intact foot

1 Small, punctual alterations

2 Altered lesion covers less than 25% of the foot pad

3 Altered lesion covers less than 50% of the foot pad

4 Altered lesion covers more than 50% of the foot pad



Precision Livestock Farming ’19      423

Table 2. Scoring classes of the combined histopathological score

Scoring level Definition

0 Intact foot (including hyperkeratotic alterations)

1
Mild lesions (multifocal perivascular pododermatitis, erosions, re-
epithelialized granulation tissue)

2 Slight ulcerations

3 Moderate ulcerations

4 Severe ulcerations

Histopathological Analysis

Feet of turkey toms were collected at the slaughter-line and scored visually (VS). Here 
again the scoring system described in Table 1 was used. Of those feet, 100 feet were picked 
in a pseudo-randomized order, with the criteria to include 20 feet per scoring class into the 
sample. These feet were used for further analysis. 

To obtain the size, the lesion was measured by length × width, additionally the number 
of lesions was evaluated. Then, tissue was collected from the center of the biggest lesion/
per metatarsal foot pad. Cuts measured approximately 300 mm × 20 mm × 7 mm. They 
were stored in 10% buffered neutral formalin in histological cassettes and embedded into 
paraffin wax afterwards. Cross sections (3-4 µm thick) were stained using Haematoxylin/
Eosin. For microscopic examination, a light microscope (Olympus BX53) with 40 - 400x 
magnification was used. Histological analysis was performed by two experienced 
pathologists; examining the occurrence and severity grade (slight / moderate / severe) of 
different parameters. They included: hyperkeratosis, erosion, ulceration, re-epithelialized 
granulation tissue and multifocal perivascular pododermatitis. The latter was divided in 
acute and chronic processes according to the type of inflammatory cells; for the presented 
analysis both were pooled. The severity grade was evaluated semi-quantitatively. Multiple 
diagnoses were possible per foot. Furthermore, findings of the histopathology were 
combined in a single score (HS). This scoring was adapted to the scoring system proposed 
by Michel et al. (2012), however, it was modified slightly in order to allow better comparison 
to the VS (see Table 2). Spearman correlations were used. 

Results and discussion

A PABAK of 0.72 was calculated. Taking the classification of Landis and Koch (1977) as a 
basis, this result can be considered to be a good reliability. We, therefore, concluded this 
visual scoring system to be an objective method for further usage throughout the study. 
However, both observers in this study were trained in scoring foot pad dermatitis. This 
has to be kept in mind when applying visual systems in practical contexts, visual scoring 
is vulnerable to a high subjective error, depending on the observer and the appropriate 
situation (Heitmann et al., 2018, Meagher, 2009). Therefore, introducing automated 
devices seems to be a promising approach in order to standardise such assessment 
systems. However, besides being objective, repeatable and reliable (Hocking et al., 2008), 
classification systems require a high degree of validity, this means they have to make sure 
that they reflect the problematic/disease as much as possible. 

Therefore, the aim of the present study was to examine the underlying pathology in 
more detail, analysing feet of turkey toms histologically. The hypothesis of the study was 
that severity in the histological findings would increase with an increasing visual score. 
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Comparing the size of the lesions with the VS could confirm this assumption. Here, a 
high correlation (rsp = 0.9) was calculated (Table 3). This was an expected result, as the VS 
bases on the size of the alteration. Furthermore, the results support the findings of the 
observer reliability, making the VS an objective method to reflect the spatial expression of 
the alteration.

Table 3. Spearmans’ correlation coefficients between the VS and the analysed histopathological 
parameters

Parameter Spearmans’ correlation 
coefficient

Size of the lesion 0.90

Hyperkeratosis (occurrence / severity grade) 0.20 / 0.28

Multifocal perivascular pododermatitis (occurrence / severity grade) 0.25 / 0.31

Re-epithelialized granulation tissue (occurrence) 0.30

Ulceration (occurrence / severity grade) 0.75 / 0.81

However, there was no linear relationship of the remaining histopathological parameters 
according to the VS-level. Hyperkeratosis was found in all scoring classes. In VS 0-3, 100% 
of the feet were affected. In VS 4, 90% of the feet did show a hyperkeratosis, yet, the two 
feet, which were not diagnosed for hyperkeratosis, were found to have no intact epidermis 
left. The severity grade increased from VS 0 to VS 2 with a slight improvement in VS 3 
and 4. Hyperkeratosis, described as thickening of the stratum corneum of the epidermis, 
resulting in a thickened layer of underdeveloped keratin, is discussed to be a permanent 
irritation of the epidermal surface in reaction to an external trauma (Shepherd and 
Fairchild, 2010). However, even if it may be regarded as pathological, with regard to animal 
welfare, this parameter is not supposed to be clinically relevant.

The multifocal perivascular pododermatitis was observed in 20% of the feet for VS 0 and 
in 40% for VS 1, revealing slight and moderate severity grades. In VS 2-4, the parameter 
was found for 55-75% of the feet, here revealing serious severity grades. Again, a slight 
improvement in VS 3 and 4 was noted. An improvement of such inflammatory processes 
with a rising severity of the VS seems not to be reasonable. Tissue was collected from the 
center of the biggest lesion. Especially for lesions of VS 3 and 4, the size of the necrotic area 
nearly covered all of the space available in the analysed cuts. We therefore discuss the 
‘improvement’ to be due to the method with which the cuts were made, rather than to be 
due to an actual enhancement of the disease. The perivascular pododermatitis is defined 
by the occurrence of lymphocyte and heterophilic granulocytes around blood vessels, no 
loss of tissue is found at that stage. Therefore, these alterations are referred to as mild 
lesions (Shepherd and Fairchild, 2010). 

Erosions as described in broilers (Greene et al., 2008), were not detected in the presented 
study.

Re-epithelialized granulation tissue was observed for all VS-levels, with soring Levels 
0 and 1 being affected with 20-35% and 60-65% in scoring Levels 2-4. Those findings 
imply old processes of healed, ulcerative pododermatitis. They, therefore, might not be 
relevant evaluating an acute disease incidence, nonetheless, in order to draw retrospective 
conclusions about the management of litter during the period of husbandry, it is considered 
to be a relevant factor. 
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All of those parameters might be classified as alterations with a minor clinical relevance 
(Greene et al., 1985; Martrenchar et al., 2002, Shepherd and Fairchild, 2010). Still, they give 
an interesting insight in the pathogenesis of FPD. Considering the linkage between VS 
and the histopathological findings, VS 0 feet should reveal none of the above mentioned 
parameters, VS 1 feet too, should be (at least) free of inflammation processes. In all of the 
analysed feet for the presented study, alterations were found for both VS-levels already. 

However, in regard to animal welfare the occurrence of ulcerations is most interesting as 
they are often referred to as being painful (Weber Wyneken et al., 2015; Haslam et al., 2007; 
Martland, 1984), even if there is no clear evidence for this assumption yet. There are some 
studies referring to the gait and the activity of the birds (Hocking and Wu, 2013; Weber 
Wyneken et al., 2015), drawing indirect conclusions to the painfulness of FPD. However, 
such studies are under discussion as other causes like femoral head necrosis (Dinev, 2009; 
Packialakshmi et al., 2015) and osteomyelitis (Wyers et al., 1991) are also quite common in 
fast growing poultry, both also resulting in gait difficulties. Still, until further evidence is 
produced, a prevention of ulcerations seems to be preferable in terms of animal welfare 
(Ekstrand et al., 1997). 

Ulcerations and VS revealed a high grade of correlation (0.75 / 0.81) (Table 3). A study 
by Heitmann et al. (2018) also found high correlation coefficients for ulcerations and the 
size of the lesion. Therefore, the VS might be a good indicator to implicate ulcerations 
generally. However, in our study ulcerations could be observed in VS 1 already. Here, 55% 
of feet were affected. In VS 2-4 all feet were affected. Most of those feet revealed severe 
ulcerations, no distinction could be made between VS-levels here. When assessing the 
severity of foot pad health, VS 1 and VS 2 generally are thought to play a minor role. 
Therefore, with regard to the ulcerations found in this study, the validity of the visual 
scoring system remains arguable. 

The different parameters were combined in one scoring system (HS) following an approach 
which was established for broilers by Michel et al. (2012). Hyperkeratotic alterations were 
assigned to HS 0 in this study, given the fact that hyperkeratosis is not considered to be 
clinically relevant in terms of animal welfare and, due to the daily demand during the 
fattening period, histologically intact feet are delusive. HS 0 was found for 70% of the feet 
in VS 0. Still, 30% of the VS 0 feet were classified in HS-level 1, and therefore showing signs 
of mild alterations (granulation tissue / multifocal perivascular pododermatitis). In VS 1, 
25% of the feet showed HS 2, 20% HS 3 and 15% HS 4, therefore over half of those feet were 
found to reveal ulcerative alterations. In VS 2-4 the majority of the feet were scored as HS 
4 (80%, 95%, 90%) (Figure 1). With regard to the histological findings, these results indicate 
a substantial need to discuss the standard visual classification, especially when it is used 
as an indicator for animal welfare. However, studies concerning the pain level of above 
described alterations would be beneficial to clarify the relevance of the histopathological 
findings with regard to animal welfare. 
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Figure 1. Percentage of feet (y-axis) scored by the combined histopathological score (HS 0-4, different 
grey scales from light grey to dark grey with rising severity) for the different visual scores (VS; x-axis)

Conclusions

To conclude, the presented results show that the visual score is reliable in representing 
the characteristic of the alteration regarding its dimension. In order to sensitise owners to 
the health status of their animals and to improve food pad health in a first step, the visual 
score might be sufficient. Using FPD as an indicator for animal welfare, the classification 
currently used, should be revised. Our findings suggest that small lesions as found in VS 
1 and 2 are characterised by ulcerations already. Therefore, a refinement of the visual 
scoring system might be necessary until further research concerning the painfulness of 
those pathologies can resolve their role with regard to animal welfare. 
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Abstract

The Israeli laying hens industry is regulated by quota; a farm can produce eggs according 
to a fixed number of hens. With the new community cages now integrated into the Israeli 
egg industry, a manual head count of the hens is an impossible task. The aim of this study 
is to develop a machine vision system that automatically counts the hens, and helps the 
regulator to control the industry. The hen house that was used is 87 m long stacked on six 
floors, with 37 community cages set in a row, each cage is 2.4 m long, 0.54 m tall, and 0.74 m 
depth, housing 18–34 hens. The hen house has a narrow path along the cages. Consequently, 
a wide-angle camera was applied (HD Action Camera 1080p, wide angle 170 deg’ lens) in 
order to frame the entire cage in a single field of view. The camera was mounted on a steel 
arm 0.85 m from the cages. The arm was connected to the feeder that moves along the cages. 
Videos with 30 fps were processed with an AI detection algorithm called Faster R-CNN. A 
feeding event appeared to be an adequate time to count the hens, as all hens were lined 
up in front of the cage, visible to the camera, making it possible to count. The detection 
algorithm was trained to detect hens in cages; it was tested on 4,000 images and got an 
accuracy of 80%. The algorithm count was compared to human observer count used as 
ground truth. The accuracy can be improved by further training the algorithm parameters.

Keyword: object detection, deep learning, Faster R-CNN, laying hens

Introduction

Machine vision is widely used in the poultry industry, with a variety of applications such as 
birds clustering monitoring (Zaninelli et al., 2018), weight estimation, and limp (Aydin, 2017) 
and other injury detection. The above examples were developed for litter floor houses (not 
for battery cages), therefore the camera angle and distance from the bird is not a limitation. 

Community cages are long structures with narrow paths along them, constraining the 
camera maximum distance. The camera angle was also limited because some of the hens 
lined up in front of the cage, and some stood at the back; thus, in order to capture them all 
in one frame, the camera was well-adjusted. 

Another problem was the hens’ sensitivity to the presence of a new object in their surroundings. 
The presence of the camera mounted on a rod was identified as a foreign object by them and 
it elevated their stress level and irritation, thus affecting counting success.

To address the above difficulties, a wide angle camera was used, and the Faster R-CNN 
detection algorithm was employed. The algorithm can detect multiple objects in an image. The 
algorithm was tested on images taken under those constricting conditions of dense objects 
(hens) and challenging angle and illumination conditions. In this work the chicken behaviour 
was monitored, to detect when they are in the best position for counting. The chickens 
were recorded with minimum disturbance in their habitat. The research is aiming to lay the 
foundations for an apparatus that can be installed in hen houses containing community 
battery cages, and count the hens. It can help the caretaker, but also a regulator to control the 
industry, ensure the poultry welfare including the five freedoms, and increase the eggs’ quality.
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Materials and methods

Camera setup

The camera used in this research is an off the shelf product -A Media Tech W9R with a 170 
deg’ wide angle lens. The camera was tuned to full HD mode (1080p), filming 30 frames 
per second (fps). The hens in this research were recorded while the camera was mounted 
on a steel rod attached to the feeder, 90 cm in front of the cages, and positioned in a way 
that allowed direct view of the hens (Figure 1). The reason the camera was positioned in 
such an angle was due to the structure of the community hen house that allowed front 
view access only. The maximum distance from the cages is restricted to 90 cm, based on 
the narrow path besides them. An image taken using this setup can be seen in Figure 3. 

(a) (b)

Figure 1. Camera setup (a) The whole width of a cage (marked in black) is enclosed in the camera field 
of view; (b) The camera was positioned 90 cm from the front of the cages

Hen house experiment

The system was examined in one hen house 87 m long, on the second floor that contains 37 
cages, each cage is 2.4 m long, 0.54 m tall, and 0.74 m depth, housing 18–34 hens per cage.

Figure 2. The test battery cages hen house, with an arrow pointing to the second floor that was recorded

Observation

In order to find the optimal time for counting, a few observations were made. The behaviour of 
the hens was monitored in order to understand their habits. Feeding events occur four times a 
day, at 6:30, 13:30, 14:30, and 17:00. Following the feeding routine up to 15:00, most of the hens 
sat in the cages and laid eggs; sitting at the back of the cages and huddling together, reduced 
our ability to count them. The last feeding event was selected as the adequate time point for 
counting, as most hens stood in front of the cages and waited for the last meal of the day.
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Data collection

Hens are easily frightened by any foreign object such as a person’s presence or a camera 
sticking out from the feeder. In order to accustom the hens to the presence of the camera, 
a dummy camera was installed on the feeder three days prior to data collection.

Following the adaptation period, the hens were video-recorded for 30 minutes during 
the last feeding event of the day. The recording was made with minimum disturbance, 
automatically, with no human presence. During the feeding event, the feeder travelled 
back and forward, so every cage was recorded twice. Frames that contained a whole cage 
(about 60 frames per feeder traveling down a single cage) were saved, in total 120 frames 
per cage were obtained, at a camera speed of 30 fps.

Object detection algorithm

Faster R-CNN is an object detection algorithm based on deep convolutional network (Ren 
et al., 2017). It belongs to a deep learning object detection family called Region Based 
Detectors (RBD). RBD methods comprise two modules – a Region Proposal Network (RPN) 
and a classifier. The RPN is an attention mechanism, which tells the classifier where to look 
for an object in the image. It takes about a second to process an image with Faster R-CNN. 

In the Faster R-CNN method, the RPN detects regions in an image with high probability to 
have objects in them. First the image is fed into a pre-trained base model, then the RPN 
slides on top of the last convolution layer and finds 300 regions in the original image with 
high probability to have objects in them. 

After the region proposals process, the proposed regions are fed into the second module of 
the Faster R-CNN, which classifies and corrects the bounding boxes’ locations. The output 
of this process is an image with bounding boxes around the objects it has found.

Figure 3. Hens detected by the algorithm. The whole width of the cell is enclosed within the frame

Implementation details

In order to train the Faster R-CNN algorithm, a dataset containing 359 labeled images 
was created. The base model used was ResNet101 pre-trained on “coco” dataset, a labeled 
object detection dataset. The training was done on a dataset containing 359 labeled 
images, divided into 287 train images and 72 validation images. A labeled image contains 
an ‘xml’ file with the ground truth boxes’ coordinates. The number of chickens in every 
cage was counted by a human observer, and used as a ground truth number.

Object detection algorithm performance

In order to measure the performance of an object detection algorithm, one should examine 
Recall and Precision. Recall is the proportion of TP out of the possible positive examples 

in the ground truth (Recall = 
TP 

TP+FN
 
). Precision is the proportion of TP out of the positive 

results given by the algorithm (Precision = 
TP 

TP+FP
 
)

Recall is a measure of the algorithm’s ability to find all the positive examples. Recall 
close to one will yield low Precision, because all the detected objects will be classified 
as chickens. Precision close to one will introduce a low Recall, because all the detected 
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objects classified as chicken are true, but not all the chickens in the image are found.

In order to construct the Precision–Recall curve, the model score threshold should be 
changed (if score >threshold,the object is a chicken) in the range of 0–1. The area under 
this graph is called the Mean Average Precision (mAP), and it is the performance measure 
for an object detection algorithm.

A classification is true if it matches the ground truth with IoU > N, where IoU is the 
intersection over union between the predicted and the ground truth bounding boxes, 

defined as, IoU = 
area of overlap 
area of union

 
, 0<IoU<1. IoU is a way to measure if a predicted bounding 

box is well-located; high IoU means that a predicted bounding box has a big overlap with 
a ground truth bounding box. N is a number between 0–1, and it is a threshold for IoU.

Results and discussion

Table 1 shows the results of the validation set with 72 labeled images. The second and 
third columns shows the result of mAP for N = 0.50 and 0.75.

When IoU = 0.50 the results are good, the required overlap between the ground truth 
boxes and the predicted boxes is low. Most of the results found with this IoU are correct, 
and most of the chickens were detected. For IoU = 0.75 the mAP has dropped, because the 
overlap required for a true prediction is high. The drop in the mAP suggests that a lot of 
the detections are made in the range of 0.5 < IoU < 0.75.

Table 1. mPA with different IoUs

IoU 0.50 0.75

mPA 0.961 0.358

Average Recall (AR) is the maximum recall, given a fixed number of objects detected per 
image. AR is averaged over all IoUs and categories (in this work there is only one category 
- ‘chicken’), in the range of 0.5–0.95 with jumps of 0.05. 

Table 2. AR with different number of objects

Number of objects 1 10 100

AR 0.027 0.268 0.557

AR increases when more objects are detected, because when more objects are classified as 
chicken, the TP results are most likely to increase.

Average precision (AP) presented in Table 3 is averaged over all the IoUs, and relates to 
different object size; {small:area <322 pixies}, {medium: 322 < area < 962}, {large: area < 962}.

Table 3. AP with different size of objects

Area small medium large

AP 0.200 0.472 0.482
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Table 4. Maximum detected chicken in every cell

Cage number Forward max Backward max Gold standard 
reference

1 27 29

2 28 28 28

3 26 26 28

4 30 27 31

5 24 22 26

6 25 26 29

7 24 25 28

8 26 25 28

9 21 20 27

10 20 22 23

11 23 21 27

12 25 22 28

13 27 29 30

14 24 24 29

15 28 25 32

16 22 22 25

17 27 24 28

18 27 27 29

19 30 24 32

20 27 29 32

21 31 30 34

22 21 22 25

23 23 24 28

24 27 21 26

25 21 22 24

26 26 23 27

27 23 22 24

28 22 21 23

29 21 18 22

30 18 17 19

31 21 19 23

32 24 16 25

33 22 22 24

34 18 21 21

35 15 16 18

36 18 23

37 18 22
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AP is increasing with object size, chicken areas in the images are bigger than the small 
area mentioned in Table 3. 

Table 4 presents the maximum count for each cage. The maximum values were chosen 
out of 60 frames, from the back and forth movement of the feeder.

On the way forth 853 chickens were detected, and 809 on the way back; this is 90% and 
86.8% of the total number in the ground truth. These results were calculated with a 
certainty level of 0.8 and IoU > 0.6. 

Conclusions

With Faster R-CNN algorithm, counting laying hens in battery cages can be done with 
up to 90% accuracy. The algorithm can detect objects in a densely populated picture, 
containing multiple overlapping objects.

With more training images from different cages, more hens can be detected.

Further work is still needed in order to increase accuracy, including adding more 
information from the scene to the training process, such as stereo images.
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Abstract

Few evidence is available currently to reveal the effect of long period ammonia on the 
immune function and productivity of laying hens when simultaneously exposed to a 
chronic heat stress. The present study was conducted to determine the adverse effects 
of ammonia concentration on egg productivity, egg quality, and immune function in 
commercial laying hens. A total of 240 × 17-wk-old Hyline Brown laying hens were randomly 
distributed into three treatments, including the CON (ammonia concentration of 0-5ppm), 
the low ammonia group (ammonia concentration of 20ppm), and the high ammonia group 
(ammonia concentration of 45ppm). Meanwhile, all birds were housed in cages (two birds 
per cage) and received the ammonia pollution when exposed to a chronic heat stress ( 
34-35 ºC) for 20 weeks in three artificial environmental chambers. Different samples of 
production and immune parameters were collected and measured in the present study. 
As results, high ammonia concentration significantly influenced body weight, egg weight, 
feed intake and egg production of the birds. In addition, the levels of plasma T-AOC in 
low and high ammonia groups were significantly lower than the control group. Excessive 
ammonia led to the significantly decreased levels of plasma luteinizing hormone (P < 
0.05), IgG (P < 0.05), and increased plasma corticosterone levels (P < 0.05) with no evident 
regularity. Our results suggest that excessive ammonia along with high temperature can 
serve as a physiological stress factor and has negative effects on production performance 
and immune function.

Keywords: production parameters, ammonia, heat stress, blood profiles, immunity, laying 
hens

Introduction

Aerial ammonia is a colourless gas with a strong pungent smell, which is recognised as one 
of the most noxious odours in poultry operations, and its negative effect on environment 
has been documented by numerous studies (Koerkamp, 1994; Koerkamp et al., 1998; 
Wheeler et al., 2000). Poultry production industry, as the largest contributor to ammonia 
emissions of all animal husbandry operations, has undergone considerable surveillance 
from public and regulatory agencies due to their environmental impacts (Lin et al., 2017). 
Meanwhile, poultry companies have to be concerned not only for worker health, but also 
for poultry health because elevated concentrations of atmospheric ammonia has adverse 
impact on bird physiology and productivity (Carlile, 1984). Ammonia is known as an irritant 
alkaline air contaminant, with occupational limits set by OSHA (Occupational Safety and 
Health Administration) at 50 ppm for the 8 h permissible exposure limit, and immediately 
dangerous to human life and health level is considered to be 300 ppm (Wheeler et al., 
2000). 

Amounts of studies have been carried out to indicate the significant influences on health 
and growth performance of poultry exposing to ammonia, most of which focus on broilers. 
Excessive ammonia is a physiological stress factors that will reduce feed intake and stunt 
growth (Beker et al., 2004; Charles & Payne, 1966; Deaton et al., 1984; Wei et al., 2014), 
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decrease egg production significantly 7 weeks’ exposure to ammonia at the ammonia 
concentration of 102ppm (Charles & Payne, 1966) and increase the incidence of diseases 
and secondary infections such as Newcastle disease, airsacculitis and prevalence of 
Mycoplasma gallisepticum (Anderson et al., 1964; Oyetunde et al., 1978; Sato et al., 1973). 

The undigested nitrogenous substance in poultry manure such as protein, amino acids, and 
microbial nitrogen are quickly decomposed into gaseous ammonia by microorganism and 
distributed to surrounding air under proper temperature and humidity condition (Koerkamp 
& Bleijenberg, 1998; Xin et al., 2011; L. Zhao et al., 2016). The commonly recommended indoor 
ammonia level for poultry house in China has been limited to 15 mg/m3 (20 ppm). With 
the development of mechanization and automation, the air environment in poultry house 
has been greatly improved due to the mechanically ventilation technology. However, many 
poultry farms in China still have poor air condition and elevated ammonia concentration 
resulting from poor ventilation, inadequate manure handling schemes, excessive bird 
density, especially in high temperature season (Xin et al., 2011; Y. Zhao et al., 2013). As is 
well known, laying hens live longer than broiler chickens in poultry house and may develop 
a variety of disorders suffering from extended period of ammonia exposure (Beker et al., 
2004). Despite a multitude of research on the adverse effects of ammonia on the health and 
performance of poultry, few evidence is available currently to reveal whether the immune 
system and productivity of laying hens .change under long periods of ammonia exposure in 
hot climate. Therefore, the objective of this work was carried out to evaluate the effects of 
ammonia on the immune system and productivity under high temperature.

Materials and methods

Materials and experimental conditions

Three artificial environmental chambers (each 24.8 m2, 4.5 × 5.5 m) were built for the 
experiment. Cages (50 × 40 × 40cm, L × W × H) were set evenly on opposite sides of the 
chamber for hens breeding. The chambers were computer programmed to keep the 
environmental factors as required. Sensors installed in these chambers delivered signals 
of temperature, humidity, ammonia and carbon dioxide concentration every 10 s, then 
displayed on the computer screen for observation. 

The supply system of ammonia gas was detailed by researchers (Jones et al., 1997) in order 
to maintain the desired ammonia concentrations. Compressed anhydrous ammonia was 
stored in a cylinder of and its flow rate was adjusted by a flow meter. This design enabled 
each chamber to be filled with gaseous ammonia independently of the other ones.

LED lamps (5-300lx) were placed on the ceiling of the chamber respectively, which could 
adjust the light intensity by using luminometer. Temperature was adjusted automatically 
by air conditioner and air inlet and outlet were trepanned for mechanical ventilation. 
Feeder and drinker were provided in each chamber and video cameras were fitted.

Bird management and experimental design

A total of 240 Hy-Line Brown hens acquired from a commercial pullet grower farm were 
used for this study. Birds were transferred to the cages (two birds per cage) for two weeks 
acclimation at the age of 17 weeks before the ammonia pollution. Meanwhile, based on 
a single factor experimental design, birds were randomly assigned to three groups with 
eight replications and 10 birds per replicate, including three treatments of ammonia 
concentration exposure: 0-5ppm (the control group, CON), 20ppm and 45ppm. All birds were 
provided with a corn-soybean basal diet and feed and water was provided ad libitum. The 
ambient temperature and relative humidity (RH) were respectively kept at 34 - 35 ºC and 
40 - 60%, carbon dioxide level was kept below 1,000ppm during the experimental period. 
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For light treatment, during the growing period from 17 wk up to 38 wk, the light regimen 
was 11 h (4.00 – 15.00) every day for hens in the first week and then stepped up gradually 
per week until it reached 16 h (4.00 – 20.00) in 31 wk. From then on, it turned to permanent 
illumination of 16 h from 32–38 wk. Besides, light intensity of 30 lx was equalised at bird 
head level following the HyLine Brown Layers Guide Manual (Hy-Line International. http://
www.hyline.com).

Sample preparation and collection

Feed consumption, egg production per replication was recorded weekly and all eggs were 
weighed on 1 d/wk. Meanwhile, for each treatment, 32 eggs (four egg/ replication) were 
collected randomly for egg weight test. For each sampling, two birds were randomly 
selected from each replicate and weighed for individual body weight (BW) every week 
after fasting for 12 h starting at wk 18, then wing venipuncture was performed for blood 
and sera were prepared after centrifuging. All eggs were stored at 4 ºC and sera samples 
were stored at -20 ºC .

Measured contents and methods

The concentrations of blood parameters were detected by Enzyme Linked Immunosorbent 
Assay (ELISA, kits purchased from Jianglai Biological Technology Co. Ltd., Shanghai, 
China). Sample (50μl) was added in each well after standard substance was diluted. The 
following operation was to dilute the sample (50μl) five times before adding in the wells 
and incubate at 37 ºC for 30 minutes. Washing liquid was added to the waste liquid hole 
for 30 seconds, repeatedly for five times. Then, ELISA reagents (50μl) were added in each 
well, and developers A and B (each 50μl) were added and incubated at 37 ºC for 15 minutes. 
Lastly, stop buffer (50μl) was added to terminate the reaction (blue turned to yellow). 
Absorbance values were measured at 450 nm, and results were analysed.

Statistical analysis

All data were analysed by 1-way ANOVA with SPSS 23.0 software, according to the design 
of the 2 experimental groups (20ppm, 45ppm) and 1 control group (0-5ppm). Differences 
among groups were determined using Duncan’s multiple range test and considered to be 
significant at P < 0.05.

Results and discussion

Effect of ammonia and high temperature on production parameters of laying hens 

During the experimental period, egg production and feed intake of the three treatments 
rise first and descended later, the top of egg production of the treatments were, respectively, 
95.29% (CON, 31-34 wk), 88.16% (20ppm, 27-30 wk) and 84.52% (45 ppm, 27-30 wk). The 
daily feed intake went to the top at 27 – 30 wk and they were respectively, 126.21 g (CON), 
116.27 g (20ppm) and 113.15 g (45ppm).The body weight of the birds in all treatments 
increased with time and body weight of CON was greater than the other two treatments 
in every experimental period. The EW of the hens increased with age (Table 1).

At 19 - 22 wk, DFI of hens in CON was significantly greater than that of hens in others (P < 
0.001) until 35 – 38 wk. At 23 – 26 wk, 27 – 30 wk, 31 – 34 wk and 35 – 38 wk, hens in CON 
showed higher EP than others (P<0.001). In every period of the experiment, EW of the CON 
were heavier than the two treatments exposed to ammonia and it presented significant 
difference from 23 - 26 wk (P = 0.048).

Excessive ammonia led to a decrease of poultry production, including daily feed intake, egg 
production, body weight and egg weight compared with a clear atmospheric environment 
according to our study. Ammonia is a physiological stress factors that reduced feed intake 
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and stunt growth (Beker et al., 2004; Charles & Payne, 1966; Deaton et al., 1984; Wei et al., 
2014), our study verified this statement. It decreased egg production significantly under 12 
weeks’ exposure to ammonia at the ammonia concentration of 20 ppm and 45 ppm, which 
was close to the conclusion of Charles (Charles & Payne, 1966).

Table 1. The main effects of ammonia concentration on production parameters exposed to a 
chronic heat stress

Items1
Treatment

SEM P value
0-5ppm 20ppm 45ppm

19-22wk

DFI, g 104.02a 98.36b 89.31c 1.290 <0.001

EP, % 40.67 37.50 31.33 0.023 0.234

BW, g 1,644.29 1,627.38 1,624.58 15.826 0.863

EW, g 48.95 47.97 48.07 0.392 0.540

23-26wk

DFI, g 112.35a 100.89b 103.43b 1.319 <0.001

EP, % 86.64a 78.70b 75.20b 0.012 <0.001

BW, g 1,709.54a 1,693.17a 1,626.88b 13.157 0.023

EW, g 53.19a 52.88ab 52.48b 0.133 0.048

27-30wk

DFI, g 126.21a 116.27b 113.15b 1.231 <0.001

EP, % 90.08a 88.16a 84.52b 0.007 0.003

BW, g 1,761.83a 1,743.00a 1,672.04b 13.649 0.016

EW, g 57.07a 56.72a 53.45b 0.146 <0.001

31-34wk

DFI, g 116.77a 94.60b 91.71b 2.220 <0.001

EP, % 95.29a 80.60b 76.83c 0.089 <0.001

BW, g 1,813.33a 1,764.33ab 1,710.04b 14.060 0.009

EW, g 59.21a 57.28b 53.06c 0.414 <0.001

35-38wk

DFI, g 115.04a 90.89b 77.17c 2.741 <0.001

EP, % 94.54a 74.60b 72.94b 0.084 <0.001

BW, g 1,812.75 1,757.92 1,748.17 23.681 0.5

EW, g 60.76a 59.23a 50.59b 0.458 <0.001

a,b,c Values with different letters in the same row indicate significant difference (P < 0.05).
1DFI means the daily feed intake, EP means the egg production, BW means the body weight, EW means the egg 
weight
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Effect of ammonia on blood profiles of laying hens under high temperature 

Figure 1. Blood T-AOC of hens Figure 2. Blood IgG concentration of hens 

Figure 3. Blood CORT level of hens Figure 4. Blood LH concentration of hens

The blood total antioxidant capacities (T-AOC) and blood IgG concentrations of the 
laying hens exposed to different ammonia concentrations under high temperature are 
shown in Figure 1 and 2. At the high ammonia concentration, blood total antioxidant 
capacities (P<0.05) of birds was lower than the other treatments at 38 wk and blood total 
antioxidant capacities of all treatments tended to increase from 30 wk (Figure 1). Blood 
IgG concentrations were low compared with CON when birds were treated with 20 ppm 
and 45 ppm ammonia (Figure 2). Moreover, supplementation of the ammonia significantly 
prevented the increase in serum IgG concentration from 33 wk to 38 wk (P < 0.05). 

The serum corticosterone (CORT) level and luteinizing hormone (LH) concentration of the 
birds are presented in Figure 3 and 4. Under high ammonia concentrations, the CORT 
level (P<0.05) significantly increased at 30 wk and differed from the other two treatments 
at 21, 27, 30 and 33 wk. The CORT level tended to increase first and go down with age. 
As a characterisation of laying performance in terms of blood, LH concentration showed 
little changes among the three treatments, however, they increased at 30 wk and kept 
increasing since then. The LH concentration (P<0.05) of the CON was significantly higher 
than the other two treatments from 33 – 38 wk.

This study showed that high concentrations of ammonia impacted the total antioxidative 
capacities and IgG concentration of laying hens and tended to decrease the blood LH 
concentration. Our study indicated that high concentration of ammonia was a negative 
factor for the immune system, increased the incidence of diseases and secondary 
infections (Anderson et al., 1964; Oyetunde, et al., 1978; Sato et al., 1973).
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Conclusions

Results of this study show that high levels of atmospheric ammonia can be detrimental to 
the production performance and the immune function of laying hens, especially exposed 
to a chronic heat stress. It is of great significance to allow an increased ventilation rate to 
control the ammonia level and temperature for the production performance and health 
of laying hens.
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Abstract

European directive 2007/43/CE establishing standards for the protection of broilers, 
sets a limit of 3,000 ppm of carbon dioxide (CO2) concentration not to be exceeded at 
animal’s level, over the entire duration of the flock. Since then, CO2 concentration 
sensors are developing in French poultry houses. The purpose of this article is to provide 
methodological advices for continuous measurement of CO2 concentrations in a broiler 
house, by looking at CO2 commercial sensors’ technical specifications and their optimal 
position in barn. Various CO2 sensors were compared in a commercial barn. Analysis of 
accuracy and response time showed that two sensors over five were not suitable to be used 
for CO2 monitoring and/or control in poultry houses. The position of the CO2 sensor at 80 
cm +/- 20 cm of height, between water droppers and feeding lines appeared to be the best 
compromise to measure, not only a representative CO2 concentration at animal’s level, but 
also of the whole house. However, at the end of the flock, this height can underestimate 
CO2 concentrations at animal’s level in case of high CO2 productions by animals and litter. 
In the observed commercial barns, the horizontal heterogeneity of CO2 was higher at the 
beginning of the flock than at the end. These results suggest to use more than one CO2 
sensor for continuous measurements in poultry barns to characterise this heterogeneity. 
According to the sensors’ tests, first level investment should be in high-performance 
sensor and in its maintenance than purchasing an additional sensor.

Keywords: carbon dioxide, sensor, broiler, gas

Introduction

In poultry houses, carbon dioxide (CO2) is produced by animal respiration, aerobic 
degradation of litter materials by microorganisms and combustion of carbonaceous 
materials, fossil energy and organic matter (Hassouna et al., 2015). Direct combustion 
heating systems (propane gas combustion with gas emissions inside the house) are an 
important source of CO2 production in the broiler house. Carbon dioxide is a molecule that 
occurs naturally in the atmosphere (~400 ppm in outdoor air). CO2 is a greenhouse gas, 
odourless, colourless and heavier than air. The concentration in the indoor air of livestock 
houses is an indicator of the level of air renewal. In broiler houses, the presence of CO2 
sensors increased since the application of the European regulation on the welfare of 
broilers (Directive 2007/43/EC). This regulation sets a maximum of 3 000 ppm which must 
not be exceeded over the entire duration of the breeding period, at animal level. CO2 can 
have negative effects on the health, well-being and performance of chickens (McGovern, 
2001; Olanrewaju et al., 2008; Reece, 1980). The CO2 concentration is even higher with 
the use of direct combustion heating. The objective of this article is (1) to evaluate the 
performance of CO2 concentration sensors and (2) to advise on the position of the sensor 
in a broiler house to be a representative measurement of the average house concentration, 
at poultry level.
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Material and methods

Comparison of different CO2 concentration sensors

Description of the CO2 concentration sensors tested

Four CO2 concentration sensors called ‘autonomous’ (numbered C1: Extech CO210; C2: Testo 
435-4; C3: Vaisala MI70 acquisition unit + GMP252 sensor and C4: DK660) were tested as 
well as one called ‘dependent’ CO2 concentration sensor (numbered C5: Vaisala GMP252). 
The ‘autonomous’ sensor consists of a probe to measure CO2 concentrations, a data 
acquisition unit with measurement display and a battery. This type of sensor is generally 
used for one-off measurements of CO2 concentrations. The ‘dependent’ sensor consists 
only of a probe. It must be connected to a central data acquisition unit or to the electronic 
controller of the broiler house to access the measurement result. This type of sensor is 
used for continuous measurements of CO2 concentrations. The selection criteria for the 
purchase of CO2 concentration sensors for poultry house measurements are, not only a 
measurement range between 0–10,000 ppm to be able to measure certain concentration 
peaks, but also an accuracy of 100 ppm to obtain the best compromise between the need 
for precision to characterise the diversity of situations encountered in broiler houses and 
a level of requirement not too high in order to limit the cost (< €2,000 per unit) of the 
sensors. The needs in terms of response time of the sensor are related to the use of the 
sensor. For a broiler house use, a response time qualified as: low (= high reactivity of the 
sensor) can be considered as less than or equal to 5 minutes; moderate (= average sensor 
reactivity) between 5 and 10 minutes and high (=low reactivity of the sensor) greater than 
or equal to 10 minutes. Non-dispersive InfraRed (NDIR) technology has been targeted for 
the purchase of all sensors since it appears to meet the conditions needed and described 
above. In addition, it does not require any consumables other than electricity, a low 
sensitivity to drift over time and little interference with other gases.

Comparison of CO2 concentration sensor performance in commercial barn

The five sensors were placed together 80 cm above the floor, in the centre of a commercial 
broiler house, in the presence of the poultry and for the duration of the entire flock (46 
days in summer). CO2 concentrations were measured continuously. The data acquisition 
frequency for the sensors was less than or equal to three minutes, in order to capture 
temporal variations in CO2 concentrations. The CO2 concentrations of the five sensors were 
compared to those measured by an INNOVA 1412® gas analyser (infrared photo-acoustic 
spectrometry; 1% accuracy). The concentrations measured by the analyser was used as 
the reference for the comparison, hereinafter referred to the ‘reference’. The reference 
sampling was performed at the level of the five sensors tested and the data acquisition 
frequency was set at three minutes.

Methods for analysing the performance of the sensors tested

In the following (for the understanding of Part 2.1.2), the bias was calculated to determine 
the accuracy of the sensors. It is the difference in ppm between the measured concentration 
and the reference concentration. A ‘high’ accuracy means that the sensor indicates values 
close to the reference. The bias is low (< 50 ppm). On the contrary, a ‘low’ accuracy means 
that the sensor indicates values far from the reference (bias > 150 ppm). The bias is then 
high in relation to the identified need. The analyses of the measurement accuracy and the 
calculation of the average CO2 concentrations were carried out on data corrected by the 
response time of the sensors. This response time was quantified by evaluating the phase 
shift between a concentration peak observed by the low-response time reference sensor 
and the maximum value observed on the sensor considered. The time lag is expressed in 
minutes. 
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Position of the CO2 concentration sensor in a broiler barn

Experimental testing

The tests were conducted in two breeding rooms of 270 m² at the ANSES in Ploufragan. The 
two rooms were conducted in the same way, with the same number of animals, the same 
minimum renewal level and direct combustion heating. CO2 concentrations were recorded 
in both rooms, in the presence of the broilers over the entire duration of a flock (33 days, 
from 2 March to 4 April 2017). CO2 concentrations were measured with a reference device 
(part 1.1.3) at 10 and 80 cm of height between the water poultry droppers and feeding 
lines. The evolution of CO2 concentrations between the different heights and extraction 
was examined at the beginning and end of the flock.

Field testing

The objective is to check whether the results of the tests under experimental conditions 
require methodological adaptations according to the type of ventilation, particularly on 
the number of CO2 concentration sensors to install and the horizontal position sensor in 
the house (generally placed in the centre of broiler houses). The tests were conducted in 
three longitudinally ventilated houses to verify the incidence of heterogeneity compared 
to the tests performed in the experimental station. The initial hypothesis is that a broiler 
house in longitudinal ventilation has differences in CO2 concentrations between the two 
gables (higher concentrations of extraction gable than the other gable). A first visit was 
made within the first day of the broiler flock and a second visit during the last week 
of the animals’ life. During each visit the CO2 concentrations were measured at 10 and 
80 cm height for different measurement points in the house. All CO2 concentration 
measurements were done with the Vaisala MI70 device equipped with the GMP 252 CO2 
sensor. Each measurement sequence includes measurements every five seconds for two 
minutes during which the operator is stationary in order to avoid the effect of animal 
activity on the measured CO2 concentration. The measurements were repeated for each 
of the following three measurement points : (1) in the centre of the house; (2) at the air 
inlet doors 1 m from the wall and (3) at the level of the air extraction at 2 m from the air 
extraction turbine. Measurements were made between the water poultry droppers and 
feeding lines. During measurements, the start and stop times of the heating were recorded, 
as well as the start and end times of the measurement period. Outdoor temperatures and 
humidity levels were measured before entering the barn. A litter quality rating was also 
performed during the second visit and at each measurement site (score from 1 [dry and 
friable] to 5 [totally crusty or wet] rated 5). To assess the spatial variability (horizontal and 
vertical) of CO2 concentrations, mean concentrations and associated standard deviations 
were calculated for the two heights, for the three houses and the three measurement points 
at the beginning and end of the flock. In order to verify the significance of the observed 
differences, non-parametric tests were performed at the 5% significance threshold: mean 
comparison (kruskal.test) for the study of horizontal variability of CO2 concentrations 
and multiple mean comparison (kruskaltmc) for the study of vertical variability of CO2 
concentrations.
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Results and discussion

Comparison of CO2 concentration sensors

CO2 concentrations measured during the commercial barn test (Table 1)

Table 1. Descriptive results over the 46 days of the flock; (REF = reference CO2 concentrations, 
measured by the INNOVA 1309® gas analyser ; sd = standard deviation)

REF C1 C2 C3 C4 C5

Mean +/- sd 
(ppm)

1 331 +/- 
490

1 618 +/- 
691

1 850 +/- 
429

1 449 +/-
v451

1 057 +/- 
450

1 415 +/- 
467

Min (ppm) 416 434 498 441 153 464

Max (ppm) 2 836 2 940 2 661 2 928 2 724 3 584

Number of 
measurements 

5,075 6,903 125 514 37 242 133 920 26 800

Acquisition 
frequency

3

min

3

Min

30

sec

30

sec

30

sec

2

min

During the test, CO2 concentrations did not exceed 3,000 ppm, by looking at the maximum 
measured by the reference. The summer comparison period was not conducive to high 
CO2 concentrations because air exchange rates are higher in summer with higher outdoor 
temperatures than in cold periods (Robin et al., 2017). Outliers (less than 300 ppm while the 
concentration of outdoor air is close to 400 ppm) were observed for C4. For the calculation 
of averages, outliers have not been deleted. The number of measurements performed for 
each of the sensors and for the reference is not the same because micro power cuts at 
the barn caused recording stops and the acquisition frequency was not identical for all 
sensors. The average CO2 concentration is higher for the C1 sensor and lower for the C4. 
The standard deviations are in the 400 - 500 ppm range for all sensors.

Accuracy and response time of the sensors tested (Table 2)

Sensors C3 and C5 have biases of less than 100 ppm. Their accuracy corresponds to the 
100 ppm requirement defined above. On the contrary, sensors C1, C2 and C4 have biases 
greater than 100 ppm. The highest bias is observed for the C4 sensor (422 ppm). It is 
associated with very high variability. Similarly, the C1 sensor has a high bias, twice as 
much as the 100 ppm requirement. The C2 sensor is close to the predefined requirements 
in terms of accuracy and the associated 63 ppm standard deviation. Concerning response 
time, sensors C2 and C3 have low response time (less than or equal to five minutes). The 
C4 and C5 sensors have a moderate response time since they are close to 10 minutes. The 
use of the C4 sensor in broiler houses is clearly not recommended due to its accuracy 
and the presence of outliers. Similarly, with regard to the feedback from the tests carried 
out, the shape of the C1 sensor makes it difficult to use in poultry houses (round shape). 
In addition, C1 has a higher standard deviation than other sensors. The differences in 
accuracy observed between the sensors can be explained in part by the air heterogeneity 
and the mixing of the air in conventional houses which could cause the sensors not to 
measure exactly the same air (even if positioned close to each other). A second reason is 
the difference in response time of the different sensors. The sensors with low response 
time will measure puffs of air concentrated in CO2 at a time close to the time t. On the 
contrary, a high response time sensor will not measure these puffs. The biases reported 
by suppliers of the sensors are lower than those calculated in the study (+137 ppm on 
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average for the accuracies calculated with respect to suppliers’ indications). This result is 
explained by differences in protocols because the suppliers’ data are not based on tests 
carried out in broiler houses. Carrying out the tests in winter would perhaps have allowed 
more discriminating results to be obtained because CO2 concentrations are higher in 
winter. Under the test conditions, sensors C2, C3 and C5 seem to be the most efficient for 
use in poultry houses.

Table 2. Average observed accuracy (ppm) and response time (minutes), over 46 days of testing, five 
sensors tested

C1 C2 C3 C4 C5

Average observed 
accuracy (deviation 
from reference) +/- 
standard deviation 
(ppm)

181 +/- 99

[with outliers]

136

+/- 63

97

+/- 55

422 +/- 321

[with outliers]

78

+/- 82

Number of values 
for calculating 
accuracy 

1,166 1,454 1,572 787 4,468

Response time 
(minutes)

4 3 3 10 9

Position of the CO2 concentration sensor in the broiler house

Study of the vertical variability of CO2 concentrations under experimental conditions

At the beginning of the flock, the spatial and temporal variations in CO2 concentrations 
measured at different heights and at extraction follow the same pattern. Thus, at the 
beginning of the flock, the CO2 concentrations measured at 80 cm are representative of 
those measured at 10 cm from the floor and therefore of what animals breathe. They also 
evolve in the same way as those measured at extraction, so they are representative of the 
overall atmosphere of the house. At the end of the flock, the CO2 concentrations measured 
at 80 cm and those measured at extraction follow the same evolutions. Thus, as at the 
beginning of the flock, concentrations measured at 80 cm are representative of the overall 
atmosphere of the barn for both rooms. CO2 concentrations measured at 10 cm do not 
follow the same evolution as the 80 cm and extraction measurements. Measurements 
at 10 cm are greater than those at 80 cm and at extraction. These differences can be 
explained by a degradation of the litter at the end of the flock, probably caused by the 
absence of collectors under the water droppers. This litter fermentation generated a CO2 
production at 10 cm, compared to 80 cm from the ground. Thus at the end of the flock, a 
measurement at 80 cm of the ground cannot assess fluctuations in CO2 concentrations 
caused by litter degradation.

Variability of CO2 concentrations in commercial broiler houses

Beginning of the flock

Vertical variability — CO2 concentrations measured at 80 cm are significantly higher than 
those measured at 10 cm from the floor for E1 and E3 farmers (except in the centre of the 
house where the measurements at 10 and 80 cm are not significantly different). These 
two farmers have direct combustion heating at the start of the flock (potential thermal 
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stratification due to the low air renewal at the beginning of the flock combined with a 
high demand for heating). On the contrary, for E2 farmer, there is no significant difference 
between the measurements at 10 and 80 cm, in the centre and at the air extraction, 
potentially related to the use of indirect combustion heating associated with air circulation 
by hot water unit heaters. At the beginning of the flock, on the sample of the three farms 
studied, it would seem that concentrations at 10 cm are higher in houses with direct 
combustion heating, compared to those at 80 cm.

Table 3. average CO2 concentrations (ppm) measured at 10 cm and 80 cm for each of the three 
locations in the house in the three farms during the poultry start-up period. [Result at 5% 
significance level: P < = Significant; NS = Not Significant]

Measuring point Farm 10 cm 80 cm Result

Center E1 2,735 2,782 P<0,01

Entrance E1 2,352 2,740 P<0,01

Extraction E1 2,217 2,454 P<0,01

Center E2 1,824 1,810 NS

Entrance E2 1,695 1,679 P<0,05

Extraction E2 1,772 1,757 NS

Centre E3 4,172 4,169 NS

Entrance E3 4,694 4,903 P<0,01

Extraction E3 4,984 5,157 P<0,01

Horizontal variability — At the beginning of the flock for two of the three farms (E1 and 
E3), CO2 concentrations measured in the centre of the house, at the air inlet and at the 
air extraction are different for both the 10 and 80 cm measurements. The same result is 
observed for the E2 farm but only for measurements made at 80 cm from the floor. For 
the E2 farm, at 10 cm from the ground, CO2 concentrations measured in the centre of the 
barn and at the air extraction were not significantly different (at the 5% threshold). These 
observations are probably due to the air brewing provided by the heating systems (hot 
water unit heaters) at the beginning of the flock. For E1 farmer, CO2 concentrations are 
significantly higher than the air inlet compared to the air extraction for measurements 
made at 10 and 80 cm from the floor (+210 ppm on average for air inlet compared to air 
extraction. This result can be explained by the distance of one metre from the wall for 
the measurement at the air inlet (poor homogeneity of the air near the wall and under 
the air inlet hatch), but it is observed for breeding E1 farmer only. For E2 and E3 farmers, 
CO2 concentrations are higher than the air extraction compared to the air inlet (+175 
ppm on average for both farms). Measurements of CO2 concentrations are higher in 
the centre of the house than at the air extraction and air intake for the farmer E1 (+318 
ppm for measurements at the centre than at the extraction and intake of air). This may 
be related to the switching on of the heating system during the measurements and to 
a less efficient air circulation. In addition, this farm is equipped with an auxiliary gas 
heating system at start-up (direct combustion heater). In contrast, for E3 farmer, CO2 
concentrations are lower in the centre and higher during extraction (for measurements at 
10 and 80 cm). In this farm, the house is equipped with a direct combustion heater, there 
is more heterogeneity of CO2 concentrations between the three measurement points, 
compared to the other two houses (in indirect combustion heating). On the contrary, 
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the CO2 concentrations measured in farm E2 with indirect combustion heater, were less 
heterogeneous for measurements at 10 cm from the floor. These observations are probably 
due to the brewing provided by the heater (hot water unit heaters) at the beginning of the 
flock. Thus, these measurements show a horizontal heterogeneity of CO2 concentrations 
in the three houses studied, confirming the initial hypothesis. This result may suggest the 
addition of sensors to take into account this horizontal variability. However, this variability 
remains close to the bias that can be observed between the sensors and the purchase of 
additional sensor(s) represent(s) a significant cost for the farmer. It is therefore advisable 
to invest in a high-performance sensor rather than an additional sensor.

End of the flock

Vertical variability — At the end of the broiler flock, the average CO2 concentrations 
measured at 10 cm and 80 cm from the floor and each of the measurement points are 
significantly different. For E1 and E2 farmers, the measurements at 10 cm are significantly 
higher than those at 80 cm. This can be explained by a poor quality litter, which is wet 
and produces CO2 and are noted four at the measurement site in the farm E1. On the 
other hand, in farm E2, the litter is rated one (dry and friable litter). This result can 
be explained by a potential CO2 gradient from animal respiration and less efficient air 
brewing. Concentrations are higher at 10 cm from the ground and reflect litter degradation, 
compared to measurements at 80 cm, in one of the three farms. The results obtained in the 
experimental station are confirmed in one farm only. Thus, if the sensor is positioned 80 
cm above the ground, CO2 concentrations at animal level will tend to be underestimated. 
In contrast, in E3 farmer, CO2 concentrations measured at 80 cm are significantly higher 
than those measured at 10 cm from the floor, except for measurements made at the level 
of air extraction.

Horizontal variability — For the three farms, the CO2 concentrations are significantly 
higher than the air inlet compared to the air extraction, for measurements at 10 cm and 80 
cm from the floor, except for the farm E1 for measurements at 80 cm (NS). This result can 
be explained, at the beginning of the flock, by the protocol used to take the measurement. 
At the end of the flock, the brewing and air circulation increase may explain this result. 
The CO2 concentrations measured in the centre of the house are systematically lower 
than those measured near the air inlet, however, these differences are not significantly 
different for the farm E1 for the 10 cm measurements and for the farm E3 for the 80 
cm measurements. For the three farms, the CO2 concentrations are significantly different 
between the centre of the house and the air extraction, for measurements at 10 cm and 80 
cm from the floor, except for the E2 farm for measurements at 80 cm where the difference 
is not significant. The horizontal heterogeneity of CO2 concentrations at the end of the 
flock is less marked than at the beginning of the flock for the three farms studied. This 
suggests that it could be useful to have more than one sensor at the beginning of the flock.
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Table 4. Average CO2 concentrations (ppm) measured at 10 cm and 80 cm for each of the three 
locations in the house in the three farms at the end of the poultry flock. [Result at 5% significance 
threshold: P < = Significant]

Measuring point Farm 10 cm 80 cm Result

Centre E1 2,885 2,363 P<0,01

Entrance E1 2,973 2,693 P<0,01

Extraction E1 2,703 2,614 P<0,01

Centre E2 1,619 1,337 P<0,01

Entrance E2 1,871 1,574 P<0,01

Extraction E2 1,356 1,299 P<0,01

Centre E3 2,948 3,111 P<0,01

Entrance E3 2,995 3,192 P<0,01

Extraction E3 3,050 2,973 P<0,01

Conclusions

The test of CO2 sensors of a same technology (non-dispersive infrared) shows that two of 
the five sensors are not recommended to use in poultry houses. Tests carried out in the 
experimental station suggest an optimal position of the CO2 sensor at the beginning of 
rearing at 80 cm +/- 20 cm from the ground, between the water droppers and the feeding 
lines. At the end of the flock as well as at the beginning, this height allows a representation 
of the overall CO2 concentration of the barn but may underestimate concentrations at the 
animals’ level, at the end of the lot. This result may suggest adding a sensor at animal level 
in addition to one at 80 cm (careful to ensure that the sensor is protected to avoid damage 
from animals). The horizontal heterogeneity of CO2 concentrations at the end of the flock 
is less pronounced than at the beginning, where the differences between the centre, the air 
outlet and the air extraction are significant. Again, this result may suggest adding additional 
sensors at the beginning of the broiler flock. However, according to the sensors testing, it is 
better to invest in a quality sensor and its maintenance than in a large number of sensors. 
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Abstract

The effect of different thermal rearing environments associated with diets with two 
energetic levels in the heat emission by laying hens was studied. 18 laying hens, Bovans 
White, with 95 weeks of initial age were housed in groups of three birds per cage, equipped 
with feeder and nipple drinker and submitted to six factorial treatments 2 × 3 (rations 
with two energy densities × three thermal environments). The feed rations had similar 
composition, differing in energy densities, obtained by inclusion of soybean oil: ration 
with 2,750 kcal of metabolizable energy (ME) and feed with 3,250 kcal ME. The feed and 
water were supplied ad libitum, and each room had a thermal environment type, being 
Room 1 - thermoneutral environment, with an average temperature (AT) of 24.3 °C and 
relative humidity (RAH) of 62.3%; Room 2 - hot environment, with 30.2 °C AT and 58.8% 
RAH; and Room 3 - cold environment, with 17.7 °C AT and 98.5% RAH. The heat emission 
was measured once a day, by cage and by one of the birds, during the whole experimental 
period, using the Hotter HT3 thermographic camera, with a coefficient of emissivity of 
0.96, and through the software IR Reporter V.1.0. The rearing environment affected the heat 
emission by the bird (P < 0.05). The highest temperatures were observed in hens housed 
under heat stress, followed by the thermoneutral and, finally, the cold rearing environment. 
There was an interaction between environment and time of accommodation (P = 0.026), 
with reduction of this variable in cold environments and increase in hot environments.

Keywords: cold, hot, thermoneutral, time exposition

Introduction

The Brazilian layers’ farming is continually growing. Since 2010, there has been a 
35.8% increase in egg production (ABPA, 2017). Such a feature is due, in particular, 
to the development in technologies by which the segment has adopted, in addition to 
improvements in other factors such as genetics, nutrition, and health (Wang et al., 2017). 
In the field of layer nutrition, an important step was the introduction of metabolizable 
energy studies in the 40s by Fraps et al. (1944), through the development of the digestibility 
techniques and determination of the diets nutritional composition (Sakomura et al., 
2015). The progress went on up to the verification of the effect of the environment on the 
consumption and digestibility of the food, where it was observed the worsening of these 
parameters when the bird is in thermal stress (White & Hanigan, 2015; Liu et al., 2016).

The present study aimed to verify the immediate effect of different thermal environments 
associated with diets with two energetic levels in the parameters of behavior of laying 
hens at the end of laying.

Material and methods

Experimental data

This study was carried out according to the ethical principles and was approved by the 
local Research Ethics Committee (CEUA/UNIGRAN no. 009/16). The study was conducted 
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in Dourados, State of Mato Grosso do Sul, Brazil -22.197157 Lat.; -54.938371 Log.), from 
8 – 16 March 2017, for nine days with five days for adaptation of birds to cages, diets, and 
air conditioning and four days of data collection. For that, 18 Bovans White chickens were 
used at the end of laying period, with initial age of 95 weeks. The birds were housed in 
groups of three birds per cage, which were 41 cm wide by 61 cm long and 41 cm height and 
were equipped with a trough-type feeder and nipple-type drinker. 

The tested feed had similar composition, differing in energy densities, obtained by 
including soybean oil: feed with 2750 kcal of metabolizable energy (ME); and feed with 
3,250 kcal of ME. The feed and water were supplied ad libitum, and each air-conditioned 
room simulated a thermal environment, where: 

•	 Room 1: thermoneutral environment (TE), with an average temperature of 24.3 °C and 
62.3% relative humidity; 

•	 Room 2: hot environment (HE), with an average temperature of 30.2 °C and 58.8% 
relative humidity; 

•	 Room 3: cold environment (CE), with an average temperature of 17.7 °C and 98.5% 
relative humidity.

Therefore, the experiment was performed in a split – plot design with the main plots as 
the combination of two energy levels and three environmental temperatures, and the days 
as secondary plots. 

Heat emission analysis

The heat emission was measured once a day, by cage and by one of the birds, during 
the whole experimental period, using the Hotter HT3 thermographic camera, with a 
coefficient of emissivity of 0.96, and through the software IR Reporter V. 1.0, generating an 
average value of heat emission for each bird.

Statistical analysis — Data were tested for the normality of the residues and homogeneity 
of the variances using PROC UNIVARIATE. The model used was:

 Yijl = µ + Ai + Dj + timek + (Dj*Ai) +dijk +( Ai * timek )+ ( Dj * timek )+eijl  (1)

where µ is overall average, Ai is effect of the environment, Dj is effect of diet, timek is effect 
of time, dijk is error associated to main parcel, Ai * timek is effect of time and environment 
interaction, Dj * timek is effect of diet and environment interaction, eijl is error. 

The data were submitted to the analysis of variance by the PROC MIXED of SAS 9.0, 
adopting a level of significance of 5%.

Results and discussion

The rearing environment affected the heat emission by the bird (P < 0.05). The highest 
temperatures for these variable were observed in hens housed under heat stress, followed 
by the thermoneutral and, finally, the cold rearing environment. There was an interaction 
between environment and time of accommodation (P = 0.026) with reduction of the heat 
emission in cold environments and increase in hot environments, regardless of the time, 
demonstrating the constancy in the temperature of each environment.
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Table 1. Heat emission (°C) by the bird according to the diets and thermal environments

Variables

Environment**

Cold Thermoneutral Hot

Metabolizable energy***

2,750 
kcal

3,250 
kcal

2,750 
kcal

3,250 
kcal

2,750 
kcal

3,250 
kcal

Heat emission (°C) 21.2C 21.9C 28.6B 28.3B 32.2A 31.3A

ASE* 0,70

P Value

Diet 0,716

Environment 0,0001

Interaction 0,597

*Average standard error; ** Averages followed by different capital letters (A, B, C) in the same line with the effect of 
the Environment by the Adjusted Tukey Test (P < 0.05); *** Averages followed by different lowercase letters (a, b) in 
the same line with Diet Effect by Adjusted Tukey Test (P < 0.05).

The higher temperature of rearing environment affects animal health, due to the reduction of 
the feed consumption, and the reverse occurs at low temperatures (White & Hanigan, 2015). 
The expression of the hypothalamic mRNA of the gonadotropin-inhibiting hormone (GnIH) 
is altered by an increase in temperature, when above the thermoneutral range (Chowdhury 
et al., 2012). Such impact acts by inhibiting anorexigenic neuropeptide, that is, appetite 
stimulant, reflecting in a reduction in food intake and increase in body temperature. This 
effect coincides with the results obtained in this study, in which the environment affected 
the body temperature and the heat emission by the bird, where the highest temperatures 
for these two variables were observed in hens housed in a hot environment, followed by 
thermoneutral and, for last, the cold. Therefore, in this case, the expression of Gonadotrophin 
Inhibitor Hormone (GnIH) was reduced when the birds were exposed to high temperatures 
and, due to the orexigenic effect of this hormone, the food consumption was also inhibited.
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Conclusions

The thermal environment affects heat emission by laying hens and temperatures above 
the thermoneutrality is more stressful and deleterious to laying hens than the cold 
environment. The thermoneutral environment is recommended for better layer welfare.
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Abstract

Large scale phenotyping of animal behaviour traits is time consuming and has led to increased 
demand for technologies that can automate these procedures. Automated tracking of animals 
has been successful in controlled laboratory settings but tracking animals in large groups in 
highly variable farm settings presents challenges. The aim of this review was to provide a 
systematic overview of the advances that have occurred in automated, high throughput image 
detection of swine behavioural traits with welfare and production implications. Peer-reviewed 
publications written in English were reviewed systematically following Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses guidelines. After identification, screening, 
and assessment for eligibility, 63 publications met these specifications and were included 
for qualitative synthesis. Data collected from the papers included camera specifications, 
housing conditions, group size, algorithm details, procedures and results. Most studies utilised 
standard digital cameras (n = 54) for video collection, with increasing 3-D monitoring in 
papers published in 2014 and beyond. Papers included pigs in production stages ranging from 
recently weaned piglets to mature breeding sows. Behaviours recorded included activity level, 
area occupancy, aggression, gait scores, resource use, and posture, among others. Our review 
revealed many overlaps in methods applied to analysing behaviour, and most studies started 
from scratch instead of building upon previous work. Training and validation sample sizes 
were generally small (mean = 10) and testing took place in relatively controlled environments. 
To advance our ability to automatically phenotype behaviour, future research should build 
upon existing knowledge and validate technology under commercial settings. 

Keywords: Precision livestock farming, pig, behaviour, automated, vision analysis

Introduction

Livestock caretakers routinely monitor animal behaviour to assess health and welfare of 
animals in their care. Animal suffering can be minimised through early detection of illness, 
injury, or damaging behaviours such as aggression. Societal concerns continue to rise over 
the treatment of animals raised for meat, thus efficient monitoring of animals is essential for 
sustainability. Modern day production of swine often means housing animals in large groups, 
making it challenging for farm staff to inspect animals appropriately at the individual level. 
Detection of individual behaviour also has applications for research and selection of breeding 
stock. Behavioural phenotyping traditionally relies on direct observation or video capture and 
playback, which can be costly, time consuming, and prone to errors. Machine vision could allow 
for automated individual behavioural phenotyping through installation of cameras within 
swine facilities. Automated behavioural detection systems continue to develop, however, 
much of the testing of these programs has been performed in controlled environments. In 
practice, swine facilities are dynamic and messy environments, such as variable lighting, 
uneven floor colorations from faeces or bedding, multi-coloured pigs, or occlusions from pen 
objects or other pigs. Success of these programs in complex farm environments is largely 
unknown and needs to be addressed. The aim of this review was to provide a systematic 
overview of the advances that have occurred in automated, high-throughput image detection 
of swine behavioural traits with welfare and production implications.
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Materials and methods

Search strategy and selection of publications

Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were 
followed for this review. The following databases were searched for relevant peer-reviewed 
and English written publications: Google Scholar, Web of Science, PubMed, ARICOLA, and 
ACM Digital Library. An additional search for ‘grey literature’ was performed using Google. 
Our full study encompasses automated visual recording of behaviour of all livestock 
species, thus our initial search used the following search terms: autom* + behavio* 
+ livestock; autom* + behavio* + pig; autom* + behavio* + video + livestock; autom* + 
behavio* + video + pig; behavio* + detection + pig; autom* + behavio* + video detection 
+ pig. This initial search returned 350 potentially relevant papers, with an additional 98 
articles added after snowballing. Removal of duplicate articles left 340 articles for abstract 
screening, which then resulted in 153 articles for full-text assessment. An additional 45 
papers were excluded due to not meeting selection criteria. From these 108 articles, 63 
were focused on swine and thus were included in this qualitative synthesis.

Data extraction

Experimental details were collected from each publication including information on 
camera specifications, housing conditions relevant to recording, group size, algorithm 
details, procedures, and results. The majority of studies were conducted on groups of 
growing pigs, although some studies were conducted on singly housed sows or suckling 
piglets. Standard, digital cameras were the most common camera type used (n = 54), while 
more recent studies have begun to explore the use of depth cameras (n = 10). A top-down 
view was the most common camera position (55 studies), while five studies used an angled 
top-down view, three studies viewed animals from the side, and one study did not mention 
camera location. All monitoring took place in indoor environments. Eighteen studies were 
conducted on commercial farms, 23 in indoor research facilities, and 21 were conducted 
in equipped test pens. Two studies observed pigs in a slaughter house. Floor materials, and 
thus background colour, varied greatly among studies. Most studies had concrete flooring 
(n = 35), either solid, partially slatted, or fully slatted. Nine studies had slatted floors of 
numerous colours, while six studies had floors bedded with a substrate. Fourteen studies 
failed to mention any details on floor type, which was surprising given how substantial 
background colour is to the functioning of machine vision algorithms. Of the studies that 
mentioned lighting conditions, most provided vague descriptions such as ‘varied’, ‘sunny’, 
or ‘natural’. Group sizes used for testing were generally small (average = 10.3 individuals, 
median = 9) and ranged from one to 40 pigs in a pen. Total study population size was 
larger (average = 43.4, median = 17, range = 1-667). Information generated by the tracking 
software varied from the basics of segmentation of individuals (11 studies), to tracking 
activity or resource use (29 studies), detection of postures or gait scores (10 studies), up 
to more advanced detection of specific behaviours (11 studies). Out of these studies, only 
three were able to successfully track an individual animal within a group setting.

Results and discussion

Detection of behaviour typically consists of a series of computational steps. Segmentation, 
or the process of distinguishing individual animals from their background, is a necessary 
initial step in machine vision methodology. These techniques often segment pixels based 
upon colour, intensity, texture, and/or location. Pig activity levels and location within a pen 
can be estimated using pixel analysis obtained from digital video. An occupation index 
can be obtained by measuring the percentage of pixels above a defined threshold. This 
can be done at the pen level, or on focal regions within the pen. An activity index can 
also be obtained by measuring the amount of pixel change between consecutive images. 
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Optical flow analysis can also estimate motion and relative velocity of an object through 
comparing consecutive frames. Through combinations of segmentation and motion analysis 
techniques, individual pigs may be identified and tracked within their pen. The ability to 
link phenotypes to individual identifications is crucial to automated behavioural detection 
systems. The following sections will address results arising from various methods utilized 
for automating detection of specific behaviours with welfare and production implications.

Gait score estimation and posture detection

Lameness in pigs is a significant concern for producers. To develop a vison system capable 
of evaluating pig locomotion, Kongsro (2013) used object extraction which then generated a 
map image using MATLAB® software (The MathWorks Inc., 2010). They then characterized 
structural soundness through multivariate image analysis. Alternatively, Weixing and 
Jin (2010) utilized image sequences captured from a side-view camera to model gait 
information based upon movement of body points and joint angles. Motion analysis was 
then performed after extracting these key features in order to classify abnormal gait. 

Depth information provided by 3D cameras has also been used for automatic detection 
of pig gait (Stavrakakis et al., 2015). A marker was attached to each pig’s neck as it walked 
under a runway, and the trajectory of this marker was compared between a basic Kinect 
system, and a ‘gold standard’ six camera Vicon system (Vicon T20, Oxford, UK). Good 
agreement was found between the systems, but only if the marker was used, suggesting 
that the system would need further development for use in a commercial farm setting as 
unmarked pigs are more feasible. Two studies by Zhu et al. detected pig posture through 
Zernike moments (image property representation with high accuracy for detailed shapes 
and magnitudes invariant under rotation) and support vector machines (supervised 
learning models) (Zhu et al., 2015b) and thresholding depth images to detect standing 
(Zhu et al., 2015a). Depth cameras have also been utilised to detect posture information 
in lactating, crated sows (Lao et al., 2016; Zheng et al., 2018). Depth cameras have the 
advantage of functioning in the absence of light and have been used to detect standing 
pigs at night (Kim, Chung, et al., 2017a; Kim, Choi, et al., 2017b). As an early-warning sign of 
tail biting, D’Eath et al. (2018) used a proprietary system with industrial cameras robust to 
typical pig farm environments to accurately (73.9%) detect tail posture.

Behavioural detection

Through different combinations of segmentation techniques, location, and posture 
information, more complex pig behaviours can be detected through image analysis. One 
study was able to detect respiration by implementing a concave and convex recognition 
method (Weixing and Zhilei, 2010). Through use of the animal tracking program 
EthoVision (Noldus et al., 2001), pigs lying proximity, orientation (parallel, antiparallel, or 
perpendicular), as well as nosing around the ear of another pig were able to be detected 
(Šustr et al., 2001). In a series of papers, Nasirahmadi et al. (2015) developed a machine vision 
approach to record pig lying behaviour. After segmentation, moving pigs were eliminated 
using previously discussed methods. The clustering of the remaining lying pigs was 
defined as close, normal, or far using Delaunay triangulation. This, along with pig location 
within the pen was correlated with changes in pen temperature. Nasirahmadi et al. (2017a) 
built on this approach by using a neural network with a back propagation algorithm to 
find the optimal combination of different metrics from the Delaunay triangulation to best 
describe the different lying patterns of pigs to identify cool, ideal or warm temperatures. 
Nasirahmadi et al. (2017b) strategically altered pen activity through the provision of feed 
to test the performance of their algorithm. In a different application of their approach, to 
detect mounting behaviour, Nasirahmadi et al. (2016) repeated their approach to fitting 
ellipses to monochrome pig outlines. Greyscale thresholding fails to separate mounted 
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pigs, and the model tries to fit an ellipse to a mounted pair as though it were a single pig. 
This ellipse is then either unexpectedly long (mounting from rear), or too wide (mounting 
from side- T shaped outline), allowing mounted pairs to be identified. Kashiha et al. (2013) 
employed an innovative approach to estimate water use of fattening pigs in real-time. 

Pig aggression, another behaviour critical to animal welfare and production efficiency, 
has been successfully detected through machine vision techniques. Oczak et al. (2014) 
used the output of this relatively simple pixel based ‘activity index’ as the basis for a 
system to detect activity which is indicative of aggressive behaviour (fighting) in pigs. 
Features such as the maximum, minimum and average activity over successive seven 
second periods were used as inputs to multilayer feed forward neural network, which 
was trained with 24 h of video of unfamiliar pigs mixed into a new group and was able 
to learn the characteristic activity patterns which indicate aggression. It was over 90% 
accurate at identifying aggression in a different group, however the system was not tested 
against other high activity events such as locomotor play by young pigs in a new pen. 
From the same group, Viazzi et al. (2014) weaned piglets into groups of twelve pigs per 
pen and recorded the interactions over sixty hours to detect aggression in pigs. Aggressive 
interactions were labelled manually and related to the Motion History Image of which 
the mean intensity and the occupation index were used. Linear Discriminant Analysis 
was then used to classify aggressive interactions. The algorithm resulted in 89% accuracy 
when validated against the manually labelled data. The work on aggression was continued 
by Chen et al. (2017), using a vision-based method to separate fighting pigs from the other 
individuals in the pen. Chen and co-authors studied the acceleration between adjacent 
frames, as aggression typically consists of rapid movements. The algorithm could reliably 
detect high velocity aggression (97% accuracy) and medium aggression (95.8%). The risks, 
however, are that low velocity aggression is not detected accurately and that high velocity 
non-aggressive behaviours such as play are misclassified as aggression. In a contrasting 
approach Lee et al. (2016) segmented standing pigs and tracked using Euclidian distance 
between subsequent frames under some threshold, and an index algorithm developed by 
Zuo et al. (2014). Various movement metrics (features) were then generated (minimum, 
maximum, mean and standard deviation of velocity, and distance between the pigs). They 
then used a machine learning approach, training support vector machines with instances 
of different types of aggressive behaviour manually labelled by a human observer. There 
were two support vector machines used in sequence- one to identify aggression from non-
aggression (which was 95.7% accurate in this study), and the second to identify sub-types 
of aggression such as head knocking (88.9%) and chasing (91.5%).

Conclusions

Rapidly evolving camera technology and advancements in algorithm development 
are making automated detection of pig behaviour a reality, as apparent in this review. 
Solutions for uneven lighting, poor pig contrast, and occlusions have been developed. 
However, knowledge gaps remain that need to be addressed before these methods can 
be applied to real farm environments. One of the most significant remaining issues is 
accurately retaining individual identification of unmarked individuals in complex group 
settings. Additionally, validation of these behavioural detecting algorithms needs to be 
performed on larger groups of animals. A further, more in-depth review of technologies 
covering all livestock species will be conducted by this team to provide recommendations 
for the way forward to most effectively develop and implement these systems on farms. 
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Abstract

This paper presents a real-time pig tracking and behavioural metrics collection system 
based on affordable security cameras. The proposed approach uses machine learning to 
detect pigs from images and automatically classify each animal’s posture at any given 
time. This behavioural metrics collection system can be used for real-time monitoring 
of group or individual behaviour at the commercial and research level. Commercial 
applications include real-time health monitoring, reproduction decision-making, welfare 
assessment, and task automation, among others.

Keywords: pig tracking, pig location, sow posture analysis, pig behaviour, artificial 
intelligence, machine learning, behaviour metrics

Introduction

Monitoring livestock behaviour in real-time promises to open new possibilities to 
achieve early disease and lameness detection, better reproduction decisions and farm 
management, aggression and cannibalism monitoring, welfare assessment, and even more 
accurate environmental control, among others (Matthews et al., 2016). Collecting real-time 
behavioural metrics in commercial farms is no simple task. A good livestock behaviour 
tracker would be both precise and affordable. In the last years, researchers and companies 
have tried different types of behaviour data acquisition systems, but the resulting solutions 
are still not widely adopted in the industry. Sectors in which animals have a greater value 
such as dairy have partially adopted accelerometer and indoor positioning systems while 
other sectors like swine or poultry have not been able to integrate those in their business 
model due to the high cost of the systems and the difficulty to implement them at a 
large scale. Radio Frequency Identification (RFID) has also been tried (Adrion et al., 2018; 
Brown-Brandl et al., 2016) with different species to monitor visits to some predetermined 
areas. Although giving interesting results, the physical implementation of such systems 
is complex, the equipment is invasive, and the generated data is of low resolution. In fact, 
RFID requires antennas at different locations and tells when an animal is detected at 
those positions only. Therefore, we have no information about the behaviour of the animal 
in between detections at the antennas.

Recent advances in artificial intelligence and specifically in computer vision open new ways 
to analyse livestock behaviour in a stress-free, non-invasive way. Real-time detection and 
multi-object tracking have reached unprecedented accuracy levels and now allow group 
and individual animal tracking. We propose an affordable 2D camera system to track pigs 
in real time and analyse biometrics. We use object (pig) detection to get individual spatial 
location, and individual tracking to compute velocity and acceleration. Furthermore, we 
use other proprietary algorithms to identify posture and group activity level, among others. 
This biometric data is recorded in real-time and made available through a simple user 
interface or analysed and used by other systems for automation and decision making. Our 
resulting system can be used as a research tool to better understand animal behaviour, 
as a diagnosis tool for veterinarians, as a data generation system to be used by decision-
making algorithms, and as an affordable farm management tool to alert pig producers in 
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case of abnormal behaviour changes. Furthermore, the smaRt Tracking system is used as 
an important analytics module by multiple other Ro-Main artificial intelligence-powered 
tools such as smaRt Breeding, smaRt Counting, and smaRt Inventory.

Material and methods

Experimental data

The images used to assess the precision of the algorithms were collected using the Ro-Main 
smaRt Cam - an IP67-rated network security camera designed for use in an animal barn 
with infra-red night vision capabilities - and processed using the algorithms of the Ro-
Main smaRt Tracking system (Conception Ro-Main inc., St-Lambert-de-Lauzon, Quebec, 
Canada). The camera is powered over Ethernet (PoE), collects images at a frequency up to 
25 Hz, and has a focal length of 2.8 millimetres.

Images were collected in different farm environments and with different sizes of pigs to 
assess the robustness of the algorithms. Images were collected day and night even when 
all lights were off so that the algorithms were also tested in night vision mode. 

Images were sampled periodically to avoid taking two very similar images. The sampling 
ratio – the number of randomly selected images compared to the total number of images 
– was chosen according to the speed at which the animals change positions or posture. 
The average sampling interval based on the chosen sampling ratios are approximately ten 
minutes for sows housed in stalls and eight seconds for pigs running in corridors.

Each image was annotated manually. Bounding boxes were drawn around each animal in 
the images used for testing the pig detection algorithm. The posture of the sows housed 
in individual stalls was classified for each stall number in all the images. The four posture 
classes were lying, standing, sitting and kneeling. While the definition of three first 
postures is obvious, the kneeling posture is defined as kneeling forward with the back legs 
in complete extension.

Description of the Ro-Main smaRt Tracking system

The Ro-Main smaRt Tracking system (Conception Ro-Main inc. St-Lambert-de-Lauzon, 
Quebec, Canada, patent pending) consists of a wide-angle IP camera network overlooking 
animal pens, a server that processes the images and a user interface that allows data to be 
visualised and to export it (Figure 1). Each wide-angle camera (2) is installed on the ceiling 
such that it can see all the pigs of a given pen (1) and all cameras are connected to the 
dedicated local area network (LAN) through Ethernet and Power over Ethernet switches 
(3). 

A computational server (4) receives the video streams from all connected cameras and 
processes the individual images. Each pig is automatically detected in the image with the 
use of a deep neural network carefully trained to recognise pigs of all sizes and positions 
independently of the environment or lighting conditions. For every image, the output 
of the system is the XY coordinates of the centre of mass of every detected pig in the 
image (Figure 2). For individual tracking, frequent images are necessary to associate the 
subsequent detections of a same pig in the video and link them to create an individual 
path. The individual tracking algorithm uses a statistical approach based on prior 
knowledge about the animal’s position and velocity to associate each detection at a time 
t with its most likely position at time t+1. The output of the individual tracking algorithm 
is a track for each pig and associated position and velocity at all data points. In parallel to 
the tracks, other biometric data is calculated from the video streams, such as posture and 
group activity levels, among others.
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Finally, a local web application allows the user to access the data wirelessly from any 
platform (Mac, Windows, iOS, Android, Linux, etc.) through a web browser (5). The user can 
visualise individual and group data from the application and the raw data can be exported 
to standard database formats such as CSV and TXT (6).

Figure 1. Ro-Main smaRt Pig Tracking system architecture

Figure 2. Output of the detection algorithm

Data analysis

The accuracy of the pig detection algorithm was based on the analysis of an evaluation 
metric called intersection over union (IoU). IoU is the ratio of intersection and union of a 
manually annotated bounding box taken as the ground truth and a predicted bounding 
box generated by the algorithm (Figure 3). Intersection of the two bounding boxes is 
measured by taking the area of overlap between the two bounding boxes, while union is 
measured by taking the total area covered by the two bounding boxes (Figure 4).

Figure 3. Output of the detection algorithm
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Figure 4. Intersection (centre) and union (right) of two bounding boxes (left)

The predicted bounding box was taken as correct when the IoU was above 0.7, meaning that 
70% of the area covered by the two bounding boxes is shared by the two bounding boxes. A 
confusion matrix was then calculated from the comparisons based on IoU. Specificity and 
precision of our algorithm were finally calculated from the confusion matrix.

The accuracy of the posture evaluation task was done by comparing the predictions of 
our posture analysis algorithm on the task of classifying sows as standing, lying, sitting or 
kneeling with human annotations. A confusion matrix was then produced, and specificity, 
precision, and sensitivity of our algorithm were finally calculated from the confusion 
matrix. 

All images used to test the algorithms were never used for designing the algorithms. 
Moreover, the test dataset is composed only of images taken at different locations than 
the images used for designing the algorithms.

Results and discussion

Pig detection

Table 1. Confusion matrix for the pig detection algorithm  

Detected by human Not detected by human

Detected by algorithm 438 0

Not detected by algorithm 7 N/A

The algorithm was tested using 208 images with and without pigs in which human 
annotators identified 438 pigs. Table 1 presents the confusion matrix of the pig detection 
algorithm. The algorithm detected 438 pigs correctly based on an IoU of 0.7 and could 
not identify seven pigs that were identified by human annotators. There was no false 
detection from the pig detection algorithm. The true negative value of the confusion 
matrix is not available as the matrix is based on the positive detection of pigs. However, 
14 of the analysed images had no pigs in them and the algorithm correctly arrived at 
that same conclusion. It is interesting to note that some images also included humans 
among pigs, and they were also not detected as pigs by the algorithm. Figure 5 presents an 
example of an image with human annotations and the same image with the predictions 
of our algorithm.
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Figure 5. Comparison between human annotations (above) and algorithm predictions (below) for 
detecting pigs in an image

Based on the obtained confusion matrix, the sensitivity of our pig detection algorithm is 
98.4% and its precision is 100%. This suggests that our algorithm can identify pigs very 
well in images and that this detection can be used for both group behaviour tracking 
and ultimately for individual behaviour tracking. Future work will aim at evaluating the 
precision of individual tracking.

Group behaviour analysis can be achieved without individual tracking by using only 
the position data provided in real time by the pig detection algorithm. This can provide 
valuable insights that have never been available so far at the commercial level.

With the use of our pig detection algorithm and the developed smaRt Tracking software, it 
is possible to know the exact number of pigs in all pens at any time and be warned when 
a pig has been detected at the same position for an extended period. This can be used to 
identify dead or sick pigs or to monitor dead animal removal and help identify the number 
of pigs transferred to hospital pens on a day-to-day basis. Animal positions can also be used 
to monitor the number of visits to pre-determined areas – set through a provided software 
interface - such as feeding, drinking, resting, and playing areas. Research has shown 
that a change in the number of visits to specific areas can be an indicator of problems 

(Matthews et al., 2016). The system can also provide information about animal density in 
pre-determined zones. Animal density could be used to identify tail biting (Edwards, 2006), 
ventilation, and barn design issues, among others. Animal density maps can be easily 
plotted to visualise the general behaviour of the group with respect to its environment. 
This could eventually help understand ventilation and barn design problems.

Tracking each animal individually is possible using a pig detection algorithm. However, 
the task is much more computation intensive than simple object detection as it requires 
more frequent image analysis. Individual tracking has the potential to help understand 
better the need of individual animals. Individual behaviour monitoring could lead to 
earlier individual disease or lameness detection, estrus detection (Cornou, 2006), early 
farrowing prediction (Cornou & Lundbye-Christensen, 2012; Oczak et al., 2015), or even 
animal interaction monitoring such as aggression and tail biting. Ro-Main’s smaRt 
Tracking system can track animals individually given that its controller is powerful enough 
to process enough images in real-time. The individual tracking functionality is currently 
used in research only due to the higher price point. Although, somehow unaffordable 
at the commercial farm level for now, this system promises to get more affordable as 
technology evolves in the following years.

Aside from being used for research, the smaRt Tracking individual tracking algorithms are 
used to automate some tasks in farms. One example of this is Ro-Main’s smaRt Counting 
system that uses individual tracking to count pigs automatically as they go through a 
corridor. This system uses a single camera mounted on the ceiling of a corridor and counts 
pigs positively if they cross the field in view of the camera in the counting direction and 
negatively if they cross it in the opposite direction.
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Posture analysis

1 2 3 4

Figure 6. Sample image used for testing the algorithm

Figure 6 presents an example of an image that was used for testing the algorithm. This 
image was never used for training the model. The posture of the four sows shown in Figure 
6 were correctly classified by the model (sows 1 and 4 as lying, sows 2 and 3 as standing).

Table 2. Confusion matrix for the pig posture classification algorithm

Lying Standing Sitting Kneeling

Lying predicted 9,969 324 64 72

Standing predicted 112 2,383 16 89

Sitting predicted 35 27 75 10

Kneeling predicted 7 3 1 0

The algorithm was tested using images in which four sows in individual stalls were targets 
for the analysis of posture. Table 2 is the confusion matrix obtained from the predictions 
of our algorithm. From this matrix, we can see that the algorithm correctly identified the 
posture of 12,427 sows and was wrong for 760 sows on a total of 13,187 sows. Table 3 shows 
the sensitivity, specificity, and precision for the four postures.

Table 3. Sensitivity, specificity and precision for the four postures 

Lying Standing Sitting Kneeling

Sensitivity 98.5% 87.1% 48.1% 0.0%

Specificity 85.0% 97.9% 99.4% 99.9%

Precision 95.6% 91.7% 51.0% 0.0%

From Table 3, we can see that our algorithm performs well at the task of differentiating 
between standing and lying sows. We see that the natural imbalance of the data gives to 
the algorithm a natural tendency to classify more sows as lying. Future work will address 
this imbalance of the data to improve sensitivity for the standing posture and specificity 
for the lying posture. Our algorithm clearly lacks sensitivity and precision for identifying 
sitting and kneeling sows. In fact, these postures are very rare with 1.2% and 1.3% of 
occurrence for sitting and kneeling, respectively. Therefore, it is very hard to balance 
the training dataset for a good identification of these postures. Future work will include 
training the algorithm with more occurrences of these postures.
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Our results suggest that our algorithm can identify very well the standing and lying postures 
of sows in images and that this can be used as a metric for behaviour analysis. Future 
work will aim at evaluating the precision of posture analysis for pigs housed in groups. 
Posture is an important behaviour metric that has the potential to be used in multiple 
ways such as predicting the onset of farrowing (Cornou et al., 2011), detecting lameness, 
predicting piglet crushing (Mainau et al., 2009), or detecting the onset of estrus. Posture – 
as detected from the developed algorithm – is currently used in Ro-Main’s smaRt Breeding 
system as one of the variables used to predict the best timing for insemination based on 
behaviour. The resulting precision breeding system analyses time series composed by the 
posture of individual sows housed in stalls to predict an optimal timing for insemination.

 
Conclusions

Our real-time individual pig tracking and behavioural metrics collection system can generate 
valuable group or individual behaviour metrics that can, in turn, be used to automate tasks, 
raise alerts, or help pig producers make better and faster decisions. It can also help the 
research community to better understand pig behaviour and equipment companies to 
better evaluate their products with respect to animal behaviour. Moreover, it can be used by 
veterinarians as a diagnosis tool or by engineers as a ventilation calibration tool.
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Abstract

The European COST Action GroupHouseNet aims to provide synergy for preventing 
damaging behaviour in group-housed pigs and laying hens. One area of focus of this 
network is how genetic and genomic tools can be used to breed animals that are less likely 
to develop damaging behaviour directed at their pen-mates. Reducing damaging behaviour 
in large groups is a challenge, because it is difficult to identify and monitor individual 
animals. With the current developments in sensor technologies and animal breeding, 
there is the possibility to identify individual animals, monitor individual behaviour, and 
link this information to the genotype. Using a combination of sensor technologies and 
genomics enables us to select against damaging behaviour in pigs and laying hens.

Keywords: damaging behaviour, genetic selection, automatic tracking

Introduction

The European COST Action GroupHouseNet (www.grouphousenet.eu) aims to provide 
synergy for preventing damaging behaviour in group-housed pigs and laying hens. One 
area of focus of this network is how genetic and genomic tools can be used to breed animals 
that are less likely to develop damaging behaviour directed at pen-mates. The behaviours 
we are focussing on are feather pecking in laying hens (Rodenburg et al., 2013) and tail 
biting in pigs (Valros et al., 2015). As both animal species are kept in groups, identifying 
actual performers of this behaviour (peckers and biters) at the individual level remains 
challenging. At the same time individual tracking is pivotal for breeding approaches. Using 
traditional behavioural observations is possible, but time consuming and costly. Here, we 
propose that a combination of sensor technologies and genomic methods should be used 
as a more feasible strategy to select against damaging behaviour in laying hens and pigs 
(Rodenburg et al., 2017a). We compare different sensor technologies that can be used to 
identify individual animals for breeding, discuss the identification of indicator traits using 
data from sensor technologies, and discuss applications to animal breeding.

Sensor technology

With the current developments in sensor technologies, breeding for laying hens and 
pigs that show less damaging behaviour by selecting animals using sensor data might 
offer solutions to these welfare challenges. We propose using a combination of sensor 
technology and genomic methods to solve this issue (Figure 1).
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Figure 1. Overview of the approach to derive individual sensor and genomic data from group-housed 
pigs and laying hens and then combine this information to develop a genomic profile of individuals 
with the desired behavioural phenotype

We compare different sensor technologies (like ultra-wideband, RFID, computer vision) 
that can be used for detection of damaging behaviour or related behavioural traits (proxy 
measures). In laying hens, using video tracking and computer vision is challenging, given 
the small size of the animals and the large similarity between animals. When evaluating 
the sensor technologies used to this point, for laying hens RFID (Richards et al., 2011) and 
accelerometer-based (Quwaider et al., 2010) approaches seem most promising. Using UWB 
tracking, a specific type of RFID tracking using active tags on the animals, it was possible to 
distinguish feather peckers from non-feather peckers based on activity levels (Rodenburg 
et al., 2017b). In pigs, computer vision is already used to record technical performance and 
there seems to be potential for expanding this approach to the recording of damaging 
behaviour (D’Eath et al., 2018; Mittek et al., 2018). Using computer vision, one of the main 
challenges is to link the correct identity to each individual and to maintain this link 
between identity and video image throughout the tracking period. Here, a combination 
between video tracking and passive RFID systems seems promising, as the RFID system 
can be used to re-assign the correct identity to individual animals. If sensor signatures and 
genomic fingerprints of individual animals can be combined, this would greatly improve 
our possibilities to reduce damaging behaviour through genetic selection.

Linking sensor information to genetic information

We are now at a point where both sensor technology and genomics approaches have the 
potential to provide a large amount of data at the level of the individual animal, which can 
be used to understand and selectively breed against damaging behaviours, such as feather 
pecking (FP) in laying hens. For example, the high and low FP lines (Kjaer, 2017), selected 
on whether they show high or low FP behaviour, have been characterised in genomic and 
transcriptomic studies. These studies have added to our knowledge of the mechanisms 
underlying FP behaviour and can also be used to record genomic profiles of individual birds. 
Similarly, using sensor technology, we can now record detailed information on hens from 
the lines, creating an individual behavioural profile, describing a hen’s activity, location and 
proximity to other individuals (Rodenburg et al., 2017b; Rufener et al., 2018). If we use both 
sensor and genomic technological approaches in a breeding population, we can link the 
genomic data to the behavioural data, and define the genomic profile of individuals that 
show the desired behaviour (for example, low or no damaging behaviour). As a prerequisite, 
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however, we need to determine genetic parameters for each indicator trait derived from 
sensor data, especially the genetic correlations between indicator and target trait. Once 
thought impossible, this approach may now be feasible, because breeding companies have 
begun to genotype their breeding stock routinely and they are also investing in methods 
for automatic phenotyping. Once the desired genomic profile has been defined, we can 
test whether selecting for this profile will reduce damaging behaviour by breeding a next 
generation based on genomic selection and then phenotyping this generation with the 
same tools that were used to phenotype the parent stock. We feel that a combined sensor 
and genomics approach has great promise to select against complex behavioural traits 
that involve multiple individual animals in a group, such as damaging behaviour in pigs 
and laying hens. 

Conclusions

Reducing damaging behaviour is an important goal for commercial poultry and pig 
production. The current developments in animal breeding and Precision Livestock 
Farming offer solutions to reduce damaging behaviour. We argue that a combined sensor 
and genomics approach has great promise to select against complex behavioural traits, 
especially when combining sensors like computer vision and RFID tracking.
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Abstract

Porcine reproductive and respiratory syndrome (PRRS) is an infectious viral disease in 
pigs. PRRS causes reproductive failure in sows and respiratory infections in growing pigs. 
To improve pig health and minimise economic losses, resilient pigs are preferred within 
the herd. Resilient pigs still become infected, yet are able to recover following infection, 
showing less variation in activity and feeding. In this study, 232 commercial crossbred 
pigs were equipped with individual accelerometer ear tags to monitor the number of 
active, feeding, and hyperactive events per individual per hour. At eight weeks of age, pigs 
were inoculated with PRRS virus 1-7-4. Data from accelerometers were collected 23 days 
prior to challenge and 42 days post-infection (dpi). Expected levels of activity, feeding, 
and hyperactivity were estimated by regressing behavioural traits on observed datapoints 
prior to challenge. This regression line was extended to 42 dpi. Then, deviations from the 
regression line were quantified as Root Mean Square Error (RMSE) for each individual during 
the following time periods: pre-challenge, 0–13 dpi, and 13–42 dpi. All traits decreased 
and RMSE increased post-challenge. These results are consistant with clinical signs of 
PRRS, including lethargy and loss of appetite. In addition, association of these traits with 
survival was also investigated. RMSE prior to PRRS-infection was not predictive of survival 
after infection. However, RMSE of feeding and activity during the peak challenge period 
(0–13 dpi) was predictive of survival, where pigs with less deviation in behaviour were 
more resilient to the PRRS challenge. 

Keywords: PRRS, accelerometers, RMSE, resilience, behaviour, pig

Introduction

Porcine reproductive and respiratory syndrome (PRRS) is an infectious viral disease and 
is present in almost every major pork producing country (Dea et al., 2000). It emerged in 
North America around 1989 (Collins et al., 1991) and in Europe three years later (Wensvoort 
et al., 1991). Mortality rates up to 20% due to North American strains and up to 10% due to 
European strains has been observed (Lunney et al., 2010). As its name implies, PRRS results 
in two main pathologies: reproductive failure and respiratory disease. Reproductive failure 
occurs in pregnant sows and results in abortions, mummified piglets, and weak live born 
piglets. Growing pigs infected with PRRS may suffer from high fever, loss of appetite, and 
become lethargic or less active. This could also lead to reduced growth and productivity. 
The course of the clinical signs is on average two weeks. Besides the impairment of 
pig welfare, PRRS causes severe economic losses to the farmer, estimated at $74.16 per 
litter and $7.67 per finisher (Neumann et al., 2005). To improve pig health and curtail 
economic losses, resilient pigs are preferred within the herd. Resilient pigs are able to 
recover relatively quickly, and actively lower the viral load within the herd in spite of being 
infected (Berghof et al., 2018).
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Implementing selection for pigs with increased resilience to PRRSV-infection would be 
desirable for a breeding program. However, resilient breeding candidates are difficult 
to identify. One approach that can be used to quantify resilience is to compare normal 
expectations to behaviour following a disease challenge. Each animal has a unique 
pattern of behaviour, and deviations from this pattern following disease challenge, might 
provide insight regarding the impact of disease and/or recovery post-infection. Using 
human observations to measure behaviour is subjective and labour intensive. Precision 
phenotyping tools, such as wearbale accelerometers, which are capable of quantifying 
behaviour automatically are, therefore, an attractive alternative. An accelerometer 
measures acceleration in three dimensions. A machine learning model is then used to 
recognise activity, feeding and hyperactivity in the acceleration data. It has been reported 
that deviations from normal expectations in the activities due to disease can be used as a 
measure of resilience. Putz et al. (2018) quantified resilience using Root Mean Square Error 
(RMSE) of feed intake and feeding duration. It was shown that RMSE can be used as an 
indicator trait for resilience and quantifies return to baseline. Therefore, the objective of 
this study is to evaluate the usefulness of variation in activity, feeding and hyperactivity 
measured through accelerometers to define resilience to PRRS-infection.

Material and methods

Animals and housing

A total of 2186 commercial crossbred pigs were farrowed at a commercial sow farm and 
shipped to a commercial research facility at weaning. Upon arrival, pigs were balanced by 
sex with 27 pigs housed per pen in 81 total pens. All pigs were vaccinated per label with 
a PRRSV modified live virus vaccine (IngelVac ATP, Boehringer Ingelheim) upon entry and 
experimentally inoculated with PRRS virus variant 1-7-4 four weeks later at a total dose 
of 1x105 TCID50 via the IM route. Pigs received mass treatments at 21 and 26 dpi and 
individual treatments as needed from 21 dpi onward. 

Data collection

A subset of 232 pigs was equipped with individual accelerometer ear tags from Remote 
Insights. Acceleration data were recorded 23 days prior to infection and 42 days post-infection 
(dpi). Accelerometers detected acceleration in three dimensions. A machine learning 
model was trained from video observations to recognise activity and chewing behaviour. 
Hyperactivity was calculated directly from the raw acceleration data. A hyperactive event 
was recorded when the acceleration surpassed a defined threshold. Activity, feeding, and 
hyperactivity were averaged per day and expressed in minutes per hour.

Statistical analyses 

RMSE was computed for each pig by calculating the within animal variation for activity, 
feeding, and hyperactivity from the linear regression using R (Figure 1). Activity, feeding, 
or hyperactivity was regressed using only observations pre-challenge (-23 – 0 dpi). This 
regression line was extended to 42 dpi, obtaining expected behaviour over time without 
the interruption of a challenge. RMSE was calculated for each trait using the observed 
values from the accelerometers, and expected values from regression. The following 
formula was used to calculate RMSE for each period: 

 (1)

Where Observed is the observed value from the accelerometer, Expected the expected value 
based on the linear regression. RMSE was calculated pre-challenge (-23 – 0 dpi), early post-
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infection (0–13 dpi) and late post-infection (13–42 dpi). Data were analysed using a linear 
mixed model in ASReml. Sex was fitted as a fixed effect and pen was fitted as a random effect.

Figure 1. Example of activity data per day in minutes per hour generated by the accelerometer. The 
dots are observed activity, where the darker shade of grey is used for the linear regression. The solid 
line represents the time of PRRS infection and the dashed line the linear regression of expected 
activity and arrows show examples of deviations from expectations

Results and discussion

Behaviour

Table 1 shows average activity, feeding, and hyperactivity for each period in minutes per 
hour. The pigs were less active and spent less time feeding post-challenge compared to 
pre-challenge. Hyperactivity was not affected by PRRS-infection to the same extent as 
activity and feeding. Activity, feeding, and hyperactivity did not return to baseline post-
challenge. Nordgreen et al. (2018) observed similar behaviour, where individuals were less 
active and had less appetite post-challenge than pre-challenge. These results show that 
accelerometer data reflect the expected change in behaviour due to PRRS-infection. 

Table 1. Difference in average activity, feeding, and hyperactivity in minutes per hour for different 
periods for pigs who were either dead or alive at the end of the challenge

Average

Activity 
(min/h)

Feeding  
(min/h)

Hyperactivity  
(min/h)

Alive Dead Alive Dead Alive Dead

Pre-challenge 12.53 12.34 6.33 6.08 0.36 0.43

Early post-challenge 8.05 5.85 3.89 2.19 0.30 0.29

Late post-challenge 7.05 5.22 4.03 1.91 0.27 0.30

A linear regression was fitted on data pre-challenge to estimate the expected behavioural 
pattern of a pig over time. As anticipated, pigs deviated from this expected patten 
following challenge, reflected by increased RMSE values for each trait: activity, feeding, 
and hyperactivity. Of these traits, activity had the highest RMSE, regardless of time period 
(Figure 2). Of the time periods, the late post-challenge period (13–42 dpi) had the highest 
RMSE, regardless of trait. Based on Table 1 we can conclude that the increase in RMSE is 
due to a decrease in activity, feeding, and hyperactivity following disease challenge, which 
is consistent with clinical signs of PRRS-infection, including lethargy and loss of appetite.
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Figure 2. Average RMSE for activity, feeding, and hyperactivity for each period

Survival

Resilience to PRRS-infection was also assessed using survival data. Compared to pigs that 
died following infection, pigs that survived had lower RMSE for activity and feeding from 
0–13 dpi, and lower RMSE for activity and hyperactivity from 13–42 dpi (Table 2). These 
results suggest that it is possible to identify pigs that will survive the challenge based on 
RMSE for activity and feeding shortly after challenge. Although it would be more desirable 
to identify resilient pigs without the need of a PRRS-infection, the lack of a significant effect 
of RMSE pre-challenge on survival suggests that variation in behaviour in the absence of 
disease did not truly reflect the chances of survival following infection.

Table 2. Solutions of RMSE early and late post-challenge of activity, feeding, and hyperactivity of 
animals that survived PRRS-infection compared to deceased pigs. NS = non-significant

Solution RMSE Activity Feeding Hyperactivity

Early post-challenge -1.48 ± 0.35 -1.57 ± 0.36 NS

Late post-challenge -2.41 ± 0.81 NS -0.15 ± 0.07

Conclusions

Results from this study suggest that accelerometer data can be used to characterise the 
behavioural patterns of pigs. Activity, feeding, and hyperactivity decreased post-challenge, 
which is consistent with the classical signs of PRRS-infection. Prolonged infection was 
observed, since neither activity, feeding, nor hyperactivity returned to baseline by 42 dpi, 
which suggests that pigs had not yet recovered from the infection by this timepoint. RMSE 
was used to quantify the deviation of a pig’s observed behaviour post-infection from its 
expected behaviour. Results showed that RMSE of activity, feeding, and hyperactivity 
prior to PRRS-infection were not predictive of survival. However, RMSE during the early 
post-infection phase (0–13 dpi) was predictive of survival, where pigs with lower RMSE for 
activity and feeding during this phase were more resilient to PRRS challenge. 
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Abstract

Pen fouling is an undesired behaviour seen in growing pigs, where they start resting in the 
excretion area and excrete in the designated resting area. It is reasonable to assume that 
automatic monitoring of the location of the pigs within the pen could be used for early 
warnings of imminent pen fouling events. We intend to provide such automatic monitoring 
using convolutional neural networks (CNN) applied to images captured above the pens. In 
this preliminary study, we compared 12 different combinations of CNN architectures and 
training strategies for this purpose. The best performing strategy yielded an overall mean 
absolute error of 0.35 pigs and a coefficient of determination of 96% between the predicted 
and observed number of pigs in a given area of the pen. 

Key words: Convolutional neural network, fouling, monitoring, slaughter pig

Introduction

Pen fouling is an undesired behaviour sometimes seen in pigs, where they will start to 
excrete in the resting area of the pen and rest in the designated excretion area of the 
pen. This behaviour has several consequences such as higher labour cost, poorer hygiene 
(Rantzer et al., 1999), and higher ammonia emissions (Aarnink et al., 1997). It would be 
beneficial to be able to predict fouling in order to take pre-emptive action against it. Pen 
fouling is obviously closely connected with lying behaviour (Aarnink et al., 2006; Huynh et 
al., 2005), and a recent study suggests that changes in lying behaviour actually occur a few 
days prior to the onset of pen fouling (Larsen et al., 2018). 

The long-term goal of our research is to be able to predict fouling by automatically 
monitoring the positioning behaviour of the finisher pigs, which we intend to accomplish 
by means of convolutional neural networks (CNN) applied to images captured above 
finisher pig pens. CNNs are commonly used for image classification tasks, such as face 
recognition of humans (Taigman et al., 2014) or pigs (Saint-Dizier & Chastant-Maillard, 
2012). In addition to categorical outputs, CNNs can also be designed to yield linear outputs, 
such as, e.g. predicted live weight of a pig in an image (Jensen et al., 2018; Wang et al., 2008). 
For this research, we are using CNNs with linear outputs to count pigs in a given image of 
a subsection of a pen. 

Our aim with this preliminary study is to determine the optimal combination of CNN 
architecture and training strategy to best count the number of pigs in a given image. 

Materials and methods

Data source and handling

The data used in this study were collected at the Aarhus University, Denmark experimental 
farm. The data were collected from three pens during one finisher pig period of 69 days. 
Each of these three pens can be seen in Figure 1. The images were cropped to minimise 
the visible areas of neighbouring pens, and Figure 1 shows this cropping. Pen a (Figure 1a) 
was provided with straw during the entire growth period, while pens b and c (Figures 1b 
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and 1c, respectively) were not. Two wooden beams were positioned in separate vertical 
racks as enrichment to ensure that all pens were in accordance with the legislation (EU 
Council Directive 2008/120/EC). Each of the pens used in this study held 11 pigs at the 
time of insertion (1.21 m2/pig). The pens measured 2.48 m × 5.45 m. Artificial light was on 
from 05:30–18:30 h (182 lx) in the room. Windows in the room were blocked due to video 
recordings. The room temperature was controlled by an automatic ventilation system 
(SKOV A/S, Roslev, DK). The climate control system automatically controlled a shower 
system above the slatted floor. 

Figure 1. Cropped images of the pens from which data were used for this study. Pens a and b were 
used for training the convolutional neural networks to count the number of pigs in each area of the 
pens, while pen c was used for testing the trained networks

The floor was made of concrete and was divided between 1/3 solid, 1/3 drained and 1/3 
slatted. The solid area served as the pigs’ resting area, while the slatted floor was the 
pigs’ designated excretion area. A camera was placed above the solid floor of the pens, 
and angled so that the entire pen was visible to the camera. Continuous video data were 
recorded for each pen for the entire growth period with a resolution of 768 × 576 pixels. 
From the continuous video data, still-images were extracted with 10 minute intervals for 
two 2-hour periods per day from 06:00–08:00 hours (morning data) and from 12:00–14:00 
hours (afternoon data), producing a total of 26 images per pen per day for the entire growth 
period. For each of these images, it was manually recorded how many pigs were in each of 
the three areas of the pen. If a given pig was partially in two different areas in the same 
image, the area with the largest portion of the pig was counted. In cases where the pig was 
evenly divided between two areas, the area with the pig’s head was counted. This manual 
recording was performed by one student worker. 

Each cropped whole-pen image (top of Figure 2) extracted from the video was divided into 
sub-images, corresponding the three areas of the pen. These sub-images were then re-
scaled to a resolution of 64 × 64 pixels, as illustrated in the bottom of Figure 4. The data 
relating to pens a and b were used for training the CNNs, while the data relating to pen 
c served as the test set. The training data were augmented using the flip-flop method, 
where each of the sub-images was flipped horizontally, vertically, and both horizontally 
and vertically, so that each sub-image gave rise to a total of four different images. This 
data augmentation was not applied to the test set, thus, the final training set consisted of 
41,136 sub-images, while the test set consisted of 5,381 sub-images. 

Modelling

The CNNs were defined and trained in R (R Core Team, 2017) using the mxnet package 
(Chen et al., 2015). The CNNs were trained with the flip-flop augmented and re-sized sub-
images as the input, and the numerical value of the manually counted number of pigs 
located in each sub-image as the target values. 

Two base-architectures, A and B, were implemented. The inspiration for the architectures 
came mainly from an architecture originally designed for face recognition of pigs (Hansen 
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et al., 2018). The complexity of our networks was, however, somewhat reduced compared 
to this architecture. Both of our architectures had three convolutional layers and three 
fully connected layers. They were identical, except that a dropout rate of 50% was used 
after all fully connected hidden layers in architecture B, as was done by Hansen et al. 
(2018), while no dropout was used in architecture A. Furthermore, Hansen et al. (2018) used 
dropout after every other convolutional layer, but this was not used in our implementation. 
Each of the convolutional layers was followed by max-pooling and made use of the ReLU 
(rectified linear unit) activation function. All convolutional layers in our implementations 
used kernels of 5 × 5 pixels, with 32, 64, and 128 kernels in the first, second, and third 
convolutional layer, respectively. The first fully connected layer had 1,000 hidden nodes, 
while the second had 500 hidden nodes. Both the first and second fully connected layer 
used the ReLU activation function. The third fully connected layer, i.e. the output layer, 
had one node and used the linear activation function. 

Figure 2. Top: a whole pen with 11 pigs. The two red lines mark the separations between the three 
different areas (left to right: slatted floor, drained floor, and solid floor). Here the slatted floor has 
two pigs, the drained floor has seven pigs, and the solid floor has two pigs. Any visible pig from the 
neighbouring pens are not counted. Bottom: the image of the whole pen is divided into three sub-
images, corresponding to each of the areas in the pen. The sub-images have been re-scaled to a 
resolution of 64 × 64 pixels

For each of the two architectures, we compared the effects of training a separate CNN to 
count the pigs in each of the three areas of the pen with the effects of training a single 
CNN for all three areas. Furthermore, three different criteria for stopping the training was 
tested, namely that the root of the mean of the squared errors (RMSE) of the predicted 
values on the training set should be below 1.0, 0.75, and 0.5 pigs. Thus, we tested a total 
of 12 combinations of strategies. The time it took to train the CNNs, given the various 
strategy combinations, was recorded during training. 
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Testing

The trained CNNs were applied to the test data images. The per-image observations and 
predictions were aggregated to daily per-period (morning or afternoon) means, as was 
done with the manually counted pig location data used in a recent study (Larsen et al., 
2018). The prediction error was defined as seen in eq. 1. 

ei = Yi - Ŷi           (1)

with Ŷi being the aggregated number of observed pigs during observation period

i and Ŷi being the aggregated predicted number of pigs during observation period i. The 
mean absolute error was then calculated as follows:

                

(2)

where N is the total number of aggregated observations, i.e. two aggregated observations 
per day for 69 days, totaling 138 observations in our aggregated test set.

Results and discussion

Table 1 shows the performance measures of the 12 CNN strategy-combinations. All of 
the final CNNs yield aggregated pig counts, which are on average less than one pig off, 
compared to the aggregated manual counts. 

The single best strategy was achieved by using dropout in the CNN architecture, by training 
a separate CNN for each of the three areas of the pen, and by stopping the training when 
the RMSE on the training set was below 0.5 pigs. 

When separate area-specific CNNs were not used, the best performances were consistently 
achieved with the highest included stop value (RMSE = 1 pig); conversely, when separate 
CNNs were trained and applied only on specific areas within the pen, the best performance 
was consistently achieved with the lowest included stop value (RMSE = 0.5 pig). This 
suggests that overfitting is less of a problem when the final CNNs are applied to the 
uniform patterns of a single specific area of the pen. The best area-specific CNNs were, 
however, not much better than the best area-general CNNs, and the total training time 
to achieve these best performances were increased by 529% and 1,073% for architecture 
A and B, respectively, when training the area-specific rather than the area-general CNNs.

Using dropout in the fully connected layers generally increased the training time. This 
increase was by 54% on average. The use of dropout, however, only resulted in improved 
performance in two out of six cases, when keeping all other variables constant. For our 
purpose, the use of dropout does not seem worth the extra training time. 

The best CNN took 434 minutes to train. Interestingly, the second best performance (MAE 
= 0.68) could be achieved in as little as 37 minutes, by training a single CNN for all areas 
of the pen, and ending the training when the RMSE on the training set was less than 
one pig. For future work, which will include larger data sets, the faster strategy might be 
preferable. For this study, however, all of the following discussion will relate to the strategy, 
which was found to yield the best performance according to Table 1. 
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Table 1. The performance, in terms of mean absolute error (MAE), of the CNNs achieved with the 
12 different strategy-combinations, when applied to the test set. The best performance within each 
Architecture/Separate models-combination is highlighted with boldface. The best performance 
overall is highlighted with boldface and italics

Architecturea Separate modelsb Stop valuec MAE Training timed, 
minutes

A

No

1.00 0.69 38

0.75 0.75 74

0.50 0.75 237

Yes

1.00 0.91 45

0.75 0.70 85

0.50 0.68 239

B

No

1.00 0.68 37

0.75 0.91 109

0.50 0.75 468

Yes

1.00 0.68 63

0.75 0.86 134

0.50 0.59 434

aA = architecture without dropout, B = architecture with dropout; bYes = a separate CNN was trained for each of 
the 3 areas of the pen, No = a single CNN was trained on sub-images for all areas of the pen; cThe RMSE value of 
the CNN applied to the training set, which would stop the training of a given CNN; dThe number of minutes it took 
before the stop value was reached during training

Table 2 shows the performances specific to each of the three areas of the pen. The 
uncorrected mean errors (ME) and MAE relate to the predictions from the CNN as taken at 
face value. As is seen, the performance specific to the solid floor is by far the worst (MAE 
= 1.14 pig), and the number of pigs in this area tend to be under-estimated, as is seen by 
the positive value of the ME. From the top row of Figure 3 it is seen that this tendency to 
under-estimate the number of pigs on the solid floor is greater in the morning, when more 
pigs are usually located in this area. This suggests that when the concentration of pigs 
in one area becomes too high, the CNN has difficulties with separating close pigs from 
each other. Inspired by this, we decided to implement a set of simple rules to correct the 
aggregated estimate of the number of pigs in a given area during a given period. These 
rules were: 1) The predicted numbers of pigs per area must sum the known total number 
of pigs in the pen. 2) The area of the pen, for which the uncorrected prediction is highest, 
is the area for which the prediction will be corrected.
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Table 2. The area-specific mean errors (MA) and mean absolute errors (MAE) of the single best CNN 
strategy, according to Table 1, when the predicted number of pigs are uncorrected vs corrected to 
sum to 11 

Pen area N Median 
no. of pigs

Range 
of pigs

Uncorrected

 

 

Corrected

ME MAE ME MAE

Slatted 138 1 0-5 0.16 0.19 0.18 0.21

Drained 138 3 1-7 0.19 0.43 -0.01 0.38

Solid 138 7 2-9 0.65 1.14 -0.17 0.46

All 414 3 0-9 0.34 0.59 0.00 0.35

Figure 3. Top row: the CNN-based predictions of the number of pigs in each area were taken at face 
value. Bottom row: the CNN-based predictions were corrected, so that the number of pigs in all areas of 
the pen at a given point in time must always sum to the known total number of pigs in the pen. Column 
1: The relationship between the observed number of pigs and the number predicted by the best area-
specific CNN without and with correction. Columns 2 and 3: Time series of the observed and predicted 
number of pigs on the slatted, drained, and solid floor of the test set, without and with correction 

From Table 2 it is seen that this correction drastically reduced both the ME and MAE for the 
solid floor and, to a lesser extent, the drained floor. This improvement is also clearly seen 
by comparing the plots in the top row of Figure 3 (uncorrected predictions) to the plots 
in the bottom row of Figure 3 (corrected predictions). The coefficient of determination (r2) 
between all observed values and uncorrected predictions is 91%, while the r2 between the 
observed values and corrected predictions is 96%. 

From Figure 3 it is seen that the predicted values generally follow the pattern of the observed 
values over time. This demonstrates that the CNN can be used to monitor the positioning 
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behaviour of the pigs throughout the growth period. Furthermore, the CNN could potentially 
be applied continuously throughout the day, as opposed to just during two specific periods 
per day as was done for this study. Such continuous positioning data, aggregated to e.g. hourly 
means, could then be used to identify diurnal positioning patterns. By using e.g. a dynamic 
linear model (DLM), specific diurnal patterns could be learnt for specific groups of pigs, and 
deviations from the group-specific expected pattern could then be used to raise alarms of 
changing behaviour, which if left unchecked would lead to pen fouling. Such DLM-based 
alarm systems have previously been demonstrated with e.g. the diurnal patterns of drinking 
behaviour in finisher pigs, where deviations from the expected patterns could be used to 
predict diarrhoea and pen fouling (Dominiak et al., 2018; Jensen et al., 2017). Furthermore, 
the CNN-based time series of the pigs positioning behaviour could be combined with other 
sensor data, such as data on drinking behaviour and temperature, using a multivariate DLM. 
Previous studies have suggested that combining data from multiple sources in this way 
results in more accurate predictions of undesired events, such as diarrhoea and pen fouling 
in slaughter pigs (Jensen et al., 2017) and mastitis in dairy cows (Jensen et al., 2016). 

Further studies will focus on investigating the utility of utilising the CNN-based monitoring 
of slaughter pig positioning behaviour in the ways described above. We will also work to 
improve the CNNs ability to predict the number of pigs in high-density areas by using 
input images with higher resolution than what was used here. This will be necessary 
before the CNN can be useful in commercial pig herds, where the stocking density can be 
expected to be considerably higher than the density used in our study. 

Conclusion

We have demonstrated that CNNs can be used to count the number of pigs in different 
areas within the pen in a way that allows reliable long-term monitoring of the pigs’ 
positioning behaviour. We compared 12 different combinations of CNN architectures and 
training strategies. On its own, the best strategy yielded an overall MAE of 0.59 pig and a 
r2 of 91% between the observed and predicted number of pigs in a given area of the pen. 
By implementing the rules that the total number of predicted pigs always had to be equal 
to the known total number of pigs in the pen, and that the highest predicted count would 
always be corrected to achieve this sum, these performance values were boosted to a MAE 
of 0.35 pig and a r2 of 96%. This method has the potential to be used as part of an early 
warning system for pen fouling. 
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Abstract

Tracking animal movements while at pasture may improve the understanding of grazing 
behaviour and aid farmers to locate animals in need of attention more efficiently. The 
SMARTBOW (Smartbow Gmbh, Weibern, Austria) system facilities the localisation of 
animals through triangulation from a set of receivers distributed around a farm and ear tags 
worn by each cow. The objective of the current study was to test the localisation accuracy 
of the SMARTBOW system. A total of 318 SMARTBOW tags were evenly distributed across 
a Teagasc research farm and left in a stationary position for approximately 10 minutes. 
A Leica Viva CS15 GNNS Controller in combination with a GS 608 plus Smart Antenna 
recorded the true location of each tag. The distance between the location calculated by the 
SMARTBOW system and the true location (the Euclidean distance) was derived and results 
showed that 2.8% of the data had a Euclidean distance greater than 3 m. The maximum 
Euclidean distance observed during the experiment was 235 m. The mean absolute error 
was 0.67 m, the one sided 95% confidence interval of the Euclidean distance was 2.75 m 
and the 99% confidence interval was 4.93 m.

Keywords: localisation, dairy cows, ear tag, pasture

Introduction

Localisation of animals in a pasture based system could aid in the understanding of 
animal grazing behaviour and where animals tend to graze and aggregate within a field. 
It could also help in monitoring cow flow to the milking unit when automated milking is 
integrated with pasture grazing. Additionally, if paired with health or calving sensors in 
large expansive farms, localisation technology would allow a farmer to locate animals in 
need of attention without delay. Previous research efforts into cow localisation have used 
Global Positioning System (GPS) devices. The location of a GPS device is calculated by 
identifying the time it takes a radio wave signal to go between the ground-based receiver 
and a number of carefully monitored satellites orbiting the earth. Therefore, the accuracy 
of the clock on the satellites is of utmost importance (Turner et al., 2000). Under normal 
circumstances the accuracy of GPS units attached to animals have been within 0.36 m 
when the animal is walking (Ganskopp and Johnson, 2007). When stationary, the GPS 
location can drift, as Ganskopp and Johnson (2007) observed that 90% of the data fell 
within 5.5 m of the true location.

Alternative methods for localisation include wireless sensor networks (WSN) (Mao et 
al., 2007). In the past, the difference between the true location and the WSN calculated 
location has ranged from 5–43 m (Huircán et al., 2010). The SMARTBOW system (Smartbow 
Gmbh, Weibern, Austria) that was tested as part of the current study is a WSN consisting of 
multiple fixed receivers placed at known locations across the farm. Receivers communicate 
with tags placed on the ear of each animal to calculate the animal’s position. Ear tags send 
information every three seconds (10 Hz technology for research purposes) to the receivers 
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which send the information by a wireless connection to an access point that is connected 
to a central server. Solar panels are utilised to provide power to each of the receivers. 
While the accuracy of the SMARTBOW system has been tested in an indoor environment 
(Wolfger et al., 2017), the objective of the current study was to test the accuracy of the 
system in an outdoor setting when tags remain stationary.

Material and methods

Experimental data

To evaluate the accuracy of position data calculated by the SMARTBOW system, a set 
of 20 tags were each placed on a 1.5 m pole. Between 10–20 poles with SMARTBOW tags 
were placed at random locations in each paddock; the exact number of tags placed in 
each paddock was dependent on paddock size. Location data from 318 positions were 
collected and each tag was left at the same location for approximately 10 minutes, and 
consequently had on average 172 ± 41(SD) records. GPS reference points were generated 
by using a Leica Viva GNNS GS08 Controller in combination with a G607 Smart Antenna 
(Leica Geosystems, St. Gallen, Switzerland). The accuracy of the Leica Viva GPS device was 
5 mm in the horizontal direction and 10 mm in the vertical direction. Before being used 
as a gold standard for the SMARTBOW tags the Leica Viva device was tested against five 
points on the farm with known GPS locations. All data were collected on the 12, 13 and 14 
June 2018. GPS data from the Leica Viva device were converted to the co-ordinate system 
used by SMARTBOW (co-ordinate system with the origin placed at the centre of the farm).

Euclidean distance confidence interval

The Euclidean distance (also herein known as the error) between the GPS location and the 
SMARTBOW location was calculated using the following formula:

where (x1, y1) and (x2, y2) are the co-ordinates of the GPS location and SMARTBOW location, 
respectively. A histogram of the Euclidean distance was created to visualise the data. 

When the Euclidean distance for every point in the dataset was calculated, the dataset 
was not normally distributed, as expected. The natural log of the Euclidean distance was 
calculated in order to quantify a one-sided confidence interval (CI). Once the CI of the log 
of the Euclidean distance was calculated, the exponential function was used to calculate 
the CI for the Euclidean distance.

Heat maps

To visualise how error changes across the entire farm a heat map was generated.

Results and discussion

Euclidean distance and confidence interval

Results showed that 2.8% of the data had a Euclidean distance greater than 3 m (Figure 6). 
The mean Euclidean distance was 0.67 m, the one sided 95% confidence interval was 2.75 
m and the 99% confidence interval was 4.93 m.
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Figure 1. The percentage of SMARTBOW locations at different Euclidean distances away from their 
respective GPS location

Heat maps

The proportion and location of SMARTBOW tags with Euclidean distances < 1.5 m, between 
1.5 m and 3.0 m and > 3 m is shown in Figure 2. While many of the tag locations across 
the farm contain an error less than 1.5 m, there are certain areas where the error is > 1.5 
and < 3 m. Most of the data points where the error is greater than 3 m are located at the 
extremities of the map. As the data herein was derived from static tags the accuracies are 
expected to be better than when the tags are moving, therefore, more research is required 
to test the accuracy of the SMARTBOW system when the tags are in motion throughout 
the farm.

Figure 2. The difference (Euclidean distance) between the SMARTBOW location and GPS location 
across the farm show differences of < 1.5 m (™), >1.5 m and < 3 m (n) and > 3 m ( )
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Conclusions

The current study suggests that the SMARTBOW system can be used to identify the static 
locations of tags in a pasture based system with 95% of the data lying within 2.75 m 
of the true location and 99% of the data lying within 4.97 m of the true location. With 
such a degree of accuracy the system could be used for farm management and research 
purposes. System configurations which improve the accuracy of cow localisation will be 
the next area of research. This will involve the complications of the animal being regularly 
in motion and the cow’s body potentially reducing the number of connected receivers.
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Abstract 

Audio-based sensor systems have been shown to better detect clinical episodes of 
respiratory disease. However, microphones used in such systems have distance limits of 
sound detection. The purpose of this project was to evaluate the optimal placement and 
configuration of a continuous audio monitoring system in large airspace pig buildings 
to enable both a high sensitivity for detection and establishing directionality of clinical 
respiratory episodes. Audio sensor devices were obtained and installed in three large 
commercial wean-to-finish facilities designed to house 1,200–2,400 pigs per airspace. Five 
devices were installed in each of two 1,200 head buildings, spaced equidistant from each 
other along the center alleyway. In the 2,400 head building, 11 devices were installed, with 
four devices over the middle of the pens on each side of the building spaced equidistant 
from each other and three in the central alleyway spaced equidistant from each other. 
Where the device microphone was the center of a circle, the estimated optimal diameter 
for best detection of cough was determined to be approximately 18-20 meters. For optimal 
sound coverage in the 1,200 head buildings the optimal number of devices was determined 
to be four, and for the 2,400 head building the optimal number of devices was determined 
to be eight. Each device represents an 18-20 meter sound detection ‘zone’. The detection 
and directionality of cough is then a function of the square meters covered by the ‘zones’ 
out of the total possible square meters in a barn. 

Keywords: cough, respiratory distress, detection radius 

Introduction 

Producers and veterinarians routinely rely on both observation and data to make clinical 
assessments of farms and animals, as well as conduct diagnostic investigations to uncover 
causes and contributing factors of what they judge to be economically and welfare 
relevant clinical health issues. During the workday and farm walk-through visits, farm 
personnel and veterinarians use various visual and audio cues to assess the animals and 
their environment and interpret the cues. Also, recorded daily farm data and production 
records are reviewed and interpreted to augment observations. 

Skills in assessment and interpretation of visual and audio cues, as well as of recorded 
farm data typically improve with experience. However, these activities can be time-
consuming, and are problematic where availability of enough skilled and experienced 
labor is often a major constraint. Further, the period of animal observation is constrained 
to typical workday hours, leaving substantial time each day that animals are not observed 
during at least two-thirds of each weekday as well as by reduced numbers of staff during 
weekends and holidays. These dynamics can serve to delay detection of clinical health 
and performance issues, and, in turn, delay interventions – risking welfare, productivity 
and profitability. 
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Important audio cues come in the form of sounds like coughing and sneezing of pigs. Sound 
in the form of cough has been researched for use as a semi-manual clinical assessment 
and quasi-diagnostic tool (Bahnson et al., 1994; Morris et al., 1995; Nathues et al., 2012) 
Further, the routine quantification of cough via use of smart devices and an app under 
commercial conditions has been evaluated for more objective clinical assessment and to 
better direct diagnostic investigation (Schagemann et al., 2016). While useful, the manual 
collection of cough data can be problematic under commercial operational conditions. 
Even when aided by current technologies such as smart phones or tablets and an app, the 
manual collection of cough data along with management, analysis and interpretation can 
be time-consuming and require adherence to an execution protocol. Also, while applying 
a systematic process and related algorithm is more objective than a traditional herd walk-
through, a degree of subjectivity still remains where farm production personnel and/or 
veterinarians are counting coughs. 

The need for, value of and various forms of automated and objective assessment and 
quantification of pig health and welfare have been described, including various categories 
of technologies useful for these purposes (Matthews et al., 2016). These sensor and device 
technologies, utilised within in the framework of a coordinated real-time system, can 
collectively be called ‘Precision Livestock Farming’. Precision Livestock Farming (PLF) has 
been defined as: “…to manage individual animals by continuous real-time monitoring of health, 
welfare, production/reproduction, and environmental impact” (Berckmans, 2017). As a deliverable 
for the four year EU-PLF project, a “blueprint” for implementation of PLF has been outlined 
and developed, including descriptions of some PLF technologies (Guarino et al., 2017). 
Various PLF-oriented technologies have been researched, including sound (VanHirtum & 
Berckmans, 2002; Guarino et al., 2008). Further, in recent years commercial sound-oriented 
PLF technologies have begun to be evaluated in commercial settings (Finger et al., 2014; 
Genzow et al., 2014a; Genzow et al., 2014b; Hemeryck et al., 2015; Polson et al., 2018). 

The early detection of clinical respiratory disease in growing pigs can contribute to improved 
productivity and profitability through enabling earlier, more effective treatment. While 
clinical disease detection is the direct responsibility of farm personnel detection of clinical 
disease, onset across multiple farms and systems can be problematic due to variation in 
their skill, experience and time spent on the farm. Continuous sound monitoring systems 
can complement and enhance farm personnel and veterinary observation for detection 
of clinical episodes of respiratory disease. Such systems have been shown to detect the 
onset of clinical respiratory disease earlier than farm personnel, and hold the potential 
to do so earlier with greater consistency, reliability, objectivity and precision (Berckmans 
et al., 2015). 

To assess the utility of sound as a ‘sample’ type in swine for the detection and 
characterisation of clinical respiratory disease, an audio device, sensors and software 
platform designed to monitor respiratory distress in pigs were evaluated (SOMO+, 
SoundTalks NV, Leuven, Belgium). The objective for this evaluation was to determine the 
optimal placement and configuration of the SOMO+ system in large airspace buildings 
containing growing pigs to enable both a high sensitivity for detection and establishing 
directionality of clinical respiratory episodes. 

Materials and methods 

Three different farm sites / systems were enrolled in the project. Pigs were placed into 
facilities per normal practice. Cough monitors (SOMO+ Respiratory Distress Monitor, 
SoundTalks NV, Leuven, Belgium) were obtained and installed in three large commercial 
wean-to-finish facilities designed to house 1,200–2,400 pigs per airspace (Figure 1). 
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Figure 1. Placement of SOMO+ devices to determine optimal detection zone size, number and 
configuration to maximise cough detection and directionality determination 

Five devices were installed in each of the two 1,200 head buildings, spaced equidistant 
from each other along the center alleyway. In the 2,400 head building, 11 devices were 
installed, with four devices over the middle of the pens on each side of the building spaced 
equidistant from each other and three in the central alleyway spaced equidistant from 
each other. 

Once installed, the SOMO+ devices continuously monitored temperature using two 
sensors and humidity using one sensor. Also, each device had one connected microphone 
continuously recording sound. An algorithm was applied to the continuous stream of 
sound and classified specific sound events as coughs. The sound events classified as 
coughs were then counted, with the counts uploaded to a cloud database with a web 
user interface. A mobile app was used to monitor the SOMO+ devices remotely from a 
smart device (e.g. smart phone or tablet). An algorithm-based respiratory distress index 
(RDI) was continuously generated from the recorded sound files and cough counts, and 
was accessible via the web and app interfaces for monitoring and evaluation of various 
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dynamic visualisation tools, including summary tables and charts. 

A correlation analysis was conducted to estimate the optimal sound (cough) detection 
range for each microphone. The assumptions used for this analysis were: 

•	 Each microphone detects coughs inside a circle of radius R 

•	 Radius R is equal for all microphones 

•	 The circle, defined by R, around each microphone represents a ‘hard’ boundary, i.e. 
coughs inside of the circle are reliably detected and coughs outside of the circle are not 
reliably detected 

•	 Pigs were (relatively) uniformly distributed inside the circle covered by each microphone

Figure 2. The expected correlation of detected coughs from adjacent microphones with radius R and 
overlapping audio detection zones 

The correlation of detected coughs for each pairing of two different microphones was 
calculated based on the overlapping (intersecting) area of the circles with radius R around 
each microphone. 

The distance between each pair of microphones was estimated from the barn layout. The 
cross-correlation was measured for each pair of microphones with overlapping circles, and 
the computed correlations were plotted as a function of distance between microphones 
in each pair. Given that the calculated cross-correlations yield finite values (even though 
cough events detected by two different microphones may not all be correlated), a 
correlation baseline was determined. Following this, the measured correlation was fit to 
the correlation predicted by the hard-bounded model. From the plots representing the fit 
of the measured correlations to the predicted model, estimated of microphone coverage 
zone (circles) were made for the 2,400 and 1,200 head barns. From these results, the 
optimal number and placement configuration of microphones (zones) were estimated for 
the 2,400 and 1,200 head barn types.

Results and discussion 

Where the device microphone was the center of a circle, the estimated optimal diameter 
for best detection of cough was determined to be approximately 18-20 meters. For optimal 
sound coverage in the 1,200 head buildings, the optimal number of devices was determined 
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to be three to four, and for the 2,400 head building the optimal number of devices was 
determined to be six to eight (depending on the length of the building). 

Each device represents an 18-20 meter diameter sound detection ‘zone’. Within the 
footprint of an airspace, the detection and directionality of cough is then a function of 
the square meters covered by the ‘zones’ out of the total possible square meters in that 
contiguous airspace. As such, the detection, directionally and movement (ebb and flow) of 
RDI episodes through the airspace are made possible, enabling better characterisation and 
understanding of respiratory disease behaviour. 

Figure 3.

The sensitivity for the detection of and judging the directionality of cough events is then a 
function of the square meters covered by the ‘zones’ out of the total possible square meters 
of animal space in a barn. This dynamic is highly analogous to the impact of sample size 
and sample selection where sampling pens of animals within airspaces (rooms) of barns 
and sites – i.e. the hard-bounded ‘zone’ sampled when using a single rope to collect oral 
fluids constitutes one pen (sometimes two pens where a single rope is split and hung 
in both of two pens). Thus, fewer microphones (zones) would be expected to result in 
decreased cough detection sensitivity and reduce the ability to determine directionality 
of cough events.

Conclusions 

Where the device microphone was the center of a circle, the estimated optimal diameter 
for best detection of cough was determined to be approximately 18-20 meters. For optimal 
sound coverage in the 1,200 head buildings, the optimal number of devices was determined 
to be four and for the 2,400 head building the optimal number of devices was determined 
to be eight. The detection and directionality of cough is then a function of the square 
meters covered by the ‘zones’ out of the total possible square meters in a barn. 
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Abstract 

The objective of this project was to design, develop and evaluate an integrated measurement 
system to capture movement records to enable the more objective assessment of movement-
related risks of disease introduction and transmission. A large multi-farm system and 
production network was enrolled in the project. At each participating site zones were 
outlined, risk levels were assigned, and location beacons were installed. Significant assets 
were tagged with asset beacons. All system personnel received beacon sensors. Cellular 
routers with attached gateways were installed. Sensor-captured data was transmitted to 
a cloud-based platform. This integrated system holds promise as a valuable means for 
the simultaneous recording of various forms of relevant movements, enabling a much 
improved understanding of disease introduction and circulation risks in near real-time. 

Keywords: movements, risk, beacons, sensors, locations, assets 

Introduction 

The pig and pork production industry is highly networked and mobile – with various 
types of movements occurring numerous times per day within farms, between farms, 
across production systems and throughout production networks. Production systems 
experience movements of pigs, semen, feed, supplies, assets and personnel – within 
farm sites, between farm sites, and among non-production sites (e.g. feed mills, truck 
washes, offices, warehouses). All movements inherently carry with them varying levels of 
disease introduction and transmission risk by animals, people and/or fomites within and 
among farm sites, with often serious consequences on animal productivity and business 
performance. 

The objective of this project was to design, develop and evaluate an integrated measurement 
system to capture movement records of personnel and assets within and among sites to 
enable the more objective assessment of movement-related risks of disease introduction 
and transmission. 

Materials and methods 

Production System Composition 

A large multi-farm system and production network in the United States was enrolled in 
the project. A schematic of the production system live operations sites and pig flow is 
shown in Figure 1. The system is composed of six large sow farms and sells weaned pigs 
to grower customers, delivering those weaned pigs to 56 different grower sites. Sow Farm 
A is a closed-herd multiplier and produces great-grandparent (GGP) and grandparent (GP) 
replacement animals for itself, as well as parent (P) replacement animals for the other five 
commercial sow farms. All semen is sourced from an external boar stud. 
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Figure 1. Schematic of production system live operations pig flow

The system has an owned feed mill, and grain is procured from a system-owned crop-
production business and corresponding land. Other feed ingredients are purchased from 
various external suppliers. 

The commercial operations of the production system are composed of the following: 

•	 Six sow farm sites (one nucleus/multiplier site, five commercial sites) 

•	 One sow farm scale 

•	 One External boar stud (three semen delivery vehicles, two semen delivery drivers) 

•	 Two gilt development unit (GDU) sites, one GDU scale 

•	 One main office and supply storage 

•	 One feed mill site (one ingredient delivery bay, one feed loading bay) 

•	 One truck wash site (one internal wash bay, one external (over-the-road) wash bay, one 
dryer bay, one truck shop, one shavings storage) 

•	 One maintenance building, one equipment building 

•	 One rendering dead pickup site 

•	 One rendering plant site (two rendering trucks, two rendering drivers) 

•	 Twelve dumpsters, three garbage trucks, eight dead pickup vehicles + trailers 

•	 Fifty-six grower wean-to-finish (WF) sites 

•	 Three trailer washout sites 

•	 One cull animal marketing site 

•	 One-hundred and four full and part-time employees 

•	 One veterinarian + vehicle 

•	 Fourteen semi trucks, nine internal trailers, seven external (over-the-road) trailers 

•	 Three feed trailers, two grain trailers, four maintenance vehicles, four tractors, 10 pit 
manure pumps 



498      Precision Livestock Farming ’19

pTrack System Architecture 

The pTrack system is made up of the following system components (Figure 2): 

•	 Bluetooth Low Energy (BLE) Beacons – battery-powered devices that transmit BLE 
signals 

 » Location beacons – placed in physical locations 

 » Asset beacons – attached to physical assets 

•	 Personnel sensors – battery-powered devices carried by personnel, detect location and 
asset beacon BLE signals and transmit detection event data to Gateway 

•	 pTrack App – installed on smart phones of personnel, detect location and asset beacon 
BLE signals and transmit detection event data to Gateway 

•	 Gateways – detect sensors, receive data from sensors, attach via Ethernet cable to 
cellular routers 

•	 Cellular router – attach to Gateways, transmit data to pTrack Cloud 

•	 pTrack Cloud – receives data from cellular router, contains pTrack web dashboard 
and control panel (accessible via internet browser with user log-in credentials on PC, 
laptop, smart phone) 

Figure 2. Schematic of pTrack system architecture

pTrack Installation Process 

At each animal production site, zones were defined and location beacons were assigned to 
and placed within each defined zone. For live animal housing space, each zone typically 
represents an entire barn or an airspace for breeding, gestation and farrowing. For other 
areas of the farm, defined zones represented specific rooms and work areas (e.g. medication 
room, tool room, pressure washer room, sow wash area, loadout chute). 

Location beacons were installed within each zone. Locations beacons were set to transmit 
a signal to a radius of 20 meters. The number of location beacons placed in each zone 
varied, depending on the length × width dimensions of the zone. 

Significant assets (e.g. trucks, trailers, feed carts, robots, power washers, semen coolers) 
were tagged with asset beacons. Asset beacons were set to transmit a signal to a radius of 
five meters. 

Sensor charging stations were installed in the office of each site. All system personnel 
received beacon sensors to wear while working each day. Cellular routers with attached 
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gateways were installed in key sites locations. Signage displaying relevant messages and 
reminders were mounted in visible high-traffic locations within each site. 

When a sensor comes within range of a gateway-router tandem, sensor-captured data 
is automatically transmitted to a cloud-based platform where data can be viewed and 
analytics done using available visualisation components, dashboards and reports. 

A risk level (0 - 10) was assigned to each zone-to-zone movement pair (Figure 3). The 
assigned risk level was selected based on the estimated risk of movements between two 
different zones related to their respective zone characteristics. 

Figure 3. Input matrix for assigning origin-to-destination zone personnel and asset movement risk 
levels (Note: axis zone name labels are hidden to protect anonymity) 

Examples of lower and higher risk movements are as follows: 

•	 A movement from a gestation zone to a loadout chute zone was assigned a relatively 
lower risk

•	 A movement from an isolation room to a gestation barn was assigned a relatively 
higher risk 

When personnel carrying sensors come within range of a location beacon in a defined zone 
and remain within that zone for a specified period of time, the sensor detects the location 
beacon signals assigned to that zone and records the ID, date and time as a detection 
event for that zone. The time required for a sensor to record a detection event is a variable 
specified by the administrator, and depends on where the zone and corresponding location 
beacons are located. For example, zones with location beacons placed in driveway entries 
were set with a very short time period to record drive-by movement events; whereas zones 
with location beacons placed in farrowing or gestation barns were set with a relatively 
longer time period. 

When personnel carrying sensors come within range of an asset beacon, the sensor 
detects the asset beacon signal and records the ID, date and time as a detection event. 
When personnel carrying sensors and beacon tagged assets enter within range of location 
beacons in a defined zone, the sensor records the asset-within-zone event. 
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Results and discussion 

System installation began in mid-2018 and continued through 2018. Further site 
installations will continue through mid-2019 for more distant sites distributed throughout 
the production system network. As this is intended to be a long-term multi-year pilot 
project, personnel and asset movements will continue to be recorded and evaluated on 
an ongoing basis. Also, updates and adjustments to hardware, software, risk levels and 
protocols will continue to be made as necessary based on user feedback and project 
observation. 

Figure 4 shows an example of two forms of personnel and asset movement visualization – 
movement arrows and a heat-map. Movement arrows indicate source (Sow Farm A office 
zone) to destination (farrowing and gestation zones) movements with the number of 
movements in the period displayed at the destination zone (tip of the arrow). The colour of 
arrow corresponds to the assigned risk level for the respective zone-to-zone movements. 
The colour of a destination zone on the heat map format corresponds to the number 
of movements in period being displayed, with “hotter” colours (e.g. red) indicating more 
movements than “cooler” colors (e.g. green). 

Figure 4. Examples of personnel and asset movements over a 31 day period in Sow Farm A displayed 
on satellite map. Left image: arrows from source to destination with number of movements (colour of 
arrow corresponds to risk level); Right image: heat map of destination movement intensity (colour of 
zone corresponds to number of movements in period being displayed) 

Figure 5 is an example of a time-series chart of daily zone-to-zone personnel and asset 
movements. Figure 6 is an example of day-of-week and hour-of-day graphs. Within each 
day movement risk levels are displayed as a stacked bar for both Figures 5 and 6. With this 
being a preliminary evaluation of the first implementation of its kind with this technology 
platform, expected levels, ranges and distributions of movement risk values cannot yet be 
determined. 

Figure 7 is an example of an origin zone-to-destination zone movement scatterplot. The 
colour of the bubbles corresponds to the assigned zone-to-zone risk levels. The size of 
the bubbles corresponds to the number of movements for each respective zone-to-zone 
pairing. 

These visuals can assist users with identifying dates, times and locations of unexpected 
high-risk movements of assets and/or personnel. This knowledge can help production 
management staff to work with personnel to mitigate and manage disease transmission 
and circulation risks within and among sites for entire production networks. 
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As this production system network pilot project continues, hardware performance, 
software usefulness and personnel compliance will be assessed. Where improvements are 
needed, adjustments and modifications will be made. 

Figure 5. Example of a time-series chart stacked by risk level of daily personnel and asset movements 
over a 31 day period in Sow Farm A 

0k

hour

Zone Changes with the Risk Count per Hour

Zone Changes with the Risk Count per Week

Monday

0 2 4 6 8 10 12 14 16 18 20 22 24

Tuesday Wednesday Thursday Friday Saturday Sunday
Risk 0 Risk 2 Risk 4 Risk 6 Risk 8 Risk 10

Risk 0 Risk 2 Risk 4 Risk 6 Risk 8 Risk 10

Figure 6. Example of a day-of-week and hour-of-day movements over a 31 day period in Sow Farm A 
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Figure 7. Scatter plot of Origin location (Y-axis) to Destination location (X-axis) movements over a 
31 day period in Sow Farm A (Note: X and Y axis zone name labels are hidden to protect anonymity) 

Conclusions 

This is a preliminary evaluation of the first system-scale implementation of the pTrack 
technology in pig production. The pTrack integrated movement system holds promise 
as a valuable means for the simultaneous recording of various forms of relevant 
personnel and asset movements, enabling a much improved understanding of disease 
introduction and circulation risks within and among sites across production networks 
in near real-time. Further enhancements to the existing platform technology, as well 
as integration of additional technologies into the platform are planned. As this and any 
additional implementations progress, opportunities are expected to arise for assessing the 
platforms investigative contribution towards understanding the source(s) of disease agent 
introduction and continued circulation within and between farms. 
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Abstract

Low-cost depth-cameras have been used in many PLF applications.    The cameras use 
one or a combination of three technologies: structured light, time of flight (TOF), and 
stereoscopy.    The objectives were to evaluate different technologies for depth sensing 
including measuring accuracy and repeatability of distance data and measurements 
at different positions within the image, and cameras usefulness in indoor and outdoor 
settings.  Then, each camera was tested in a swine facility.  Five different cameras were 
used: (1) Microsoft Kinect v.1, (2) Microsoft Kinect v.2, (3) Intel® RealSense™ Depth 
Camera D435, (4) ZED Stereo Camera (StereoLabs), and (5) CamBoard Pico Flexx (PMD 
Technologies).  Results indicate that there were significant differences for all cameras (P 
< 0.05), except for TOF cameras (Kinect v.2 and Flexx).  All cameras showed an increase 
in the standard deviation as the distance between camera and object increased; however, 
the Intel camera had a larger increase.    TOF cameras had the smallest error between 
different sizes of objects.    All cameras showed some distortion at the edges of the 
images.  TOF cameras had non-readable zones on the corners of the images. All cameras 
except ZED captured a recognisable image of a pig within the swine facility.  In conclusion, 
understanding the errors associated with each type of technology is needed.  It appears 
from these results that the time-of-flight technology is the best to be used for indoor PLF 
applications.

Keywords: Image technology, depth sensors, time of flight, stereoscopic, structured light

Introduction

Precision livestock farming application originally used standard digital image processing 
and analysing, but problems with this approach, such as lighting, colour distinction, and 
excess of equipment, led to the use of depth cameras. Low-cost cameras have been used in 
a number of precision livestock farming publications (Condotta et al., 2018; Guo et al., 2017; 
Kongsro, 2014; Lao et al., 2016; Lee et al., 2016; Stavrakakis et al., 2015; Wang et al., 2018). 

There are several technologies used for depth acquisition: stereo vision, structured light, 
time of flight and combination of these technologies. Stereo vision uses two digital parallel 
viewcameras and calculates depth by estimating disparities between matching keypoints 
in the left and right images. Structured light technology uses a projected light pattern 
and a camera system to detect distances. Time of flight depth sensors emit a very short 
infrared light pulse and each pixel of the camera sensor measures the return time. Each of 
these technologies has advantages and disadvantages associated with them.

The most common cameras cited in publications are Kinect v.1 (structured light technology) 
and Kinect v.2 (time of flight technology). However, Kinect v.1 was discontinued in the spring 
of 2015 and Kinect for V2 was discontinued in fall of 2017. With these discontinuations, 
researchers and product developers were left wondering which cameras to use. The 
objective of this paper was to test different types of depth cameras to determine the best 
technology to use in housed livestock PLF applications.
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Material and methods

Five different types of cameras were used: (1) Microsoft Kinect v.1, (2) Microsoft Kinect 
v.2, (3) Intel® RealSense™ Depth Camera D435, (4) ZED Stereo Camera (StereoLabs), and 
(5) CamBoard Pico Flexx (PMD Technologies) (Figure 1). These cameras represent different 
technologies currently being used in low-cost depth sensors: Structured light (SL), Time 
of Flight (ToF), Stereo Vision, and SV combined with SL. Two ToF cameras are being tested 
because Microsoft Kinect v.2 has been discontinued and, at the same time, is one of the 
most used depth cameras in PLF research.

Figure 1. Components of commercial depth cameras being used in this study (out of scale). (a) 
Microsoft Kinect v.1, (b) Microsoft Kinect v.2, (c) Intel® RealSense™ Depth Camera D435, (d) ZED 
Stereo camera (StereoLabs) and (e) CamBoard Pico Flexx (PMD Technologies)

Two types of programs were developed: (1) image acquisition programs and (2) image processing 
programs. Image acquisition programs were written for each of the cameras; some required a 
specific programming environment. The acquisition program was deployed on a Windows-based 
PC or a specific microcomputer board. For Flexx and the Kinect cameras v.1 and v.2, a numerical 
computing software (MATLAB, R2018a) on a Windows PC was used. For Intel camera, a C++ 
program was developed on a UP Core microcomputer board with an Ubuntu kernel using Intel® 
RealSense™ SDK, and, for ZED camera, a C++ program was developed on an NVIDIA Jetson TX2 
microcomputer board, also with an Ubuntu kernel, using ZED SDK. All the image processing 
programs were developed on a Windows PC using MATLAB, R2018a. 

Several tests were conducted using all five cameras including distance accuracy and 
repeatability, dimension accuracy and repeatability, indoor use, and demonstration using 
grow-finish pigs in an indoor facility with no outside light.

Distance accuracy and repeatability was tested using three depth cameras of each type at 
a total of five different distances. Repeatability between cameras was tested using three 
depth cameras of each type. Five depth images and five RGB images (except for Pico Flexx) 
of the wall were collected with each camera at five distances (from 1.0–3.0 meters, every 
0.5 m). Depth images were processed with an algorithm developed to extract a fixed area 
of 11 × 11 pixels at the center of the wall. These points were recorded and, then, the 
average and the standard deviation were calculated. Comparison between cameras was 
made by using the Efroymson’s algorithm (“stepwise” regression) (Efroymson, 1960).
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Dimension accuracy and repeatability was also tested using three cameras of each type. 
Three sizes of poster board squares (10, 20, 30 cm2) were recorded at five distances (1.0–3.0 
m; every 0.5 m) and four different positions on the image (center, right center edge, bottom 
center edge, and right bottom corner; Figure 2). A total of five depth and RGB images 
(except Flexx) from each of the three replicates of the five types of cameras.

Figure 2. Positions used for images acquisition: (a) center of image, (b) edge on the horizontal axis of 
the image, (c) edge on the vertical axis of the image and (d) corner of the image

The data were analysed to obtain three different parameters: length, area, and volume 
of the squares. The length of the square (in pixels) was obtained both for the RGB image 
(except for Flexx) and the depth image. For the RGB images, a manual measure process 
was performed, using the Image Viewer application from MATLAB R2018a. 

The length ratio, in pixel cm-1, was calculated dividing the length in pixels, obtained for 
both RGB (when available) and depth images, by the actual length of the foam board 
square (either 10, 20 or 30 cm). Furthermore, the area ratio, in px cm-2, was also calculated 
by dividing the area obtained on the depth image (in pixels) by the actual area of the 
squares (either 100, 400 or 900 cm²).

These ratios were analysed using the General Linear Procedure (proc GLM) of SAS software, 
testing the effects of the use of different positions (center, edge on the horizontal axis of 
the image, edge on the vertical axis of the image and corner) and different sizes (10  × 10 
cm, 20 × 20 cm and 30 × 30 cm) of foam board squares used. Then, regression models were 
generated for length ratio (px cm-1) versus distance from the camera to object, and for the 
area ratio (px cm-2) versus distance.

Unit transformation equations were developed to eliminate the need for the presence of 
an object with a predetermined size to acquire dimensions of an image, as has been used 
by several authors (Philips & Dawson, 1936; Zaragoza, 2009). To obtain these equations, 
regression models were developed from known object sizes and the known distances.

The livestock experiment was conducted in a grow-finish building at the USDA-ARS 
Meat Animal Research Center (USMARC) in Clay Center, Nebraska (-98.13° W, 42.52° N). 
All animal procedures were approved by the USMARC IACUC and followed recognised 
guidelines for animal use and care (FASS, 2010). Top view images were captured on a 
sample group grow-finish pigs for demonstration purposes.

Results and discussion

Distance accuracy and repeatability tests are summarised in Table 1. The average values 
of distance obtained for the region of the wall in the picture, as well as their respective 
standard deviations, are shown in Table 1. The result of the Efroymson’s algorithm showed 
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that the behaviour of different cameras of the same type is the same for cameras that use 
the ToF principle, Flexx (P = 0.18710) and Microsoft Kinect v.2 (P = 0.70697), but different for 
the other types of cameras, Intel (P = 0.02538), Microsoft Kinect v.1 (P = 0.00002) and ZED 
Stereo Camera (P = 0.00007). From Table 1 it can be noted that there is an increase in the 
standard deviation with increasing distance from sensor to wall, corroborating with the 
data obtained by Khoshelham & Elberink (2012).

Table 1. Average distances (m) and standard deviation (m) obtained by five depth cameras, for the 
five analysed distances with their respective standard deviations. One hundred and twenty-one 
points were used for each image to gather each value, and three cameras of each type were used

Distances from sensor to wall (m)

Camera 1.00 1.50 2.00 2.50 3.00 P-value

CamBoard Pico Flexx 
0.99 ± 
0.001

1.48 ± 
0.002

1.99 ± 
0.003

2.50 ± 
0.004

3.00 ± 
0.006

0.18710

Intel® RealSense™ 
D435

0.99 ± 
0.002

1.47 ± 
0.012

1.97 ± 
0.022

2.46 ± 
0.035

2.97 ± 
0.036

0.02538

Microsoft Kinect v.1
0.99 ± 
0.002

1.49 ± 
0.003

1.99 ± 
0.006

2.49 ± 
0.008

3.00 ± 
0.013

0.00002

Microsoft Kinect v.2
1.00 ± 
0.001

1.50 ± 
0.001

2.01 ± 
0.001

2.51 ± 
0.002

3.01 ± 
0.003

0.70697

ZED Stereo Camera 
0.99 ± 
0.001

1.48 ± 
0.001

1.99 ± 
0.002

2.48 ± 
0.004

2.99 ± 
0.003

0.00007

Unit transformation equations were developed from regression models between the area 
(px cm-2) and length (px cm-1) ratios and the distance (m) from the camera to the foam 
board square. Table 2 contains the coefficients of these equations for depth images.

To calculate the volume of objects from the depth map, there is a need to convert px to 
cm. As the distance data provided by the sensors are in cm and the area of the object is 
given in the number of pixels, the volume is retrieved in an unwanted unit (px cm). Another 
correction is needed to ensure the volume is correct regardless of distance from the camera.

Table 2. Coefficients a and b for unit transformation equations from px to cm (length) and from px 
to cm² (area) on depth images provided by five depth cameras

Length coefficients
R²

Area coefficients
R²

Camera a1 b a2 b

CamBoard Pico Flexx 0.475 1.014 0.993 0.230 2.023 0.998

Intel® RealSense™ D435 0.147 0.896 0.912 0.023 2.004 0.853

Microsoft Kinect v.1 0.165 0.973 0.980 0.030 1.940 0.988

Microsoft Kinect v.2 0.272 1.000 0.996 0.075 2.058 0.977

ZED Stereo Camera 0.063 0.986 0.972 0.005 1.986 0.973

1 lengthcm = lengthpx × a × Distance from the camerab;
2 areacm

2 = areapx × a × Distance from the camerab 
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Three sizes of foam board squares were used to test the effects of object size on the length 
(px cm-1) and area (px cm-2) ratios. The smallest object (10  × 10 cm) had a significant 
different area ratio than the other sizes for all cameras except Flexx. This is due to edge 
deformation effect being more pronounced on the small objects, as indicated by Gottfried 
et al. (2011). Kinect v.1 showed differences between all sizes of squares used for both 
length ratio and area ratio, and ZED showed differences between all sizes of square used 
when measuring length ratio. This indicates these cameras had a larger edge effect, thus 
impacting the size of both the 10 ×10 cm and the 20 × 20 cm boards (Table 3).

Impacts on length and area ratios of objects’ position within the image varied for each 
type of camera used. For the ToF cameras (Flexx and Kinect v.2), all positions have 
different length ratios. The area ratio for Flexx camera is the same between positions 1 
and 3 (center and edge on vertical axis) and between positions 2 and 4 (edge on horizontal 
axis and corner). The area ratio for Kinect v.2 is the same between positions 1 and 2, and 
between 1 and 4; position 3 (edge on vertical axis) differs from the others.

For acquiring length ratio with Intel, position 1 (center) differs from the others, position 3 
(edge on vertical axis) has the same effect as positions 2 (edge on horizontal axis) and 4 
(corner). The effect of positions on the area ratio for this camera was the same presented 
by Kinect v.1 for both length and area ratios, positions 1 and 2 have the same behaviour 
and positions 3 and 4 have the same behaviour (Table 4).

Table 3. Averages and standard errors obtained for length ratio (px cm-1) and area ratio (px cm-2), 
for the three sizes of square used (10 × 10 cm, 20 × 20 cm and 30 × 30 cm) and five different depth 
cameras

Camera Square Size 
(cm)

Length Ratio 
(px cm-1)

Area Ratio 
(px cm-2)

CamBoard Pico Flexx 

10 x 10 1.20 ± 0.01a 1.54 ± 0.02

20 x 20 1.17 ± 0.01b 1.54 ± 0.02

30 x 30 1.17 ± 0.01b 1.55 ± 0.02

Intel® RealSense™ 
D435

10 x 10 4.84 ± 0.06a 21.58 ± 0.39a

20 x 20 4.24 ± 0.06b 17.65 ± 0.39b

30 x 30 4.11 ± 0.06b 16.85 ± 0.39b

Microsoft Kinect v.1*

10 x 10 3.92 ± 0.17a 15.08 ± 0.14a

20 x 20 3.61 ± 0.17b 13.84 ± 0.14b

30 x 30 3.50 ± 0.17c 13.16 ± 0.14c

Microsoft Kinect v.2*

10 x 10 2.33 ± 0.15a 5.56 ± 0.05a

20 x 20 2.19 ± 0.15b 5.25 ± 0.05b

30 x 30 2.15 ± 0.15b 5.11 ± 0.05b

ZED Stereo Camera 

10 x 10 9.87 ± 0.07a 90.50 ± 1.77a

20 x 20 9.34 ± 0.07b 85.43 ± 1.77b

30 x 30 9.04 ± 0.07c 83.18 ± 1.77b

a, b, c Rows for each column, with different superscripts are significantly different (p<0.05)
* Microsoft Kinect v.1 showed significant interaction between position and size of the foam board square for length 
ratio. Microsoft Kinect v.2 showed significant interaction between position and size of the foam board square for 
both area ratio and length ratio. ZED Stereo Camera showed significant interaction between camera and size of 
the foam board square for length ratio

Dutta (2012), showed that the standard deviation of the distance data increases on the 
corners of the image. Thus, the ideal for data comparison of length and area acquired with 
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depth sensors is positioning it at a fixed region of the image, preferably in the centre. If 
offsets need to be made, it would be ideal to offset the objects on the horizontal direction 
of the image for Intel and Kinect v.1, and on the vertical direction of the image for Flexx 
and Kinect v.2; in which the differences are smaller, reducing distortion of values and 
enabling data comparison. ZED did not present any effect of positions on the length and 
area ratios acquisition and, thus, the objects can be positioned in any place on the image.

Kinect v.1 camera showed significant interaction between position and size of the foam 
board square for length ratio. Kinect v.2 showed significant interaction between position 
and size of the foam board square for both area ratio and length ratio. ZED showed 
significant interaction between camera and size of the foam board square for length ratio.

Table 4. Averages and standard errors obtained for length ratio (px cm-1) and area ratio (px cm-2), for 
the four positions on image (1 - center, 2 - edge on the horizontal axis, 3 - edge on the vertical axis, 
4 - corner) and five depth cameras

Camera Position Length Ratio (px cm-1) Area Ratio (px cm-2)

CamBoard Pico Flexx 

1 1.21 ± 0.01a 1.69 ± 0.03a

2 1.08 ± 0.01b 1.41 ± 0.03b

3 1.28 ± 0.01c 1.68 ± 0.03a

4 1.14 ± 0.01d 1.40 ± 0.03b

Intel® RealSense™ 
D435

1 4.16 ± 0.07a 16.98 ± 0.45a

2 4.38 ± 0.07b 17.85 ± 0.45a

3 4.46 ± 0.07bc 19.60 ± 0.45b

4 4.58 ± 0.07c 20.34 ± 0.45b

Microsoft Kinect v.1*

1 3.56 ± 0.02a 13.44 ± 0.17a

2 3.61 ± 0.02a 13.82 ± 0.17a

3 3.78 ± 0.02b 14.48 ± 0.17b

4 3.76 ± 0.02b 14.37 ± 0.17b

Microsoft Kinect v.2*

1 2.14 ± 0.02a 5.13 ± 0.06ab

2 2.09 ± 0.02b 5.03 ± 0.06a

3 2.42 ± 0.02c 5.86 ± 0.06c

4 2.27 ± 0.02d 5.21 ± 0.06b

ZED Stereo Camera 

1 9.35 ± 3.89 86.70 ± 75.07

2 9.28 ± 3.77 82.41 ± 67.40

3 9.46 ± 3.64 86.81 ± 67.09

4 9.59 ± 3.93 89.56 ± 73.07

a, b, c, d Rows for each column of each camera section, with different superscripts are significantly different (p<0.05); 
*Microsoft Kinect v.1 showed significant interaction between position and size of the foam board square for length 
ratio. Microsoft Kinect v.2 showed significant interaction between position and size of the foam board square for 
both area ratio and length ratio

Figure 3 shows examples of area and length of a 30 × 30 cm foam board square acquired 
with the five different cameras used in this study and with units corrected. Kinect v.1 was 
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most consistently accurate across the different distances in lengths and areas. The TOF 
cameras overestimated lengths but the two TOF cameras were very similar. TOF cameras 
also overestimated areas, but the two cameras did not consistently match. Both Intel and 
ZED underestimated length and area and were not consistent on the underestimation 
when the distance from the camera changed. 
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Figure 3. Predicted area and length of foam squares recorded with five depth cameras (CamBoard Pico 
Flexx, Intel® RealSense™ D435, Microsoft Kinect v.1, Microsoft Kinect v.2, and ZED Stereo Camera)

Top view images were taken on a group of pigs as they were being weighed. Figure 4 shows 
the sample of the images captured. As the images are evaluated, all the pigs are easily 
visible in all the images except the image captured from ZED. The main body is easily seen, 
but the head and the tail are difficult to discern. The image taken with Kinect v.1 has rough 
edges on the pig. The slightly rough edges are also observed on the image taken with the 
Real Sense camera. Both TOF cameras had a clear image, of the two, Kinect v.2 have the 
smoothest outline of the pigs. Kinect v.2 with the higher resolution has the nicest image. 

 

Figure 4. Depth images acquired from the pigs for all five cameras used: (a) Microsoft Kinect v.1, (b) 
Microsoft Kinect v.2, (c) CamBoard Pico Flexx (PMD Technologies), (d) ZED Stereo camera (StereoLabs) 
and (e) Intel® RealSense™ Depth Camera D435
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Conclusions

Low-cost depth-cameras use one or a combination of three technologies: structured light, 
time of flight (TOF), and stereoscopy.  Five different cameras were tested for their suitability 
to be used in PLF applications. Significant camera to camera differences were found for 
all the cameras (P < 0.05), except for TOF cameras (Kinect v.2 and Flexx).  Increases in 
standard deviation in measurements were found with all cameras as the distance between 
camera and object increased; however, Intel camera had a much larger increase.   TOF 
cameras had the smallest error between different sizes of objects.  All cameras showed 
some distortion at the edges of the images; however, the TOF cameras had non-readable 
zones on the corners of the images. All cameras except ZED captured a recognisable image 
of a pig within the swine facility.  In conclusion, understanding the errors associated with 
each type of technology is needed.  It appears from these results that the TOF technology 
is the best suited for indoor PLF applications.
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Abstract

Based on changes in their drinking patterns, predictions of tail biting and diarrhea amongst 
growing pigs were generated and evaluated. A spatial, multivariate dynamic linear model 
was used to model simultaneously monitored drinking patterns across multiple pens in a 
section of weaners, and across multiple pens in a section of finishers. 

Both volume (litres/hour) and frequency (bouts/hour) were monitored and modelled. The 
predictive performances of the two sets of data were evaluated separately for both weaners 
and finishers using a two-sided tabular CUSUM. Time windows, including 24 hours and 48 
hours before the day of the event, were applied and the predictive performances were 
reported as Area Under the ROC Curve (AUC). 

Generally, the predictive performances were high for both volume and frequency 
(Tail biting finishers: AUC = 0.79 – 0.88, Tail biting weaners: AUC = 0.89 – 0.92).  
For finishers (30-110 kg), frequency (bouts/hour) was a better predictor of outbreaks of 
both tail biting and diarrhea as well as either of the events given either time window.   
For weaners (7- 30 kg), however, the performances for predicting tail biting were equally 
high for volume and frequency given either length of the time window. For the prediction 
of diarrhea or either of the events, the performances were also close to equal between 
volume (litres/hour) and frequency (bouts/hour) but they differed between the two lengths 
of time windows.

In conclusion, frequency tends to be a better predictor of events amongst finishers, 
whereas the differences in predictive performances between volume and frequency were 
less distinct amongst weaners. 

Keywords: dynamic linear model, multivariate, drinking volume, drinking frequency, tail 
biting, prediction

Introduction

It is well described in the scientific literature how changes in pigs’ drinking patterns can be 
modelled using dynamic linear models (DLM’s) in order to predict outbreaks of unwanted 
events like diarrhea, pen fouling and tail biting (Madsen et al., 2005; Jensen et al., 2017; 
Dominiak et al., 2018b). 

Traditionally it is the volume of water (litres/hour) passing a water meter which is modelled 
and interpreted as an expression of pigs’ drinking activity. The monitored volume can, 
however, consist of a combination of fewer, longer periods of pigs drinking, as well as 
multiple, frequent activations of the drinking nipple (bouts) without an actual drinking 
behavior. An increase in the activation frequency (bouts/hour) of the drinking nipple can 
reflect an increased activity level, or increased explorative behavior, which is hypothesized 
to proceed outbreaks of tail biting (Larsen et al., 2016) as well as outbreaks of diseases, 
like diarrhea, or unwanted behavioural changes, like pen fouling (Dominiak, 2017).  
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In the present study, both volume (litres/hour) and frequency of drinking nipple activations 
(bouts/hour) are monitored and modelled separately in a spatial multivariate dynamic linear 
model (DLM) with the intent to predict outbreaks of tail biting, diarrhea or either of the 
two events in specific pens in a section of weaners (7-30 kg) and in a section of finishers 
(30-110 kg). 

The objective of the paper is to evaluate the performance of drinking volume and of 
drinking frequency as predictors of outbreaks of unwanted events.

Methods and materials

Experimental data

The model, which is applied in this paper, was originally developed on water data (litres/
hour) from two different herds (a weaner herd and a finisher herd). It is able to model 
simultaneously monitored data from multiple pens in multiple sections of a herd of 
growing pigs (Dominiak et al., 2018a) in order to identify the specific area (pen or section) 
where an outbreak of an unwanted event is going to occur within the next 24 or 48 hours 
(Dominiak et al., 2018b).

In the present study, the model is applied to data from a third herd, which includes only 
one section of weaners and one section of finishers, thus aiming to predict an outbreak 
in a specific pen within the modelled section. The model is applied separately to two data 
sets from the weaner section (litres/hour and bouts/hour) and separately to two data sets 
from the finisher section (litres/hour and bouts/hour). 

In the weaner section, a total of eight pens are monitored, whereas a total of 16 pens are 
monitored in the finisher section. Both volume (litres/hour) and drinking frequency (bouts/
hour) are obtained at the same time using the same photo-electric flow sensors (RS V8189 
15 mm Dia. Pipe). Each sensor is placed on the water pipe supplying two neighbouring pens 
(one double pen) with water, thus monitoring four time series (four double pens) from the 
weaner section and eight time series (eight double pens) from the finisher section. The 
monitored pens are evenly distributed on both sides of a central aisle in both sections. 
One double pen of weaners contains a total of 80 pigs, whereas one double pen of finishers 
contains a total of 40 pigs. The data is monitored across six batches from September 2015 
to March 2017 (finishers) and to November 2017 (weaners). Data was obtained whilst a 
project on tail biting was conducted in the herd. Therefore, 50% of the pens in a section 
contains pigs with intact tails and 50% of the pens contains pigs with docked tails. In 
Batches 1, 3, and 5 the pigs with intact tails were in pens on the left side of the aisle and 
the pigs with docked tails on the right side. In Batches 2, 4, and 6 the pigs with intact tails 
were on the right side and the docked pigs on the left side of the aisle. 

Every morning, the caretakers in the herd registered events of diarrhea and tail bites 
according to a project protocol (Lyderik et al., 2016). These event registrations constitute 
the gold standard in the evaluation of the predictive performance.

General model

Each data set (litres/hour and bouts/hour for weaners, litres/hour and bouts/hour finishers) 
is modelled separately using the same dynamic linear model. Both types of variable (of 
litres or bouts) monitored over time is modelled simultaneously for all sensors in the 
relevant section using a multivariate dynamic linear model (DLM) as described by West & 
Harrison (1999). The observation vector, Yt = (Y1t,…,Ynt)', is the monitored variable per hour 
at time t for each of the n sensors. The relation between Yt and the underlying parameter 
vector θt at time t, as well as the evolution of the system over time, is described through an 
observation equation and a system equation (Equations (1) and (2), respectively):
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Yt = F'tθt+νt,      νt~N (0,Vt),   (1)

θt = G'tθt-1 +ωt,      ωt~N (0,Wt),   (2)

The aim of the DLM is to predict the next observation. That is to estimate the parameter 
vectors,θ1, …,θt, from the observations, Y1,…,Yt. Through every hourly observation of the 
variable, the model learns more of the general pattern, and it is constantly updating 
the amount of information adding the newest observation. Any difference between the 
predicted observation and the actual observation is contained in the two error terms, Vt 

and Wt. If the pigs follow their normal pattern and drink, or activate the drinking nipple 
as much as expected, the prediction of the next observation is close to perfect, and any 
prediction error will be small. If, on the other hand, something is causing the pigs to 
change their pattern, the prediction error will be larger. A systematic change in the normal 
pattern will generate a sequence of larger prediction errors, and this will lead to an alarm, 
which is generated by a two-sided tabular CUSUM as described by Montgomery (2013).

Modelling diurnal patterns

Both litres/hour and bouts/hour for weaners and finishers show a clear diurnal pattern, 
which can be described in a super-positioned DLM consisting of three harmonic waves 
and a linear growth trend as shown by Madsen et al. (2005) and Dominiak et al. (2018a). 
Each harmonic wave is expressed as a cyclic model in the DLM through the trigonometric 
Fourier form representation of seasonality (West & Harrison, 1999) as shown in Equation (3). 
The Fourier form describes a harmonic wave for any frequency, ω∈(0,π), with ω=π/24 
yielding a wave with a period of 24, ω=2π/24 yielding a wave with a period of 12, and 
ω=3π/24 yielding a wave with a period of 8.

Ft
h = (

1
) and Gt

h = (
cos (ω)   Sin (ω)

) (3)
0 -cos (ω)   Sin (ω)

The linear growth trend, which describes the underlying level and trend of pigs drinking 
more water as they grow, is expressed as a DLM as shown in Equation (4):

Ft
l = (

1
) and Gt

l = (
1         1

) (4)
0 0         1

Modelling spatial structure

The spatial structure enables the model to identify a specific pen within a section, where 
the pattern has changed systematically, and an alarm is then generated for that specific 
area, hereby directing the managerial focus thereto. In the present model, a spatial 
structure is incorporated by allowing for interactions between sensors (the modelled 
variables) through direct modelling of the interactions in the design and system matrices 
as well as by estimating full variance-covariance matrices.

All variances components are estimated by the Nelder-Mead algorithm in the statistical 
software R (R Core Team, 2017). The observation variances, Vt, are estimated directly, 
whereas a system-variances, Wt, for each of the four models are estimated through 
discount factors as described in Dominiak et al. (2018a). 

Evaluation

For both volume and frequency, weaners and finishers, the model is trained on learning 
data (four batches, 66%) and tested on test data (two batches, 33%) with no pigs delivering 
data to both data subsets. The generation of alarms from systematical changes in the 
drinking patterns is done using a two-sided tabular CUSUM, as described by Montgomery 
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(2013). The standardised cumulated sums (CUSUMs) of the positive prediction errors and 
of the negative prediction errors are plotted over time, and if either sum exceeds a defined 
threshold, an alarm is generated. 

An event is registered by the personnel in the morning, which is once per 24 hours. The 
alarms can, however, be generated at an hourly basis because the model updates with an 
observation every hour. Therefore, two time windows, lasting from 24 hours and 48 hours 
before an event until the end of the day where the event is registered, are defined according 
to Dominiak et al. (2018b). All alarms within a time window are considered as one true 
positive (TP) alarm. If no alarms are generated within a time window, it is considered false 
negative (FN), whereas single days with alarms but no events are false positive (FP) and 
single days without alarms but with events are false negative (FN) (see Figure 1).

Figure 1. Illustration of time windows as described by Dominiak et al. (2018b) with TP, TN, FP and FN 
alarms defined as described in the text

Based on the categorisation of the alarms, the model performances are measured by the 
conditional probabilities, sensitivity and specificity, and the areas under the ROC curve (AUC) 
are calculated.
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Results and discussion

Weaners

The predictive performances of both volume and frequency for the two defined time 
windows and each type of event amongst weaners are shown in Figure 2. 

Figure 2. The AUC for the prediction of outbreaks of tail bites (Tail), diarrhea (Dia), or either of the 
two events (Both) in a specific pen of weaners based on volume (litres/h – dark grey bars) or drinking 
frequency (bouts/h light grey bars). Results are shown for each of the two time windows starting 24 
hours and 48 hours before the day of the event

The results for weaners indicate that volume and frequency are equally good predictors 
of outbreaks of tail bites, diarrhea or either of the events. Looking at the shorter time 
window (24 hours), volume yields a slightly better performance than frequency for all 
event types, suggesting that the weaner pigs drink more water (or activate the drinking 
nipples for longer time) just prior to an event. It is also seen that the performances for 
predicting outbreaks of tail biting alone are higher than for the other types of events for 
both volume and frequency. These impressive results (AUC from 0.89–0.92) for prediction 
of tail bites may reflect a relatively high prevalence of tail biting events due to 50% of the 
pigs having intact tails. Despite this possible cause of very high performances, the results 
in general show very high predictive performances for both volume and frequency in the 
weaner data, and it can be concluded that the use of this spatial, multivariate DLM for the 
modelling pigs’ drinking patterns is successful for predicting unwanted events amongst 
weaner pigs when applied to both volume data (litres/hour) and frequency data (bouts/
hour).

Finishers

The predictive performances of both volume and frequency for the two defined time 
windows and each type of event amongst finishers are shown in Figure 3. 
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Figure 3. The AUC for the prediction of outbreaks of tail bites (Tail), diarrhea (Dia), or either of the 
two events (Both) in a specific pen of finishers based on volume (litres/h – dark grey bars) or drinking 
frequency (bouts/h light grey bars). Results are shown for each of the two time windows starting 24 
hours and 48 hours before the day of the event

The results for finishers show that frequency consistently is a better predictor of outbreaks 
of tail bites, diarrhea or either of the events than volume given either length of time 
windows. These results indicate that finisher pigs increase their activity level, expressed 
as their exploratory or manipulative behaviour towards the drinking nipple, but not the 
amount of water they drink, prior to an outbreak of tail biting or diarrhea. An increase 
in explorative behaviour preceding outbreaks of tail bites, has also been described by 
Statham (2008). In general, finisher pigs tend to be less active than weaner pigs (Dominiak, 
2017), and an increased activity may reflect a disturbance, or state of stress, in the pen 
which cause the pigs to be restless. 

Generally, the predictive performances of both volume and frequency are lower for the 
finisher pigs than for the weaner pigs. The highest performances are obtained for bouts and 
litres predicting tail biting within the 48 hours’ time window (AUC = 0.88 and 0.86), as well 
as for bouts predicting tail biting within the 24 hours’ time window (AUC = 0.86). Overall 
it can be concluded for the finisher data as well, that the use of this spatial, multivariate 
DLM for modelling pigs’ drinking patterns is successful for predicting unwanted events 
amongst finisher pigs when applied to both volume data (litres/hour) and frequency data 
(bouts/hour).

Conclusions

Drinking frequency (bouts/hour) show a tendency to perform better than drinking volume 
(litres/hour) for predicting outbreaks of unwanted events amongst finisher pigs, whereas 
no such difference was found for the prediction of outbreaks amongst weaner pigs.

The results of this study indicate that finisher pigs increase their activity level, expressed 
as an explorative or manipulative behaviour towards the drinking nipple, but not their 
drinking behaviour, prior to an outbreak of tail biting or diarrhea. This may reflect an 
increase in the stress level of the finisher pigs. Further studies should, however, be 
conducted in this area in order to determine which is the better predictor of the two 
variables with certainty.
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Abstract

Worldwide the pig industry continues to suffer substantial financial losses due to 
respiratory disease, and this is also the main reason for antimicrobial use in growing-
finishing pigs in Ireland. The Pig Respiratory Distress package (SOMO) performs continuous 
and automated measurements of cough sounds, issuing a Respiratory Distress Index (RDI; 
average number of coughs/pig-day). 

The objective of this study was to assess the relationship between SOMO measurements 
and the prevalence of lung lesions at slaughter.

SOMOs were placed in eight rooms, each with six pens (196 ± 4.6 pigs/room), on a 
commercial farm with a history of respiratory disease. A total of 1,573 pigs from four 
consecutive batches were monitored from 25 ± 5.3kg to slaughter, 114 ± 15.4kg, when 
their lungs were individually scored for pneumonia, scarring and pleurisy lesions. The 
relationship between lung lesions and weekly RDI was assessed using Spearman’s rank 
correlation with room as the experimental unit.

Results showed that the RDI during the last four weeks of the finisher stage was strongly 
correlated with the prevalence of pneumonia (rs = 0.72; rs = 0.82; rs = 0.89 and rs = 0.79, P < 
0.05) and scarring (rs = 0.72; rs = 0.82; rs = 0.89 and rs = 0.79, P < 0.05) lesions. Even though the 
SOMOs are calibrated to raise an alert when RDI is ≥10, RDIs obtained in our study suggest 
that levels of coughing lower than expected (RDI ≥ 2 vs RDI ≥ 10) were also indicative of 
on-farm respiratory disease. 

In conclusion, the SOMO boxes could play a role in identifying respiratory disease in 
finisher pigs. However, a better understanding of the baseline coughing frequency in 
healthy pigs is needed. 

Keywords: Coughing, lung lesions, PLF, porcine respiratory disease complex

Introduction

Worldwide, the pig industry continues to suffer substantial economic losses due to 
respiratory disease (Nathues et al., 2017). These losses are related to decreased growth 
and increased mortality, condemnations at slaughter, and increased costs for treatments, 
vaccination and labour (Zimmerman et al., 2012). Respiratory disease is also associated 
with welfare problems due to the associated pain and discomfort and reduced ability to 
compete for resources.

Furthermore, respiratory disease is the main reason for antimicrobial (AM) use in growing 
and finishing pigs in Ireland (Pereira do Vale, unpublished data). Although AM use in the 
treatment of disease is of vital importance to maintaining pig health and welfare, mis- and 
over use of AM is contributing to antimicrobial resistance (Lhermie et al., 2017). Prudent 
AM use in pig production can be achieved through improved housing and husbandry of 



Precision Livestock Farming ’19      519

pigs, stricter biosecurity practices and vaccination programmes combined with early and 
precise diagnosis (Postma et al., 2016, 2015).

Precision technologies are playing an increasingly important role in the early diagnosis of disease 
in intensive production systems (Norton & Berckmans, 2018). The Pig Respiratory Distress 
Package (SOMO) performs continuous, 24/7, automated measurement of porcine respiratory 
health through sound analysis (Hemeryck et al., 2015). It was developed to give farmers an 
objective measure of pig cough occurrence throughout the entire farm. By detecting respiratory 
problems at an early stage, improvements in animal health and welfare and a reduction of AM 
use are likely to be achieved (Vandermeulen et al., 2013). Meat inspection data can also play an 
important role in informing herd health and welfare plans (Harley et al., 2012, 2014). Precision 
technology when combined with information on lung pathologies from slaughterhouse checks 
(Van Staaveren et al., 2016; Costa, 2018) has the potential to provide a complete picture of a 
farm’s respiratory health status. However, it is not known how pathologies identified post-
mortem relate to coughing on farm. The objective of this study was to assess the relationship 
between SOMO measurements and the prevalence of lung lesions at slaughter.

Material and methods 

This study took place on a commercial farm with a wean-to-finish system from July to 
November 2018. The farm was selected due to its history of respiratory disease (Costa, 
2018). Pigs were housed in rooms divided in six fully (concrete) slatted pens, each holding 
c. 36 pigs. Water was provided ad libitum and pigs were fed three times per day, (Hydromix 
wet feeding system, Big Dutchman, IDS, Portlaoise, Co. Laois, Ireland). In the weaner and 
grower accommodation there was an automatic temperature control system in place with 
fans in the ceiling (Big Dutchman). The finisher facilities were naturally ventilated. The 
rooms were artificially illuminated from 08.00 to17.00 h. 

Over a six-week period, four batches of pigs (1,573 in total) of approximately 12 weeks of 
age and weighing 25 ± 5.3 kg were housed in eight rooms (mean number pigs per room 197 
± 4.6) on arrival at the farm. All pigs were ear-tagged with different numbers and colour 
tags per pig and batch on arrival at the farm following a 90 km journey from the breeding 
unit. Pigs were followed for 13 weeks, until reaching the targeted slaughter weight of 110 
kg (mean 114 ± 15.4 kg). Every batch was followed on transfer between the three different 
production stages (weaner, grower and finisher accommodation). Group composition was 
not changed (i.e. there was no re-mixing) between stages.

Pig Respiratory Distress Package

The SOMO (SoundTalks NV, Ambachtenlaan 1, 3001 Leuven, Belgium) performs continuous 
and automated measurements of cough sounds, issuing a Respiratory Distress Index (RDI; 
average number of coughs per pig per 24 hours). It also records temperature and relative 
humidity. SOMO boxes were installed, following manufacturer guidelines (i.e. microphone 
placed in the centre of each room at a height ≥ 2 m and covering a maximum radius of 8.5 
m). In this way there was 100% coverage of the weaner and grower accommodation and 
99.2% coverage of the finisher houses. Two temperature and one relative humidity sensors 
were also installed in each room. The SOMO boxes were moved with the pigs through the 
different production stages. All data were stored and could be accessed using the SOMO 
associated pig respiratory distress monitoring (RDM) software.

Slaughterhouse checks

Pigs were sent to the slaughterhouse in eight groups, corresponding to the eight rooms 
monitored with the SOMO boxes. The same veterinarian/the first author carried out all 
lung examinations. 
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For each pig, lung lobes were scored for pneumonia lesions using the method described 
by Madec & Derrien (1981). The scores were 0 (no pneumonia), 1 (1 – 25% of the lung lobe 
affected), 2 (26 – 50%), 3 (51 – 75%) and 4 (76 – 100%). The overall surface affected was also 
estimated and it accounted for lobe weights, as per Christensen et al. (1999). Lung scars, 
defined as healed pneumonia lesions, were recorded as absent (0) or present (1). 

Pleurisy was scored on the dorsocaudal (DC) lobes using a modified version of the 
Slaughterhouse Pleurisy Evaluation System (SPES) (Dottori et al., 2007). The scores were 0 
(no pleurisy), 2 (focal lesions in one lobe), 3 (bilateral adhesions or monolateral adhesions 
affecting more than 1/3 of the diaphragmatic lobe), and 4 (extensive lesions affecting more 
than 1/3 of both diaphragmatic lobes). Cranial pleurisy (adhesions between the surface 
of the apical and cardiac lobe, and/or adhesions between the lung and the heart) was 
recorded as absent (0) or present (1). 

Statistical analysis

All analyses were performed in R version 3.5.1 (R Core Team, 2018). Spearman’s rank 
correlation was performed using room as the experimental unit. Overall, the dependent 
variables used for statistical analysis were pneumonia-related variables: prevalence 
of pneumonia (Madec scores ≥ 1) and scars; pleurisy-related variables: the prevalence 
of dorsocaudal (SPES ≥ 2) and cranial pleurisy; whereas the independent variables 
corresponded to median RDI values for each week the trial pigs were followed.

Results and discussion

Figure 1 shows the evolution of the respiratory distress index (RDI), as a function of time 
and production stage, measured in eight rooms. In general, RDIs were highest during the 
first days in the weaner production stage. This could be related to the stress associated 
with transport from the breeding to the grower/finisher unit, remixing and the subsequent 
adaptation to the new social group, environment and feed (Peden et al., 2018). In the grower 
accommodation, the RDI generally decreased and remained somewhat constant. RDIs 
increased in five of the eight rooms towards the end of the finisher stage.

A total of 1,540 lungs were assessed at slaughter. On average, each room had 193 ± 5 
lungs assessed (range 185 – 199). The prevalence of pneumonia, dorsocaudal and cranial 
pleurisy and scars and the associated RDI for each of the eight rooms is presented in Table 
1. Rooms with the highest prevalence of pneumonia and scar lesions had the highest 
median RDI values (~1) for the whole period. These were also the rooms in which the 
highest levels of coughing were recorded throughout most of the seven weeks of the 
finisher stage (Figure 1).

However, despite the high prevalence of lesions in several of the rooms, an RDI greater than 
10 was only recorded in room seven. For RDIs ≥ 10, the SOMO box sounds an alarm (sending 
a text message or email to the farmer) indicating that pigs housed in that compartment are 
coughing above the threshold considered a normal level by the manufacturer. This suggests 
that a lower threshold for sounding an alarm would be appropriate. Indeed, Hemeryck 
et al. (2015) reported a 48% prevalence of pneumonia lesions and a 12% prevalence of 
pleurisy with a corresponding RDI of ≈ 10 on two occasions during the finisher stage. 

The univariable analysis of the respiratory distress index for each week of the different 
production stages and the four lung lesion categories is presented in Figure 2. 

There were no statistically significant correlations between RDI values in the weaner stage 
(weeks 12 and 13) and lung lesions at slaughter (P > 0.05). Lung lesions in slaughter age 
pigs are not good indicators of respiratory disease affecting younger pigs, because of the 
ability of lesions to heal without scarring (Pagot et al., 2007; Straw et al., 1990; VanAlstine, 
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2012). Thus, we cannot discard the potential presence of respiratory disease in the weaner 
stage or the usefulness of the cough monitors in detecting it. To validate the effectiveness 
of cough monitors in predicting respiratory disease outbreaks in weaner pigs, post mortem 
examinations of weaners showing signs of respiratory disease (higher levels of RDI) should 
be performed and include monitoring the presence of common respiratory pathogens over 
time.

Figure 1. Respiratory distress index as a function of time and production stage for eight rooms 
(labelled from 1-8)
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Table 1. Prevalence (%) of lung lesions assessed at slaughter for rooms 1 - 8 and corresponding 
overall median, minimum and maximum values of respiratory distress index (RDI)

Room Pneumonia 
(%)

Dorsocaudal 
Pleurisy (%)

Cranial 
Pleurisy 

(%)
Scars (%)

Overall 
Median 

RDI 
Min RDI Max RDI

1 6 11 19 9 0.36 0.07 1.63

2 23 17 22 21 0.91 0.08 6.98

3 43 18 19 24 1.15 0.09 8.28

4 42 18 24 24 1.13 0.25 6.64

5 6 3 8 13 0.49 0.07 5.20

6 7 8 8 9 0.53 0.10 6.76

7 38 10 13 24 1.05 0.28 10.98

8 7 10 15 13 0.68 0.15 4.05

There were some statistically significant correlations between RDI and lung lesions during 
the grower stage (weeks 14–17). Indeed, the only association between RDI and dorsocaudal 
pleurisy was found on week 17 (P = 0.027). This and the negative correlations found with 
dorsocaudal pleurisy (P = 0.016) and cranial pleurisy (P = 0.019) on week 15 are difficult to 
explain from a biological point of view.

Figure 2. Spearman rank correlations between the respiratory distress index in function of pigs age in 
weeks. Cells with zeros correspond to non-significant results 
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Strong correlations were found between RDI values during finisher stage (weeks 18–24) 
and pneumonia (week 19: P = 0.037; week 21: P = 0.043; week 22: P = 0.012; week 23: P = 
0.008; week 24: P = 0.011) and scar lesions (week 19: P = 0.037; week 21: P = 0.023; week 22: 
P = 0.045; week 23: P = 0.003; week 24: P = 0.019) . These findings are consistent with Pagot 
et al. (2007), who reported an association between age and increased pneumonia lesions at 
slaughter. These results also confirm the capacity of the SOMO box to detect respiratory 
disease in real-time, as the last four weeks of finisher stage present the highest levels of 
RDI for those rooms with a high prevalence of pneumonia and scar lesions (Figure 1).

Conclusions

Under the conditions of this study there was good association between lung pathologies 
recorded at slaughter and coughs recorded on farm by the SOMO respiratory distress 
package, particularly during the finisher stage. Coughing was recorded in the earlier 
production stages but was not reflected in lung lesions at slaughter indicating that further 
research is required to validate the SOMO package for use with weaner and grower (i.e. 
younger) pigs. Further studies are also needed to clarify differences in levels of coughing 
throughout production stages and to verify the baseline coughing frequency in healthy 
pigs.
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Abstract

The increasing demand for pig products, as world population increases, is inducing not 
only a shift to larger intensive pig farming systems, but also the need to optimise all 
aspects of pig production in order to achieve a profitable production. The value of pig 
carcass for meat production depends, primarily, on the carcass weight and on the relative 
proportions of fat and lean meat. This study focuses on the estimation of carcass traits 
for fattening pigs using image technology. An experiment with 80 pigs (Pietrain x Topigs 
20) was performed in an experimental farm. Kinect® cameras were used to obtain 3D 
top-view images of live pigs during one week before slaughter while pigs were eating and 
an RFID system allowed the images to be matched with individual pigs. Several image 
features, such as lengths, areas and volumes were extracted to characterise the pigs’ body. 
At slaughter, carcass traits were collected, such as slaughter weight, lean meat and back 
fat depth. Stepwise linear regression was used to determine which image features were 
relevant to estimate the different carcass traits. A dataset of 36 pigs was used as training 
set. Statistically relevant linear relations (p-value < 0.0005), exhibiting adjusted-R2 ranging 
from 70–85%, were found between the image features and carcass traits. When applied to 
the 15 pigs used for validation, the performance decreased to the range of 50–60%. These 
results show the potential to estimate carcass traits of fattening pigs before being sent to 
slaughter from 3D image analysis.

Keywords: carcass quality, slaughter, stepwise linear regression, time-series

Introduction

As world population increases, the demand for pig products will increase. According to 
Eurostat, the EU produced 23.4 million tonnes of pig meat in 2017. This was over 1 million 
tonnes more than in the years 2012–2013. Also in 2017, there was a further rebound, + 
8.3% in the real-term price of pigs, from the relative low value in 2015 (Eurostat, 2018). The 
value of a pig carcass for meat production depends, primarily, on the carcass weight and 
on the relative proportions of fat and lean. Estimates of these carcass traits during a pig’s 
lifetime are invaluable for the pig breeder, as they allow specification of a performance 
target, management regime and genotype choice (Fisher et al., 2003; Ruusunen et al., 2012). 
Also, knowing how the pig is developing its carcass traits along the fattening period allows 
farmers taking action to manage them accordingly and get a higher income from each pig 
at slaughter (Einstein et al., 2016). Costumer demands are becoming more specific, with 
carcass conformation playing an increasingly significant role in meat production industry.

There are several studies in which cameras are used to record images of pigs in a pen 
and estimate different image features. Some of them used 2D images to estimate lengths 
and areas to characterise the pig’s body shape and link it, mainly, to weight (Kashiha et 
al., 2014; Wongsriworaphon et al., 2015). Also, studies in which 3D cameras were used, 
attempted to refine the previous ones by adding the depth information to improve pig’s 
segmentation and volume estimations (Kongsro, 2014; Fernandes et al., 2019). There are 
some studies in which the researchers tried to establish a link between these image 
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features and slaughter data. The works of Doeschl et al., (2004) and Green et al., (2005) are 
exhaustive studies attempting to show how 2D image features are related to different 
carcass traits at different stages of the fattening period, combining them in some cases 
with some external measurements, such as ultrasound measurements. In these works, 
the prediction properties of the regression models found achieved adjusted-R2 values of 
70%. Studies focusing more on the biological side of the carcass traits pointed out the high 
variability present in carcass composition when different breeds are considered and the 
high variety of aspects affecting it (Fisher et al., 2003; Ruusunen et al., 2012; Chen et al., 
2017). Thus, this should be taken into account when evaluating the performance and later 
application of the automated methods in practice.

The aim of this preliminary study is to define which image features are the best-correlated 
ones with the different slaughter variables and check if the time-evolution of these 
features over the fattening period improves these correlations.

Material and methods

Experimental data

The data are gathered during the performance of an experiment in a research facility in 
The Netherlands, with 80 pigs (Pietrain × Topigs 20), from which 51 pigs were selected 
to perform this study. The housing conditions were the typical for Dutch pig husbandry, 
according to the Dutch ‘Integrale Keten Beheersing’ (Integrated Chain Management) 
farm standards. The pigs were housed in four pens (each measuring 2.67 m × 6.26 m; 
16.71 m2, effective 16.14 m2 , 0.81 m2 per animal), each one equipped with a Schauer® 
electronic feeding station. All pigs had ad libitum access to feed and water during the 
whole experimental period. All pens had a partially slatted floor and were located in a 
climate-controlled room, based on the pigs thermoneutral zone. At slaughter, different 
variables were collected, such as slaughter weight or meat percentage, muscle and back 
fat thickness. In Table 1, a summary of the mean, median and standard deviation (SD) of 
these traits for all pigs monitored in the experiment (N = 51) are displayed.

Table 1. Mean, median and standard deviation (SD) of the slaughter variables for the 51 pigs 
monitored in the study. The slaughterhouse features are the final and slaughter weights, and 
percentages of meat, muscle and fat. The corrected yield (Yield) and start weight statistics of the 
pigs are also displayed in the table

N = 51 Start 
weight [kg]

Final 
weight [kg]

Slaughter 
weight [kg]

Meat 
[%]

Muscle 
[mm]

Fat 
[mm]

Yield 
[€]

Mean 30 109 86 59 65 13 137

Median 30 108 86 60 65 13 137

SD 3 5 4 2 5 3 7

A Kinect® camera was set above the feeding station to obtain 3D top-view images of live 
pigs one week before slaughter, while pigs were eating. An RFID system allowed the images 
recorded to be matched with each one of the 51 individual pigs monitored. Several image 
features, such as lengths, areas and volumes are extracted to characterise pig’s body 
shape. In Figure 1, a schematic representation of some of the body features estimated is 
depicted. Moreover, in Table 2, the mean median and SD for this image features from the 
51 pigs monitored are shown.
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Table 2. Summary of mean, median and standard deviation (SD), in pixels, of the image features 
for the 51 pigs monitored (N), obtained directly from the image analysis of the 3D images gathered 
while pigs were eating during the last week of the fattening period

(N = 51) L1 L2 L3 L4 L5 L6 L7 A1 A2 A3 A4 HL1 HL3 HL5 avgH maxH

Mean 65 56 58 53 66 82 221 3,674 4,564 3,586 11,845 670 702 706 658 733

Median 65 56 58 53 66 82 222 3,659 4,535 3,570 11,868 673 707 708 663 734

SD 2 2 2 2 2 5 9 229 296 195 562 20 25 19 20 16

Figure 1. Schematic representation of the image features extracted directly from the image processing 
of the 3D images gathered when pigs visited the feeding station. Besides the ones depicted here, 
height and volume information is defined and tested too (based on a figure in Green et al., 2005)

The height features, HL1, HL3, HL5 are defined as the maximum height recorded in the line 
features L1, L3 and L5, respectively. These heights, multiplied respectively by the areas, A1, 
A2 and A3, define the volumes V1, V2 and V3, respectively. Similarly to the total area (A4), 
the total volume is defined as the sum of the three previous volumes. The average (avgH) 
and maximal (maxH) height are defined as the average and maximum values obtained in 
the whole segmentation of the pig.

Data analysis

A stepwise linear regression, implemented in MATLAB® (The MathworksTM Inc., 2015), 
was used to determine which image features are the best correlated ones to each specific 
slaughter variables. During the training process, coefficient of determination (R2), the 
adjusted-R2 and root mean square error (RMSE) were used to evaluate the performance. 
Besides, the parameter value estimations, its standard error, p-value and statistic t-test of 
these estimations were calculated. In the validation step, the coefficient of correlation (r), 
coefficient of determination (R2) and statistical relevance, by means of the p-value, were 
evaluated.

Then, the time-evolution of these image features was used to evaluate the impact on 
the slaughter gathered data. In order to do so, two approaches are tested. Firstly, simply 
by linear fitting of this time evolution, the slope parameter was used as input for testing 
linear relations. This parameter is describing the rate of increase of that specific image 
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feature. Also, using the last week of data gathered for each image feature, a first order 
continuous-time time-invariant parameters transfer function model was used to model 
the evolution of the size of these features over the last week of the fattening period for 
each individual pig. This transfer function model is implemented using MATLAB® (The 
Mathworks, Inc., 2015b) Software and the CAPTAIN Toolbox (Young et al. 2007). The first 
order transfer function model has the following general structure,

    y(t) =  
b0   

s+a1  
 u(t)+ ξ(t)          [1]

where y(t) and u(t) are the output (image feature), and the input (binary input) of the model, 
respectively; ξ(t) is additive noise assumed to be zero mean, serially uncorrelated sequence 
of random variables with variance σ2, accounting for measurement noise, modelling errors 
and effects of unmeasured inputs to the process; t is the sample of the measurement. The 
binary input (0-1) is just a step input to help define the dynamics present in the image 
feature time-evolution under study.

Some features defining the time evolution of these features can be extracted from these 
models, such as the time constant (TC) and the gain (G), defined as,

              TC =  
1  

 a1  
           [2]

               G =  
b0  
a1

 

 
          [3]

The TC and G are evaluated and used as variables for the stepwise procedure instead 
of the value of the image feature itself. Also, combinations of both, image features and 
modelling features, are tested using its logarithm transformation as well.

Results and discussion

Firstly, a stepwise linear regression step is performed in order to evaluate which image 
features and/or modelling features are the best-correlated ones to each slaughter variable. 
It seems that for the slaughter data in relation to weight and yield, the median value of 
the image features from the last seven days of the fattening period are the best features 
to use as variables in the linear regression. However, for the slaughter variables in relation 
with the carcass quality, such as meat percentage and muscle and fat thickness, the time 
evolution of the image features is providing the best linear regression performances. Table 
3 displays which image features are leading to the linear regression exhibiting the best 
linear regression results for the slaughter variables in relation to weight and yield. In 
Table 4, the results for the best linear regressions to estimate percentage of meat, muscle 
and fat thickness are displayed. Thus, the slaughter data related closely to the end of the 
fattening process, final and slaughter weights and yield, seems to be better correlated with 
the median of the last week measurements of these image features rather than with the 
features describing their time evolution.

On the other hand, the best linear regressions relations for carcass quality traits, such as 
meat, muscle and fat, are found when using the time-variant information extracted from 
monitoring the time evolution of the image features. Table 5 summarises the performance 
of these linear regressions in both training and validation steps. It can be seen that the best 
performance is for corrected yield (yield), final and slaughter weight. The performance for 
the carcass traits features it is worst. Among the latter ones, the best relation is achieved 
for the back fat depth. This may be related to the results in the study of Einstein et al., 
(2016), in which it is shown that for some breeds the fat deposition rate is increasing 
towards the last part of the fattening period.
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Table 3. Image features which are used as variables in a linear regression lead to the best 
performance in the estimation of yield, final and slaughter weights gather at the slaughterhouse. 
For these linear regressions, the coefficient estimates and their associated standard error (SE) is 
shown, together with t-test statistic and the p-value to define their statistical relevance. Median 
indicates that the median of the last seven days of the fattening period for each specific image 
feature is used as input in the linear regression

Corrected Yield

Features [Median] Coeff. value Coeff. SE t-stat p-value

A1 0.0085 0.0042 2.03 0.0584

A3 0.064 0.015 4.27 0.0005

HL5 0.29 0.16 1.89 0.0768

maxH -0.27 0.15 -1.80 0.0898

V2 1.1 0.5 2.14 0.0468

V3 -6.5 2.4 -2.71 0.0148

Final weight

Features [Median] Coeff. value Coeff. SE t-stat p-value

L2 -0.94 0.42 -2.24 0.043

A3 0.05 0.01 3.89 0.002

HL1 -0.26 0.09 -2.83 0.014

HL5 0.32 0.10 3.36 0.005

V1 1.21 0.50 2.44 0.030

V2 1.15 0.39 2.91 0.012

V3 -5.83 1.78 -3.28 0.006

Slaughter weight

Features [Median] Coeff. value Coeff. SE t-stat p-value

L7 -0.32 0.10 -3.31 0.004

A3 0.04 0.01 6.91 0.000

HL3 -0.06 0.03 -2.05 0.057

HL5 0.13 0.04 3.25 0.005

V1 1.33 0.31 4.24 0.001

V2 0.93 0.35 2.70 0.016

V3 -4.24 0.91 -4.66 0.0003
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Table 4. Image time evolution features which are used as variables in a linear regression lead to 
the best performance in the estimation of carcass quality traits gather at the slaughterhouse. For 
these linear regressions, the coefficient estimates and their associated standard error (SE) is shown, 
together with t-test statistic and the p-value to define their statistical relevance. ‘Gains’ makes 
reference to use the gain from the transfer function modelling for that specific image feature as 
variable in the linear regression. ‘Log Slope’ indicates that the logarithm of the slope from a simple 
linear fit for the time evolution of the image feature is used as variable in the linear regression

Fat percentage

Features [Gains] Coeff. value Coeff. SE t-stat p-value

L4 0.3238 0.0463 6.99 8.69E-07

HL1 0.0029 0.0014 2.00 0.059

avgH 0.0237 0.0022 10.60 1.17E-09

L4 : avgH -0.0007 0.0001 -6.10 5.77E-06

Muscle percentage

Features [Log Slope] Coeff. value Coeff. SE t-stat p-value

Intercept 217.64 39.50 5.51 0.0009

L5 9.02 4.33 2.08 0.0759

L6 8.68 3.21 2.71 0.0303

L7 28.66 6.90 4.16 0.0043

A1 -15.61 3.79 -4.12 0.0045

A2 -26.66 6.85 -3.89 0.0060

HL5 17.84 7.50 2.38 0.0490

avgH -23.17 6.73 -3.44 0.0108

Muscle percentage

Features [Log Slope] Coeff. value Coeff. SE t-stat p-value

Intercept 60.77 1.16 52.20 0.0000

L1 1.18 0.25 4.73 0.0089

L3 0.76 0.26 2.91 0.0437

L6 0.44 0.15 2.85 0.0465

A4 -0.0042 0.0014 -3.03 0.0386

HL1 -2.85 0.403 -7.08 0.0021

HL3 -0.39 0.07 -5.62 0.0049

avgH 0.73 0.16 4.61 0.0099

V2 -2.99 0.39 -7.68 0.0015

As the last seven days of the fattening period are used to estimate image features and 
their time evolution characteristics, it is expected that the best performance is obtained 
in relation to fat. When evaluating the percentage of meat and muscle size, the better 
correlations are found as the time evolution of the features is used. Moreover, these are 
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the only linear regressions in which the best performance is achieved when an intercept 
parameter is allowed. This may indicate the need for these relevant features to define this 
intercept parameter, for instance, their values at the beginning of the fattening period.

Table 5. Coefficient of determination (R2), adjusted one (adj-R2) and root mean square error (RMSE) 
of the linear regression in the training set and correlation coefficient (r), coefficient of determination 
(R2) and statistical relevance (p-value) in the validation dataset for all the linear regressions selected 
as best and summarised in Tables 3 and 4 for each slaughterhouse variable

Slaughter 
variables

Training Validation

R2 adj-R2 RMSE r R2 p-value

Corrected 
Yield

0.74 0.67 3.84 0.87 0.67 0.00006

Final weight 0.76 0.65 2.75 0.82 0.61 0.00019

Slaughter 
weight

0.85 0.80 2.87 0.85 0.70 0.00005

Fat 0.74 0.67 2.87 0.89 0.55 0.00012

Muscle 0.68 0.51 2.87 0.69 0.26 0.0543

Meat 0.62 0.52 1.48 0.75 0.31 0.0504

In general, it seems that for the carcass traits to play a major role, the time evolution of 
the image features. Thus, it may be relevant to monitor the time evolution of these image 
features since the beginning of the fattening period. As stated in Einstein et al., (2016), the 
meat percentage evolves non-linearly throughout the fattening period thus, evaluating 
how the image parameters are building up may be relevant to establish a trustworthy linear 
regression. Thus, studies using different pig breeds, together with monitoring of image 
features since the beginning of the fattening period and different housing conditions, are 
needed to prove several aspects. Firstly, to test if adding more refined time information 
improves the linear regression performances. Moreover, to test if the image features found 
as most relevant to the different slaughter variables in this study remain the same under 
these different conditions and/or breeds. Farmers could use such relations to estimate the 
profitability of each pig during the fattening process.

Conclusions

This paper explores the relation between image features representing fattening pigs’ body 
shape and carcass quality traits, such as fat and muscle thickness or meat percentage. 
From these preliminary results, it seems that using the median value of different image 
features over the last seven days of the fattening period it is possible to estimate final 
weight, slaughter weight and corrected yield with an acceptable accuracy. In general, 
length, height, areas and volumes from the back part (ham) of the pig’s body are better 
correlated to these slaughterhouse variables. However, the best linear regressions between 
image features and carcass traits are obtained when including time evolution information 
from the image features. Back fat thickness can be estimated using the gains, when 
the image features time evolution is modelled by transfer functions. Apparently, height 
information is relevant for fat thickness estimation. Besides, although exhibiting the 
worst performance, meat percentage and muscle thickness may be estimated by using the 
logarithm of the slope parameter characterising the time evolution of the image features 
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using linear fitting. It is expected that using image features time evolution throughout 
the fattening period, and not only from the last seven days of it, would improve the 
performance of the linear regressions for estimating carcass quality traits.
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Abstract

The recent SCAR-AKIS policy brief on the Future of Farm Advisory Services (2017) 
recognises the opportunity for farm advisors to use new digital technologies and data 
flows to add value to their work through more open data exchange and digital services. 
It proposes the strengthening of those support systems which enable advisors to do their 
job more effectively; and improved connections for knowledge to be shared and developed 
further. The EU H2020 FAIRshare CSA project (www.h2020fairshare.eu ) aims to enable a 
more digitally active farm and farm advisory community. As one aim of this project, a 
digital platform will be developed to collect and distribute information on digital tools 
and services used by advisors with a view to creating an inventory for the acquisition, 
exchange and dissemination of Digital Advisory Tools and Services (DATS). The overall goal 
is to establish a platform for the sharing of digital tools, experience and motivation within 
the farm adviser community and the farmers they serve. This will include a multi-lingual, 
web-based catalogue and semantic search tool, (‘Digital Advisor’) which itself takes digital 
services and tools for farmers and advisers as its core domain. The semantic tool will assist 
advisers in identifying best-matching digital tools and alternatives to address specific, user-
defined farmer’s challenges expressed in ‘common search language’. This platform builds 
on components established in the VALERIE project (2017). It will incorporate a permanent 
networking facility to allow users of the platform to share experiences of using the tools 
and to facilitate potential collaboration in updating the tools for a wider audience of users. 
The initial experience from the development of this tool and implications of this online 
platform will be presented.

Keywords – Digital advisory tools, advisory services, digital services, digital technologies, 
digital agriculture 

Introduction

Smart Farming(SF) in the form of smarter machines, Big Data, Internet of Things, ICT, 
sensors, and robotics amongst other technologies, are viewed as ‘the future of agriculture’ 
(Poppe et al., 2015). Digitisation has the potential to transform the way farms are managed 
and operated. As agriculture becomes more digitised, farmers will be increasingly making 
decisions based on feedback from data on the farm (Wolfert et al., 2017). SF applications 
will allow farmers to make more informed decisions, utilising targeted and precise 
information and knowledge that has been generated in real-time and in a local-specific 
context (Wolfert et al., 2017). Most of the digital solutions that farmers use today are not 
complex IT systems, but more mainstream basic digital solutions (i.e. auto-steering, record 
keeping, yield mapping), while more complex variable rate applications of fertilizers, 
manure or irrigation are still at its early adoption stage (Fountas et al., 2015). The time 
needed to work with SF technologies and the capacity-building required can impede the 
adoption of solutions by individual farmers rather than by advisors as evident in farmers 
surveys targeting SF Technologies since 2005 in Denmark and the USA: Fountas et al. (2005) 
to current farmers’ surveys JRC (2019).
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Many farmers who do not adopt SF technologies and digital tools have insufficient skills and 
competences (Adrian et al., 2005; Pierpaoli et al., 2013). Furthermore, the rural population 
in Europe is ageing rapidly with more than 55% of farm managers being above 55 years. 
This indicates a potential problem for the agricultural sector in terms of adoption rate of 
SF technologies because older farmers can have diminished incentives to change and less 
exposure to SF technologies (Eurostat, 2016). The role of farm advisors in the adoption of SF 
technologies is therefore crucial. Additionally, the precision farming software and services 
market is expected to be worth $1.77 billion by 2020 (Marketandmarkets, 2015) while the 
services segment is expected to portray a significant growth rate over the projected period, 
growing at a compound annual growth rate of 16.0% until 2025 (Grandview research, 2017).

As different supply chain actors undergo digital transformation, they will produce not 
only new tools, but potentially complete solutions. Consequently, farmers must use not 
just one platform, but several to get benefits from the digitization process. As a result, the 
digital transformation of agriculture rests not only with farmers, but also their business 
partners, including advisory services.

The digital divide from an advisor’s perspective

Digital advisory tools and services (DATS), office, communications, analytical and digital 
farm management tools overlap, and share data and information. These interfaces for 
different analytical tools demonstrate the advantages of processing big data and making 
information available to multiple users. The cost of devices has reduced and most advisors 
use a laptop and/or smart phone/pad and a range of compatible software in their day to 
day work, yet many advisors don’t have all the access, expertise or motivation that is 
needed. 

Bespoke advisory tools are generally expensive in terms of development cost and ongoing 
support. Successful digital innovations, in terms of business case, benefit from a larger 
number of users as well as the individual user value. The principle of expanding the user 
audience is therefore crucial to longevity and reinvestment in upgrades. Some advisory 
tools have the advantage that they are built into farmer user systems with separate 
interfaces; here, the number of users is greater but the probability that all farmers use 
one system in an open market is low. In the absence of central co-ordinated web-based 
systems, DATS often rely on multiple outputs and protocols from different systems even 
in one geographic location. This increases cost and complexity.

Many advisors have overcome the high cost of bespoke systems by using freeware and 
particularly spreadsheets developed in house and shared between advisors. Some of these 
are quite elaborate, but all suffer from lack of version management and regular updates, 
as well as requiring a year-to-year entry of data. These are useful for smaller applications 
and as a development/proofing ground for professionally developed systems. Freeware 
also equips advisors with a limited but expanding range of good advisory tools, from 
mapping to messaging, technical support, governmental services, market information. 
These are capable of adding value to advisors’ work. Many advisors are not using these to 
the full extent mainly because they do not know about them. 

Materials and methodology 

FAIRshare –will make digital advisory tools, Findable, Available, Interoperable, Reusable 
and Shareable. It has two main components: 

The first component gathers the assessable knowledge base of the digital tools and 
services used by advisors by leveraging the networks of users and potential users (40,000 
advisors in Europe) through an inventory/catalogue of tools and services, accessible 
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on an intuitively navigable online interface that has been co-designed with end users. 
Accompanying the tools in the online inventory will be information, for instance, short 
‘good practice’ vignettes, on how the tools may be used/adapted for use. Secondly, 
FAIRshare will generate and resource a ‘living laboratory’, empowering advisor peers from 
across Europe to interact with the online inventory, in a series of workshops, to exchange, 
co-adapt, co-design and apply digital tools in a planned and strategic way. This paper 
focuses on the first component, which starts with a classification of digital advisory tools 
and the setting up of the repository of information on digital advisory tools and services.

The challenge for this project is to engage, enable and motivate the independent farm 
advisor community as multipliers and advocates for, creating a vibrant movement for farm 
advisory digital tools through sharing of tools, expertise and motivations. The approach 
is to support a multi-actor process that enables farm advisors, farmers and other AKIS 
actors to co-adapt existing advisory tools for expanded use and full exploitation. A further 
challenge is located at the interface between farmers and advisors, and relates to building 
the advisory capacities needed for managing data flows across regional, national and 
transnational AKISs. This involves the building of trust around issues such as big data and 
artificial intelligence through participatory approaches to co-designing communication 
and public engagement campaigns. This is to animate end users’ interactions with a 
co-designed, intuitively navigable inventory of ‘good tools’ and ‘good practices’ that is 
representative of European and international (evolving) state-of-the-art. The SCAR-AKIS 
policy brief on the Future of Farm Advisory Services (2017) recognises this opportunity. 

Motivating individual advisors to embrace the upcoming digital revolution starts with 
activities, tools, routines and services which are familiar and regularly used by both farmers 
and advisors. The digital revolution impacts can be seen everywhere and the spill-overs into 
agriculture mutually affect communications, access to information, advice and decision 
support tools and services. The major challenge is the integration of digital information, 
support services and farm data into day-to-day and strategic decision-making on farms. 

Defining the scope of DATS 

Within the broad range of digital tool used by advisors in their day to day work, it is difficult 
to define the scope of what should be included and how to anticipate the advisors demand 
or interest in looking for DATS and ultimately using them. It is clear to see that the scope 
should include communication, monitoring and analysis, decision support, regulation and 
quality control, quality assurance tools, teaching and learner support, organisation and 
management tools and services.

Digital communications tools: The mobile phone is the primary communication tool of the 
advisor and has become even more so with the development of better mobile coverage, 
cheaper phones and an acceptance that in modern society people are contactable 24/7 by 
voice or text and, more recently, video image. The phone is now a multifunctional device 
and low cost digital entry point for all ages. Smartphone invention proved a game changing 
technology for the agricultural sector and helped in increasing agricultural productivity 
and profitability in many ways. This was because farmers have direct access to valuable 
information timely and cheaply for i) conducting their farm operations better, ii) selling 
their crop production at higher prices and iii) using production inputs more efficiently. 
Many studies indicated those findings (Chhachlar & Hassan, 2013; Krone et al., 2014; 
Jehan et al., 2014). Web/app: These are a part of modern life with more and more everyday 
functions being completed over the internet. They also control over the entry and exit 
points for data and information from most digital systems. Radio/TV: Scheduled television 
and radio broadcasting has advanced significantly in recent years and is now enabled with 
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digital podcasts, video and live feed capability. Recent studies (Gorman et al., 2017) show 
that for depth of penetration to rural community’s local radio and agriculture, focused TV 
shows are still important and can be used effectively to influence hard to reach farmers 
(Kuta Yahaya & Badiru, 2002; Nazari, 2011).

Monitoring and analysis tools: Benchmarking can support farmers to improve their 
productivity and sustainability performance. Benchmarking is defined as improving the 
performance of a farm, for example, by comparing with peers, learning from others and 
identifying actions (EIP Agri Focus Group Final Report, 2017). Nutrient accounting systems 
at farm level are becoming more important and many agencies have set up benchmarking 
systems to allow farmers and their advisers monitor nutrient inputs from both farm 
productivity as well as compliance perspectives. Similarly, digital tools relying on Big Data 
are increasingly important at the farm level to reduce the use of agrichemicals for weed 
and disease control (Van Evert 2017a,b).

Decision support systems: Many decisions support system (DSS) digital tools involve a certain 
level of data collection and analysis of the current situation on the target farm, and then 
utilise this data to develop an action plan or options which can be evaluated to assist the 
farmer and his/her adviser in decision making (Poppe & Van Asseldonk, 2016), 

Regulation and quality control and assurance tools: New digital tools are now commonplace 
within the EU and have exploited the advances in digital mapping and cloud-based animal 
movement systems, adding significantly to the efficiency of the EU Common Agriculture 
Policy (CAP) based farm subsidy and compliance checking. The evolution of access to these 
for both farmer and agent in the Farm Advisory Systems (FAS) has increased the efficiency 
of this administrative work.

Advisory services organisation and management: These are administrative tools which advisors 
use to record, report and analyse their own activity. They traditionally have been used for 
programme monitoring, client billing and other administrative purposes but now have 
advanced into customer relationship management systems (CRM), customer satisfaction 
dashboards and other useful management and administration tools.

Collecting the digital tool and service information

Building on the lessons learned in Smart-AKIS, a methodology and set of standards 
has been co-developed to perform a systematic review of DATS to feed the platform. 
Organisations and advisors using or supporting DATS will be invited to submit their tools 
to the FAIRshare platform, by filling in a questionnaire detailing the most important 
assessment criteria. The threshold for submitting DATS should be minimised to ensure a 
high level of participation from external DATS providers. Therefore, a conscious effort was 
made to keep the questionnaire concise and straightforward. A search strategy will also 
be developed to find DATs from other existing platforms and databases, especially the vast 
reservoir of Thematic Networks platforms (i.e. Smart-AKIS, 4D4F).

The documentation on these digital tools will be collected – and summarised in fact sheets 
- through questionnaires which will cover the following issues: 

•	 Target audience: for whom / which agricultural sector / which region was the tool 
developed? 

•	 Objectives: what is the main goal of the tool? Which need does it address? What are the 
known challenges and benefits of using the DATS? 

•	 Technical information: delivery mode, used data sources, required level of ICT knowledge, 
visual of the user interface.



538      Precision Livestock Farming ’19

Making the DATS available 

The goal is to establish a multi-lingual digital tool for consultation by the community of 
advisers in the EU: ‘the digital adviser’. This web-based platform with a semantic search 
tool, will store digital farm advisory solutions and tools as its core domain. The semantic 
tool will assist advisers in identifying best-matching digital tools and alternatives to 
address specific, user-defined farmers’ challenges expressed in ‘common search language’ 
built on components established in the VALERIE project (2017) and will tailor these to 
match the specific domains of the FAIRshare project. 

Creating a learning network

A Permanent Networking Facility (PNF) will enable a live commentary on the inventory of 
digital tools in a user-friendly manner and become a collaboration tool between the advisors 
users and the providers. The key features for the management of this platform will be to (i) 
create new records, (ii) update existing records and finally (iii) search/query for results. 

Results and discussion

The co-design process of the initial DATS collection interface is almost complete and ready 
for use. The project kick-off meeting in November 2018 included a participatory learning 
workshop aimed at ensuring that consortium members were comfortable working on 
specific tasks as teams. As is typical when using the multi-actor approach, the selection and 
classification framework started off with a huge number of possible variables and criteria. 
This was narrowed down by clustering and refinement into a structured format suitable 
for the collection of the information needed to inform the advisor user. For the collection of 
information, the potential DATS providers will be able to log in to their account and fill in a 
multi-page form. The form is designed in a user-friendly way and structured thematically 
for better navigation. The DATS provider will also be presented with suggested options and 
help tips, in order to make sure he/she completes the form in less time and with less effort. 
There are five main sections which have been formatted as outlined below.

•	 About the tool or service: gathering the following general overview information about 
DATS in an easy to use structures web page, with list and yes/no buttons used where 
possible. From the data entered here, it will be possible to catalogue the tools and 
provide full user information.

 » Tool/service name

 » Country of origin 

 » Language (s) (drop down list, multiple selection)

 » Website /access point

 » Cost – structure and type of cost

 » Year of launch

 » Year of last update

 » Number of users - live

 » Number of down loads 

 »  Owner/creator (possible to insert multiple entries)

•	 Description: what it does and for who? This section gathers more detailed data on the 
user and application of the DATS, also the complexity and user training need.

 » Who is the user? (list)
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 » Main target groups (multiple selection)

 » Agricultural sector (list)

 » Software type

 » Use offline (Y/N)

 » Source of data –(list, manual, downloadable)

 » How it works (limit of words)

 » Multi user access with permission (Y/N)

 » Training required to use (Y/N)

•	 Challenges addressed by the DATS: This gathers information related to the challenge 
or problem to which the DATS may be applied in practice. This is to help the user find 
or identify a solution DAT to their need. Top five challenges addressed; next best five 
challenges addressed.

•	 Benefits of the tool: This enables the benefits of the DAT or service to be recorded 
and promoted and will support the new users of the ‘Digital Advisor’ platform in 
establishing the positive attributes as recorded by the DATS owner or existing user. Top 
five benefits; next best five benefits.

•	 Resources and support: This section records the look and feel of the DATS and provides 
useful support information and images including user testimonials.

 » Keywords to describe tool

 » Images and screenshots

 » Uploaded manuals/sample reports

 » Uploaded testimonials 

Figure 1. Sample search result, informative single screen output from the ‘Digital Advisor’ platform

The user of the ‘Digital Advisor’ interface and permanent networking facility will be able 
to search the database with their own criteria. The goal is to populate the database with 
the collected information, in the most efficient way so as to return the most relevant 
results in the shortest time. Each result will correspond to a DATS record and its page will 
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be presented in one summary screen (Figure 1). The page of each DATS will be structured 
and presented in a way so that the user will be able:

•	 to make sure in a few seconds if the tool is right for them. 

•	 to understand how it actually works, read testimonials, watch explanatory videos

•	 to decide if it meets their needs and resources (cost, technical skills, devices etc)

•	 to have direct access to the DATS (download it or test it)

•	 to contact the provider of the DATS.

The analysis of user feedback will inform the user interface through a continuous 
improvement process throughout the project. It is planned that at the end of the five year 
FAIRshare project, the platform will be hosted and maintained by the European Forum for 
Agricultural and Rural Advisors (EUFRAS) or other European associations.
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Abstract

In farming and veterinary medicine, diagnostic tools enabling early detection of infectious 
disease in cattle could play a pivotal role in the control and eradication of bovine viral 
diarrhoea (BVD). Early identification of cattle persistently infected with virus (BVDV) 
through the availability of electronic test results to a veterinarian on-farm, would enable 
immediate diagnosis and isolation of an animal from a susceptible herd. A silicon chip-
based biosensor platform, containing six gold nanoband electrodes as six individual 
sensors, was developed in this study to conduct detection of both bovine viral diarrhoea 
virus and antibody disease targets molecules. We demonstrate that the nanoband sensors 
have sufficient sensitivity and specificity for serological detection of both targets, and a low 
time-to-result (20 minutes). All examined serological samples were benchmarked against, 
and in complete agreement with, gold standard commercial ELISA data. These findings 
are of particular significance for potential on-farm point of use applications, where rapid 
analysis times and specificity are required to permit early diagnostics by veterinarians. 

Keywords: real-time recognition, cough analysis, spectral analysis, signal processing

Introduction

Bovine viral diarrhoea is a disease that is endemic in many countries worldwide. The 
causative agent, bovine viral diarrhoea virus (BVDV), is a pestivirus. Viral infections result 
in reduced animal welfare, arising from immunosuppression, which has a significant 
economic cost for farmers through a combination of e.g. aborted foetuses and greatly 
reduced milk production (Peterhans and Schweizer, 2013; Graham et al., 2015; Richter et 
al., 2017). Its impact on animal health and the economics of livestock production has 
led to a number of European countries embarking on eradication schemes (Houe, 2003; 
Stott et al., 2012). Currently, Norway, Sweden, Denmark, Switzerland, have achieved BVDV 
eradication (Bitsch et al., 2000; Greiser-Wilke et al., 2003; Nyberg et al., 2004; Ståhl et al., 
2005; Presi et al., 2011), whilst the Republic of Ireland is close to eradication following 
five years of a compulsory testing programme and removal of persistently infected (PI) 
animals. Persistent infections in cattle occur when a foetus is exposed to BVDV in utero 
and subsequently develop an immunotolerance to the virus (McClurkin et al., 1984). 
These PI cattle shed virus throughout their lives (Houe, 1999), therefore in regions where 
BVDV is endemic, detection of virus and PI individuals is the method of choice to achieve 
eradication (Presi & Heim, 2010; Graham et al., 2014). In countries where prevalence was 
lower, serological screening to detect exposure to BVDV is the preferred choice (Lindberg 
& Alenius, 1999; Rossmanith et al., 2010; Norström et al., 2014). For rapid progress to be 
made within an eradication programme, highly specific and sensitive assays are required. 
Moreover, the ability to be able to detect and identify both BVDV and antibodies expressed 
by an animal to this virus is essential (Lanyon et al., 2014). 
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Currently, there are a number of methods for diagnosing both persistent and transient 
BVDV infections including: Several different types of enzyme linked immunosorbent assays 
(ELISA) (Howard et al., 1985; Kramps et al., 1999), polymerase chain reaction (PCR) assays 
(Belak & Ballagi-Pordany, 1991; Letellier & Kerkhofs, 2003) and virus isolation techniques 
(Saliki et al., 1997; Cornish et al., 2005). The majority of these assays are laboratory-based 
techniques. As such, they often require postal submission of samples to contract analysis 
labs with subsequent reporting of results to both veterinarian and farmers (Graham et al., 
2014). Both ELISA and PCR antigen detection techniques have been employed throughout 
the scheme with the aim of identifying virus positive and potentially PI cattle (Graham 
et al., 2015). While the individual techniques are relatively quick to perform on receipt of 
samples to the laboratory (90–180 minutes), delivery of samples, laboratory logistics, and 
reporting of results, can delay PI detection, isolation and removal at farm level. The knock-
on effect of this is further unnecessary viral spread within a herd. 

A number of ‘in-field’ tests for detection of BVDV have been described including an 
immunochromatographic test (Kameyama et al., 2006), rapid PCR test (Wakeley et al., 
2010) and ELISA-based method by IDEXX (SNAP, IDEXX Laboratories, Inc., Liebefeld, 
Switzerland). However, each of the tests are subject to constraints (i.e. long assay time, 
logistics of sample preparation and cost) which preclude their use from whole herd 
screening and incorporation into eradication schemes. More importantly, these tests focus 
on a single target, either BVD virus or antibody, (not both) meaning that two separate tests 
are required per animal adding additional cost to any disease eradication/surveillance 
scheme. An economical diagnostic device capable of rapid and sensitive detection of BVD 
(virus and antibody) in less than 30 minutes still remains elusive. In this regard, we aimed 
to investigate application of nano-electrochemical-based sensor technology to potentially 
deliver rapid and early identification of a disease state on-farm. 

Electrochemical biosensors constitute a promising group of sensing devices suitable for 
remote viral detection (Pejcic et al., 2006; Ciani et al., 2012; Kiilerich-Pedersen et al., 2013). In 
this paper, we present the development of a new silicon chip impedimetric immunosensor 
device based on nanoband electrodes and demonstrate co-detection of both BVDAb’s and 
BVDV in bovine serum. The chip comprises six individually addressable gold nanoband 
sensors as well as gold counter and platinum pseudo reference electrodes. Sensor chips 
are also designed with a MicroSD style edge connector, to connect to external electronic 
circuitry, while also permitting simple swapping of the disposable chips necessary for in-
field analysis. The highly miniaturised nature of these electrodes provide a number of 
advantages, when compared to larger micro and macro electrodes, including: steady-state 
behaviour (particularly beneficial for EIS); low charge transfer resistance; high current 
density due to enhanced mass transport; low depletion of target molecules; low supporting 
electrolyte concentrations; and faster response times (Arrigan, 2004; Dawson et al., 2013). 
In this work, the performance of the immunosensors is assessed and characterised by 
challenging it with detection of virus and antibody target analytes in diluted serum and 
in whole serum. The sensor is challenged to discriminate between disease positive and 
disease negative serum samples from both TI and PI calves. BVD assay time-to-result is 
typically ~20 minutes demonstrating the potential of these nanoband electrochemical 
immunosensors for use in future on-farm diagnostic applications.

Material and methods

Materials and Reagents

BVDV-1 monoclonal antibody (RAE0823), specific to the envelop glycoprotein Erns was 
purchased from APHA Scientific, Weighbridge, UK. Recombinant Purified BVDV-1 Erns 
protein (BVDR16-R-10) was purchased from Alpha Diagnostic International. Serum 
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samples from BVDV PI’s, BVDV negative, BVDAb seropositive and BVDAb seronegative 
animals were provided by Teagasc (Moorepark, Cork, Ireland). Acetate buffer (10 mM; pH 
4) and ethanolamine-HCl (1mM) were obtained from Sierra Sensors GmbH (Germany). 
HBS-EP buffer was prepared by mixing 10mM HEPES, 150mM NaCl, 3mM EDTA and 0.005% 
Tween-20 in DI water and adjusted to pH to 7.4 with 5% sodium hydroxide solution. All 
other reagents were purchased from Sigma Aldrich unless otherwise stated and used as 
received. Deionized water (resistance 18.2 MΩ cm-1) was obtained using an ELGA Pure Lab 
Ultra system. 

Chip Design and Fabrication

Fabrication of the chips were similar to those described by Dawson (Dawson et al., 2014). 
Gold nanoband electrodes were fabricated on four inch wafer silicon substrates bearing 
a ~300 nm layer of thermally grown silicon dioxide. Nanoband electrodes and wafer level 
optical alignment marks were first fabricated using a combination of optical lithography, 
metal evaporation (Ti 5 nm /Au 50 nm Temescal FC-2000 E-beam evaporator) and lift-off 
techniques to yield well-defined, stacked metallic (Ti/Au) nanoband (700 nm width, 50 nm 
height, 80 µm length) structures. Each chip consisted of six nanoband working electrodes 
(WE) spaced 800 µm apart. A second optical lithographic and metal deposition (Ti 10 
nm/Au 100 nm) process, aligning to the as-deposited wafer level alignment marks, was 
then undertaken to define a MicroSD pinout, interconnection tracks as well as counter 
and reference electrodes (500 µm wide x 10 mm long), see Figure 1 (a) and (b). Finally, 
a third optical lithographic and metal deposition and lift-off process was undertaken, 
in a similar manner, to define the pseudo reference platinum (Ti/Pt 10/90 nm) reference 
electrode. In this work, an on-chip microSD style electrical pin-out was included to permit 
facile electrical connection to external electronics. In this manner, chips could be easily 
swapped in and out enabling rapid analysis of multiple samples. A custom built cell was 
designed and fabricated so that when screwed together, the microSD primary contact 
pads protruded out of the holder to allow connection with a PCB mounted microSD port, 
see Fig. 1 (c).

Electrical characterisation

Electrochemical experiments were carried out using an Autolab Potentiostat/ Galvanostat 
PGSTAT128N (Metrohm Ltd, Utrecht, The Netherlands) controlled by the Autolab NOVA 
software. Each sensor working electrode were characterised by Cyclic voltammetry (CV) 
and faradaic electrochemical impedance spectroscopy (EIS), in a 10 mM PBS solution (pH = 
7.4) containing 1 mM FcCOOH. For CV, the potential was cycled from -200 mV to +600 mV 
versus the on-chip platinum pseudo reference electrode at a scan rate of 100 mV/s. The 
impedance measurements were performed over the frequency range from 100 mHz to 100 
kHz at equilibrium potential of the FcCOOH (200 mV). The amplitude of the alternating 
voltage was 5 mV. All experiments were performed at room temperature in a Faraday cage. 

Procurement of serum samples

Serum samples from BVDV PI’s and uninfected animals have been acquired in Ireland 
since 2008. Samples were collected (under license from the Health Products Regulatory 
Authority, Ireland, project number AE19132/ P044) by jugular venipuncture in calves and 
coccygeal venipuncture in cattle over six months of age. All samples were archived at -80 
ºC and were subsequently made available to this study. Concerning viral analysis, BVDV 
infected individuals ranged in age from one week to four years, while BVDV negative 
individuals ranged from one week to nine years of age. Sera used in this study for virus 
detection, were first assayed in a commercial analytical lab using both AnDiaTec BoVir real 
time PCR kit (Kornwestheim, Germany) (2008 and 2009 samples) and the IDEXX BVDV PI 
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X2 Test (Maine, USA) (2010–2017 samples). Animals were classified as a PI if tested positive 
for BVDV on at least two occasions separated by an interval of at least three weeks. 

Concerning antibody detection, BVDAb seropositive and seronegative samples were 
available from a Teagasc research project investigating the persistence of BVD antibodies 
in calves post-colostrum feeding. Sera used in this study for Ab detection were first assayed 
in a commercial analytical lab using IDEXX BVDV p80 Ab Test (Maine, USA) and results 
used to assign BVD serostatus to all samples.

Nanoband Electrode Biomodification

All chemical and bio modification steps were performed using the prefabricated chip 
holder and the PCB mounted microSD port to connect the chip to the external potentiostat. 
Cyclic voltammetry was then employed for electropolymerisation of o-aminobenzoic acid 
(o-ABA, 50 mM in 0.5 M H2SO4) to create a carboxylic terminated polymer layer at a gold 
electrode surface. An electrode was cycled eight times in the applied potential range of 
0–0.8V at a scan rate of 50 mV/s. The first CV cycle displays an oxidative peak around 
0.32 V corresponding to the formation of the polymer on the gold electrode subsequent 
scans, characteristic of the deposition of the o-ABA polymer on the gold surface. A fresh 
mixture of 1:1 EDC/NHS (75 mg/mL EDC and 11.5 mg/mL NHS) was then prepared in DI 
water and deposited onto a chip for 20 minutes to activate the carboxylic acid (COOH) 
surface. Working electrodes were coated with capture biomolecules and allowed incubate 
for one hour at 4 ºC to allow covalent attachment to the electrode surface. Following this 
immobilization, electrodes were rinsed well with acetate buffer solution containing 0.1% 
Tween-20 (AB-T) and DI water and the un-reacted active sites were blocked by immersing 
in 1M ethanolamine HCl, pH 8.5 for 20 mins. Impedance measurement following this 
step were undertaken and considered as the “baseline” for on-chip sensors. To undertake 
analysis, as-modified electrodes were exposed to target solutions (BVDAb or BVDV) by 
‘spotting’ 2 µL aliquots onto the electrode for 10 minutes incubation at room temperature. 
Electrodes were rinsed thoroughly with HBS-EP buffer and DI water to remove non-
specifically bound target biomolecules prior to subsequent electrochemical measurement. 
Control experiments were undertaken, at appropriately bio-modified electrodes, using 
serum samples known to be negative, i.e. extracted from zero month healthy calves. 
In a similar manner, negative control samples were spotted (2 µL) serum test samples 
were spotted onto different electrodes on the same chip. All data were fitted using an 
equivalent circuit and experimental data were background subtracted using the values for 
the ethanolamine baseline as defined. 

For antibody detection, electrodes were modified using with BVDV-1 Erns antigen as the 
capture biomolecule. A concentration of 100 µg/mL (acetate buffer, pH 4) was prepared, 
deposited and allowed incubate for one hour at 4 ºC. BVDAb detection was then investigated 
in two samples: (i) BVD seropositive samples diluted with HBS-EP; in the range of 0.1–10% 
serum, and (ii) BVD seropositive and seronegative undiluted serum samples from one 
month old calves along with their corresponding pre-colostral negative sample (0 month). 
The spotting technique, described above, was employed to test negative control and 
positive sample on the same chip (n = 3). Further experiments were undertaken by pooling 
three seropositive (one month) samples and three seronegative (zero month) samples. All 
serum samples were incubated on an electrode for a total ~10 minutes.

For virus detection, electrodes were modified using BVD monoclonal antibody, specific 
to Erns antigen, as the capture biomolecule (100 µg/mL, acetate buffer, pH 4); incubated 
for one hour at 4 ºC. The Erns structural protein is a model diagnostic antigen because 
Erns is readily secreted from infected cells during virus replication at an adequate 
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concentration for serological testing (Kuhne et al., 2005; Aberle et al., 2014). BVDV detection 
was investigated again using two solutions of increasing biological complexity. (i) BVDV 
positive and virus negative samples diluted with HBS-EP; in the range 0.1–10% serum, and 
(ii) BVDV positive (PIs) and virus negative control (0 month) undiluted sera samples. The 
spotting technique, described above, was again employed to test one negative and one 
positive sample per chip (n = 5). All serum samples were incubated on an electrode for a 
total ~10 minutes. 

Results and discussion

Electrode Characterisation

An optical micrograph of a sensor chip is shown in Figure 1 (a). Each chip contained six 
separate nanoband working electrodes and gold counter and platinum pseudo-reference 
electrodes. A microSD pinout was implemented to allow facile and rapid interconnection 
with external instrumentation. Figure 1 (b) shows an optical micrograph of a single fully 
passivated single nanoband electrode (700 nm in width). The width of the passivation 
window opening (central dark rectangle) defined the exposed electrode length at 45 μm. 
Figure 1 (c) shows a sensor chip in a chip holder, prior to inserting the microSD pinout into 
a PCB mounted microSD connector. The well in the centre has a volume of ~100 µL, sealed 
onto the chip using an o-ring, and aligned over the on-chip sensor electrodes. 

Figure 1. (a) Picture of fully integrated silicon sensor chip. (b) Optical micrograph of the single 
nanoband working electrode with dark passivation window. (c) Electrochemical setup with sensor 
chip and a PCB microSD connector

Electrodes were first characterised using cyclic voltammetry and electrochemical 
impedance spectroscopy, in presence of 1 mM FcCOOH redox probe. Figure 2 (a) shows a 
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typical CV voltammogram obtained using a pristine cleaned nanoband electrode exhibiting 
a quasi-steady-state behaviour, as expected (Dawson et al., 2012; Wahl et al., 2014). This 
steady-state behaviour is ideal for EIS and helps to correct for drift in the system. Faradaic 
impedance spectroscopy was performed on pristine gold electrodes and a typical Nyquist 
plot (real Z’ vs imaginary Z’’ impedance), is presented in Figure 2 (b). The experimental 
data (blue dots) presented in Figure 2 (b) were fitted with an equivalent Randles circuit 
(Figure 2 (b) inset) modelled using the NOVA software. This fit data (solid line) overlays the 
experimental data (dots) extremely well, confirming the efficacy of the selected equivalent 
circuit components and defined values. When the nominal size of the working electrode 
is reduced, such as for the nano-size electrodes employed in this study, mass transport 
increases, and thus the current is no longer dominated by the diffusion of the redox ions 
toward the WE (Madou and Cubicciotti, 2003). As a result, the mass transfer dominated W 
becomes negligible and the Randles circuit can be simplified to a simple RC circuit.
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Figure 2. (a) ycliCc voltammogram of a gold nanoband electrode obtained in 1 mM FcCOOH in 10 mM 
PBS, pH 7.4, in the potential range of -0.2 V to 0.5 V at 100 mV/s. (versus on-chip platinum RE). (b) 
Nyquist plot for a clean gold electrode 0.1 mHz to 100 kHz

Detection of BVD in Diluted Serum

Both BVDAb and BVDV detections were first performed in diluted serum as a model 
immunoassay. The BVD Ab-virus complex can be considered as a coating film which 
provides a significant impedance response at the required sensitivity. A modified equivalent 
circuit, to account for the additional electrode bio-layers, was used to fit the results. Virus-
modified sensors were applied to detection of BVDAb in diluted bovine sera of known 
disease state i.e. BVDAb seropositive and seronegative samples. Reverse experiments were 
also undertaken where antibody-modified sensors were employed for the detection of 
BVDV in virus positive and virus negative sera samples.

Antibody detection in Serum

Figure 3 (a) shows the nyquist diagrams, in presence of 1mM FcCOOH, of an electrode surface 
following modification and spotting of different dilutions of seropositive samples (0.1–10% 
serum). This dilution range was selected as it corresponds to the maximum dilution permitting 
the BVDAb detection with the ELISA (IDEXX) after 1 h incubation of the positive infected 
serum sample. The nyquist of 0.1% dilution (orange plot) does not reveal any measurable 
increase in the impedance ~140 MΩ versus the ethanolamine curve ~130 MΩ. Incubation 
with 0.5% serum sample leads to an increase in the impedance to ~200 Ω (red plot. Analysis 
of 0.2%, 0.3%, 1%, 5% and 10% sera shows an incremental increase in the impedance as the 
concentration of the antibody increased, exhibiting a semi-log relationship, see Figure 3(b). 
The observed changes in the nyquist spectra can be attributed to the binding of BVDAb to 
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the modified electrode. To explore the specificity of the modified sensors against BVDAb’s 
and to assess the presence/degree of non-specific binding, control experiments were also 
undertaken using different electrodes on the same chips spotted with BVDAb seronegative 
samples. Following incubation, slight increases in the impedance, versus the ethanolamine 
curve were observed, arising from slight non-specific binding, see Figure 3 (b). Error bars 
represent six replicates. However, these data show that there is clear discrimination between 
BVD seropositive and seronegative bovine samples particularly at low dilution, i.e. 10% serum. 
This data strongly suggests that the sensors should be sufficiently sensitive and selective 
enough to discriminate between seropositive and seronegative in undiluted serum. 
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Figure 3. BVD antibody detection: (a) Nyquist plots obtained of virus modified gold nanoband electrode 
when exposed to different concentration of antibody (dilute sera samples). (b) Semi-log relationship 
of the charge transfer resistance versus virus concentration (n = six replicates). BVD virus detection: 
(c) Nyquist plots obtained of antibody modified gold nanoband electrode when exposed to different 
concentration of virus (dilute sera samples). (d) Semi-log relationship of the charge transfer resistance 
versus virus concentration (n = six replicates)

Virus Detection in Serum

In a similar manner, assays were undertaken to assess virus detection in diluted serum. 
Positive PI and virus negative control sera were spotted on different BVDAb modified sensors 
on a chip. Figure 3 (c) shows the impedimetric response for BVDV in 0.1 -10% diluted sera, 
measured for virus positive sera. All nyquist data were fit using the Randles-type circuit 
as described previously. An incremental increase in the impedance was observed, as the 
concentration of the virus is increased (decreasing dilution). The virus detection exhibits a 
larger impedance value (~600 – 1,700 MΩ, Fig. 3 (c)) compared to antibody detection (~200 
– 800 MΩ, Figure 3 (a)), suggesting that binding of large BVDV to the modified electrode 
sterically hinders the electron transfer. Figure 3 (d) shows a semi-log relationship between 
virus concentration and measured signal. Error bars represent six replicates. This data 
verifies that the virus positive response arose from the binding of BVDV to the modified 
surface and demonstrates the potential for virus detection in undiluted serum. 
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Detection of BVD in Bovine Whole Serum Samples at MicroSD Devices

Antibody detection in Serum 

A number of sensor chips were modified with virus (10 µg/mL) to test for BVDAb in pooled 
and unpooled seropositive and seronegative samples. Typical EIS measurements for the 
detection of BVDAb in a single calf (No. 8,954) obtained at time 0 month, and one month 
are presented in Figure 4 (a). Data from the seronegative sample produced an electrode 
impedance of ~350MΩ, a ~30 MΩ increase compared to the baseline attributed to small 
amounts of non-specific binding (green plot). A significant increase in impedance was 
observed, however, following incubation with a seropositive sample ~800 MΩ (red plot). 
This increase may be attributed to binding of the BVDAb’s present in the serum to the 
viral modified electrode surface. Figure 4 (b) shows experimental background subtracted 
Rct EIS data in a bar chart format, obtained for a number of individual and pooled samples 
when undertaking BVDAb detection in seronegative and seropositive samples. Zero 
month samples (known to be seronegative) for an individual calf or pool are shown as 
dark green bars. These zero month samples all exhibited very low impedance (< 250 MΩ) 
for antibody detection, as expected. One month seronegative samples for two individual 
calves are presented as light green bars. The small difference in impedance values the 
zero and one month samples may be attributed to slight variation in the degree of non-
specific adsorption and in electrode preparation. However, a clear increase in the electron-
transfer resistance (> 800 MΩ) red bars is observed between the negative controls and both 
individual and pooled seropositive samples, (time to results 20 minutes). 
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Figure 4. (a) Nyquist plots of seropositive and seronegative blood deposition on BVDV (10 μg/mL) 
modified microelectrodes, in the presence of 10 mM PBS containing 1 mM FcCOOH. (b) Bar chart 
comparison of seropositive and seronegative samples and their respective control samples. (c) Nyquist 
plots of a virus negative and virus positive PI serum, deposited on a BVDAb modified chip (measured 
in the presence of 1 mM FcCOOH). (d) Bar chart showing PI serum and virus negative serum samples. 
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Virus in Serum

Sensor chips, modified with monoclonal BVDAb (10 µg/mL), were then employed to test 
for the presence of BVDV in PI calf whole serum. Nyquist plots, illustrating detection of 
BVDV positive serum (from PI calf 4,334) and BVDV negative serum (from 0 month calf 
8,946) are shown in Figure 4 (c). The deposition of BVDV negative serum 8,946 shows an 
Rct of ~600 MΩ, which increased slightly following the ethanolamine baseline, Figure 4 (c) 
green plot. On a separate electrode on the same chip, the target virus positive PI serum 
was immobilised and an increased Rct value was measured ~1,600 MΩ. In total, five BVDV 
negative samples (green) and five BVDV positive PI samples (red) were examined and the 
Rct value measured, Figure 4 (d) (time to results 20 minutes). The chart in Figure 4 (d) shows 
the background subtracted Rct data for these assays. As expected the virus negative sera 
exhibited minor NSB binding to the electrode (<400 MΩ), whereas the target seropositive 
one month samples present a significant increase in the electron-transfer resistance (> 
800 MΩ). These results demonstrate there is successful serological binding of the BVDAb 
to the immobilised viral protein. The results presented above clearly demonstrate that the 
nanoband sensors have sufficient sensitivity and specificity for detection of both target 
antibody and virus detection in serum. The findings are of particular significance for on-
farm point of care applications where high sensitivity and specificity and low time-to-
result, are required to permit early diagnostics by veterinarians. 

Benchmarking against ELISA 

ELISA tests were performed using a commercial BVDV p80 Ab detection kit for the detection of 
specific antibodies directed to bovine viral diarrhoea virus (IDEXX, UK). Briefly, the p80 modified 
ELISA plate of the kit was exposed to the serum samples diluted (10%) in the commercial 
dilution solution. The conjugate was diluted (with the provided solution) and incubated in 
the plate for 30 minutes at room temperature. After washing, a chromogenic substrate was 
added for 20 minutes in dark room at room temperature. Finally, the reaction revealing the 
conjugate was stopped using the commercial stop solution and the absorbance value was 
read at 450 nm using an ELISA plate reader (DIASource, Belgium). All of the impedimetric 
results were compared with and were fully in agreement with their respective The findings 
are of particular significance for on-Farm point of use applications where high sensitivity and 
specificity and low time-to-results, are required to permit early diagnostics by veterinarians. 

Conclusions

We present new sensor chips that comprise six on-chip nanoband electrodes, integrated 
counter and pseudo reference electrode and a micro SD style pin-out connection to 
facilitate facile connection to external circuitry. Biomolecules were immobilised at 
nanoband electrodes using an electrodeposited polymer anchor layer followed by EDC 
based covalent coupling of capture probe material to provide a bio-modification process 
that could withstand cleaning protocols without degradation. Appropriately modified 
sensors were challenged with their target analytes in two different media with increased 
levels of biological complexity. In both cases, the sensors exhibited excellent specificity 
easily distinguishing between positive and negative samples while also exhibiting a semi-
log linear dependency between concentration and increase in charge transfer resistance. 
Concerning whole serum, the sensors were benchmarked and in all cases were in agreement 
with commercial ELISA laboratory results. These proof-of-concept studies in sera samples 
are very promising in that they show clear differentiation between BVD (antibody and virus) 
positive and negative sera samples. The nanoband sensors demonstrate the capability to 
detect both virus and antibodies in whole serum, which is an essential prerequisite for 
on-farm BVD serological screening and surveillance. The short measurement times ~20 
minutes also satisfies the time requirements for on-farm analysis. 
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Abstract 

Audio-based sensor systems hold the potential to remotely differentiate the primary 
etiology of clinical episodes of respiratory disease. The purpose of this project was 
to evaluate the ability of an audio-based sensor system to classify patterns of clinical 
respiratory disease in growing pigs according to their primary etiology under large-scale 
commercial production conditions. 

Audio sensor devices were installed in three large commercial wean-to-finish facilities 
designed to house 1,200–2,400 pigs per airspace. An algorithm-based respiratory distress 
index (RDI) was continuously generated from recorded sound files and uploaded to a cloud 
database. The data were charted and patterns of cough were categorised. For each RDI 
episode, diagnostic samples were collected and tested by PCR for PRRS, IAV-S, Mycoplasma 
hyopneumoniae, PCV2 and parainfluenza. Episodes were aligned with their corresponding 
diagnostic results and the resulting aggregate cough patterns were characterised. Two 
RDI patterns were detected across the three farm sites, one associated with IAV-S (H1N1 
or H3N2), and another associated with Mycoplasma hyopneumoniae. IAV-S associated 
RDI patterns had a distinctive bi-modal shape, whereas the pattern associated with 
Mycoplasma hyopneumoniae showed a gradual relatively linear rising pattern. The ability 
to classify cough patterns by primary etiology is useful at both a local site and global 
aggregate levels. With this information, local site managers can better adjust and respond 
with more timely, appropriate diagnostics and treatment. Further, those responsible for 
flows/systems and areas/networks can better assess larger scale behaviour of specific 
disease agents and the clinical impact of intervention and control protocols. 

Keywords: cough patterns, respiratory distress 

Introduction 

Producers and veterinarians routinely rely on both observation and data to make clinical 
assessments of farms and animals, as well as conduct diagnostic investigations to uncover 
causes and contributing factors of what they judge to be economically and welfare 
relevant clinical health issues. During the workday and farm walk-through visits, farm 
personnel and veterinarians use various visual and audio cues to assess the animals and 
their environment and interpret the cues. Also, recorded daily farm data and production 
records are reviewed and interpreted to augment observations. 

Skills in assessment and interpretation of visual and audio cues, as well as of recorded 
farm data typically improve with experience. However, these activities can be time-
consuming, and are problematic where availability of enough skilled and experienced 
labour is often a major constraint. Further, the period of animal observation is constrained 
to typical workday hours, leaving substantial time each day that animals are not observed 
during at least two-thirds of each weekday as well as by reduced numbers of staff during 
weekends and holidays. These dynamics can serve to delay detection of clinical health 
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and performance issues, and, in turn, delay interventions – risking welfare, productivity 
and profitability. 

Important audio cues come in the form of sounds like coughing and sneezing of pigs. Sound 
in the form of cough has been researched for use as a semi-manual clinical assessment 
and quasi-diagnostic tool (Bahnson et al., 1994; Morris et al., 1995; Nathues et al., 2012). 
Further, the routine quantification of cough via use of smart devices and an app under 
commercial conditions has been evaluated for more objective clinical assessment and to 
better direct diagnostic investigation (Schagemann et al., 2016). While useful, the manual 
collection of cough data can be problematic under commercial operational conditions. 
Even when aided by current technologies such as smart phones or tablets and an app, the 
manual collection of cough data along with management, analysis and interpretation can 
be time-consuming and require adherence to an execution protocol. Also, while applying 
a systematic process and related algorithm is more objective than a traditional herd walk-
through, a degree of subjectivity still remains where farm production personnel and/or 
veterinarians are counting coughs. 

The need for, value of and various forms of automated and objective assessment and 
quantification of pig health and welfare have been described, including various categories 
of technologies useful for these purposes (Matthews et al., 2016). These sensor and device 
technologies, utilised within the framework of a coordinated real-time system, can 
collectively be called “Precision Livestock Farming”. Precision Livestock Farming (PLF) has 
been defined as: “…to manage individual animals by continuous real-time monitoring of health, 
welfare, production/reproduction, and environmental impact.” (Berckmans, 2017). As a deliverable 
for the four year EU-PLF project, a “blueprint” for implementation of PLF has been outlined 
and developed, including descriptions of some PLF technologies (Guarino et al., 2017). 
Various PLF-oriented technologies have been researched, including sound (VanHirtum & 
Berckmans, 2002; Guarino et al., 2008). Further, in recent years commercial sound-oriented 
PLF technologies have begun to be evaluated in commercial settings (Finger et al., 2014; 
Genzow et al., 2014a; Genzow et al., 2014b; Hemeryck et al., 2015; Polson et al., 2018). 

The early detection of clinical respiratory disease in growing pigs can contribute to improved 
productivity and profitability through enabling earlier more effective treatment. While 
clinical disease detection is the direct responsibility of farm personnel detection of clinical 
disease onset across multiple farms and systems can be problematic due to variation in 
their skill, experience and time spent in the farm. Continuous sound monitoring systems 
can complement and enhance farm personnel and veterinary observation for detection of 
clinical episodes of respiratory disease. Such systems have been shown to detect the onset 
of clinical respiratory disease earlier than farm personnel, and hold the potential to do so 
earlier with greater consistency, reliability, objectivity and precision (Berckmans et al., 2015). 

To assess the utility of sound as a “sample” type in swine for the detection and 
characterisation of clinical respiratory disease, an audio device, sensors and software 
platform designed to monitor respiratory distress in pigs were evaluated (SOMO+, 
SoundTalks NV, Leuven, Belgium). The objectives of this evaluation were to: 

•	 Assess the ability of the SOMO+ system to reliably detect the onset and directionality 
of clinical respiratory disease of growing pigs under large-scale commercial production 
conditions

•	 Assess the ability of the SOMO+ system to classify patterns of clinical respiratory 
disease in growing pigs according to their primary etiology under large-scale 
commercial production conditions 
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Materials and methods 

Three different farm sites / systems were enrolled in the project. Pigs were placed into 
facilities per normal practice. Cough monitors (SOMO+ Respiratory Distress Monitor, 
SoundTalks NV, Leuven, Belgium) were obtained and installed in three large commercial 
wean-to-finish facilities designed to house 1,200–2,400 pigs per airspace (Figure 1). 
Five devices were installed in each of the two 1,200 head buildings, spaced equidistant 
from each other along the center alleyway. In the 2,400 head building, 11 devices were 
installed, with four devices over the middle of the pens on each side of the building spaced 
equidistant from each other and three in the central alleyway spaced equidistant from 
each other. 

Once installed, the SOMO+ devices continuously monitored temperature using two 
sensors and humidity using one sensor. Also, each device had one connected microphone 
continuously recording sound. An algorithm was applied to the continuous stream of 
sound and classified specific sound events as coughs. The sound events classified as 
coughs were then counted, with the counts uploaded to a cloud database with a web 
user interface. A mobile app was used to monitor the SOMO+ devices remotely from a 
smart device (e.g. smart phone or tablet). An algorithm-based respiratory distress index 
(RDI) was continuously generated from the recorded sound files and cough counts, and 
was accessible via the web and app interfaces for monitoring and evaluation of various 
dynamic visualization tools, including summary tables and charts. 

Figure 1. Placement of SOMO+ devices to determine optimal detection zone size, number and 
configuration to maximise cough detection and directionality determination 
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RDI’s were continuously monitored and alerts were automatically sent to pre-determined 
personnel when a significant rise in RDI was detected by the system’s algorithm. When 
an RDI alert was generated, diagnostic samples were collected via cotton rope-origin 
oral fluid sampling and/or laryngeal swab sampling and tested by PCR for PRRS, IAV-S, 
Mycoplasma hyopneumoniae, PCV2 and parainfluenza. RDI episodes were aligned with 
their corresponding diagnostic results using event creation and tracking tools available 
via the web site interface. The resulting aggregate cough patterns were then characterised 
according to the diagnostic results. Other personnel observations representing “notable 
events” were recorded for each barn airspace and site using tools available via the web 
site interface. 

Results and discussion 

RDI episodes were detected across the three farm sites, including: IAV-S (H1N1), IAV-S 
(H3N2), and Mycoplasma hyopneumoniae (Figure 2). Diagnostic testing of oral fluid samples 
and laryngeal swabs by PCR and sequencing confirmed the presence of IAV-S (H1N1), IAV-S 
(H3N2) and Mycoplasma hyopneumoniae for the three RDI episodes, respectively. PRRS 
PCR testing results were negative for all samples collected at all three RDI episodes. 

Two distinctive RDI patterns were detected across the three farm sites, one associated 
with IAV-S (H1N1 or H3N2), and another associated with Mycoplasma hyopneumoniae. 
IAV-S associated RDI patterns had a distinctive bi-modal shape, whereas the pattern 
associated with Mycoplasma hyopneumoniae showed a gradual relatively linear rising 
pattern. These observations were generally consistent with those described in prior work 
using the SoundTalks technology (Genzow et al., 2014a; Genzow et al., 2014b). The detection 
of the respiratory disease episodes by the SOMO+ Respiratory Disease Monitor ranged 
from an estimated 2-5 days earlier than detection by farm personnel, consistent with the 
observations of Berckmans et al. (2015). 

Figure 2. Example of a Respiratory Disease Index (RDI) chart with temperature and humidity data 
from a 2,400 head wean-to-finish barn experiencing clinical episodes of Influenza and Mycoplasma 

The ability to use a combination of RDI data and diagnostic testing results to classify 
cough patterns according to primary etiology is useful at both a local site and global 
aggregate levels. With this information, farm personnel and area/flow field managers can, 
over time, learn to better adjust and respond with more timely, appropriate diagnostics 
and treatment. Further, those responsible for overall business entity flow-level operations, 
as well as inter-business areas/networks can better assess larger scale behaviour over time 
of specific disease agents and the clinical impact of intervention and control protocols. 

The ability of the multiple device configuration to determine directionality of RDI episodes 
was assessed. The directionality of the onset and progression of the IAV-S (H1N1) and 
Mycoplasma hyopneumoniae episodes throughout the 2,400 head barn were evident in 
the data (Figure 3). 
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Figure 3. Example of the ability of a configuration of multiple SOMO+ devices to determine spatial 
directionality of the onset of cough episodes 

Each device represents an 18-20 meter diameter sound detection “zone”. Within the 
footprint of an airspace, the detection and directionality of cough is then a function of 
the square meters covered by the “zones” out of the total possible square meters in that 
contiguous airspace. As such, the detection, directionally and movement (ebb and flow) of 
RDI episodes through the airspace are made possible, enabling better characterisation and 
understanding of respiratory disease behaviour. 

Conclusions 

Monitoring the health and performance of growing pigs by using audio-based devices and 
sensors to capture, quantify, assess directionality of and categorise sound events such as 
coughing can enable earlier and more precise detection of relevant clinical episodes, and 
result in more timely and targeted intervention. In doing so, the impact of respiratory 
disease on animal welfare and performance can be better minimised and the related 
financial impact can be better reduced, enabling optimisation of profitability. 
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Abstract

Signal feeding – an automated operant conditioning for acoustic signals that indicate the 
individual availability of feed – has been shown to be an effective cognitive environmental 
enrichment for group housed pigs. Moreover, it reduced queuing behaviour and the 
number of severe lesions in a dynamic large group in a previous study. However, the 
previous studies trained the pigs within small groups of not more than 12 sows and 
used an electronic feeding station which could identify pigs at the entrance. In addition, 
they did not report the effect of the training itself on lesion incidence. The present study 
was conducted to validate the earlier results at a conventional livestock farm. Here, the 
training was performed within a group of up to 35 sows and with a feeding station which 
identified sows at the trough only. The training of the whole group required, in total, 180 
days. First results show that signal feeding works under common practical conditions 
but might lead to more skin lesions during the period of transitioning from conventional 
electronic feeding to signal feeding. The associated higher level of aggressive encounters 
had however no significant effect on the rearing performance. Continued observations 
of further gestations will show whether the consolidation of the conditioning leads to a 
general reduction of aggressive encounters especially at group mixing. This might result 
in an easier integration of younger sows, which could be associated with an increased 
conception rate or improvement of the breeding results and would make signal feeding 
cost-effective in practical applications.

Keywords: signal feeding, automated operant condition, group housing, gestating sows

Introduction

Signal feeding (Manteuffel et al., 2011) is a feeding technology that uses automated operant 
conditioning for individual acoustic signals to provide cognitive enrichment to group 
housed pigs (Ernst, 2008; Zebunke et al., 2013) and reduce feeding associated aggression in 
sows (Kirchner et al., 2012). The latter suggests that signal feeding can be used to improve 
housing conditions for group housed gestating sows. However, until now it has only been 
evaluated with small groups of pigs or in a highly enriched environment using a feeding 
station type that could identify pigs already in front of its entrance. In addition, long term 
economic effects justifying the additional investment for signal feeding are still unknown. 

This paper presents first results of a study implementing signal feeding at a commercial 
pig breeding farm. The study aim is to quantify the economic effects of signal feeding 
under practical conditions. For the first time the operant conditioning is performed within 
a large group of sows using a commercial feeding station able to identify pigs at the trough 
alone. The current results relate to the first phase of the validation where a gestation 
group underwent the transition from conventional electronic sow feeding (ESF) to signal 
feeding. To determine the effectivity of signal feeding in the given setup, wound scores 
were collected and the duration of the training progress was recorded.
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Methods

Animals and housing conditions

Figure 1. Feeding station and signal feeding equipment. The pia-SF signal feeding module is the touch 
panel PC mounted above the entrance. The communication relay incorporates networking equipment 
and an embedded PC for transferring information between the station controller and the signal 
feeding module

The study was conducted in a conventional commercial pig breeding farm with Danish 
Landrace × Danish Yorkshire (F1) sows. The sows were housed on partly slatted concrete 
floors in gestation pens structured with walls into bays and a main area. The pens were 
furnished according to current legal regulations and equipped with Callmatic electronic 
sow feeding (ESF) stations for liquid feed (Big Dutchman AG, Germany) (Figure 1). One 
gestation pen was additionally equipped with the upgrade module for signal feeding (pia-
SF, pironex GmbH, Germany). The pigs stayed from the 2nd until the 110th day of gestation 
in groups of about 35 sows in the compartment. Their age ranged from 2nd to 6th gestation. 
The ESF control group was a gestation group with an offset of one week in the production 
cycle housed in the same compartment.

Training procedure

All 35 sows of the signal feeding gestation group were fed at one single station 
simultaneously. This means naïve sows could acquire feed by spontaneous visits to the 
feeding station (ESF), already conditioned sows were only fed after they have been called 
(signal) and some sows had the chance to get fed both ways (training). During the transition 
of the group to signal feeding the number of naïve ESF sows continuously reduced while 
the number of signal feeding sows within the group increased. The operant conditioning 
to individual acoustic signals was performed within the group of 35 sows for up to eight 
training sows. The sows were selected based on their social rank starting with medium 
ranked sows. This approach ensured that the sows in training had a sufficiently high rank 
to visit the feeding station more than once per day but not that high that they would block 
the access for other sows completely. The training was aborted if the sow did not retrieve 
feed for more than 24 h. It was finished successfully if the sow reached a precision of 
more than 40% or the training lasted longer than 16 days. When the training was stopped 
for one sow it was started for another ESF sow. Sows that were considered conditioned 
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but did not retrieve feed for more than 24 h were put back into training mode. Hence the 
ability to retrieve feed was taken as ultimate benchmark for a successful conditioning. 
The training was conducted as a mix of spontaneous and scheduled feed access. During 
the first four days of training a Pavlovian condition was performed to accustom the sows 
to their signals. The time share for spontaneous feed access opportunities was reduced 
gradually depending on the individual learning progress of the sows to ensure sufficient 
feed supply during the training (Manteuffel et al., 2011). In order to ensure feed access for 
naïve low ranking sows, calling a sow for scheduled feeding was aborted if a naïve sow 
with remaining feed was detected within the station. Because it was anticipated that the 
training procedure involves an increased stress burden, the training of naïve sows started 
after the 28th day of gestation, when the conception was secure. At this time also sows not 
pregnant were removed from the group. Sows were called for feeding from the first day on 
if they were considered conditioned. 

Data analysis

Information on the number of naïve and trained sows was automatically recorded by the 
signal feeding software. Wound scores were obtained by visual inspection of the sows in 
the signal feeding group and the ESF control group using the definitions of an earlier trial 
(Kirchner et al., 2012). The breeding results were taken from the regular documentation 
of the farm. Statistical analyses were performed using SAS/STAT software, Version 9.4 
of the SAS System for Windows using the GLIMMIX procedure (SAS Institute Inc. 2012). 
For the count response variables (born alive, dead at Day 1, dead until Day 28) a Poisson 
model (distribution = Poisson, link = log) was used with the fixed effect treatment (ESF, 
signal). The count response variable (wound score sum) was analysed for the fixed effects 
repetition (1-3), age (2nd-3rd gestation, > 3 gestations), treatment (ESF, signal), time in days 
(5, 22, 43, 64, 92) and their interactions. Repeated measures on the same animal were 
taken into account by the residual option in the random statement.

Results

Figure 2 depicts the training progress for the 28-35 sows of the signal feeding group. During 
the operant conditioning the sows had to learn to use their acoustic signal as an indication 
for feed access by entering the feeding station more frequently and testing if they get 
fed. All sows of the group were successfully conditioned to individual acoustic signals 
after a total of 180 days. Completing the operant conditioning for a single sow effectively 
took between 20–30 days. This was considerably longer than previously observed for small 
groups (Manteuffel et al., 2010). 

The transition to signal feeding tended to increase the wound score sum in general 
(treatment: F1,94 = 3.37, P = 0.069). This was evident, especially at the end of the gestation 
(gestation day × treatment: F4,328 = 7.31, P < 0.001), where more and more sows passed 
through the training procedure but had not consolidated their conditioning yet (Figure 
3 / t328 = 3.67, P < 0.05). In addition, younger pigs had in general a higher wound score 
sum (age: F = 9.3, P < 0.05) and the wounds reduced during the gestation in both groups 
(gestation day: F4,328 = 50.51, P < 0.001). The analysis of the wound score showed significant 
repetition effects (F2,93 = 16.52, P < 0.001) in both the control and the signal feeding group.
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Figure 2. Training progress within two gestation periods. The ESF curve represents the number of 
naïve sows. Additional naïve replacement sows enter the group with the start of the second gestation 
period. The signal curve represents the number of sows performing signal feeding, while the training 
curve indicates the number of pigs currently conditioned
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Figure 3. Sum of wound scores depending on pig age and duration of gestation. ESF bars represent 
score sums of a control group fed by conventional ESF. Signal bars include score sums of all sows in 
the signal feeding group regardless of their training status. Lighter colours represent pigs with less 
than four gestations

The increased wound score sum indicates more aggressive encounters and hence an increased 
stress burden for the signal feeding group during the training. However, this did not affect the 
breeding results of this group. Both the signal feeding and the conventional ESF group yielded 
identical numbers of piglets born alive and losses during birth and lactation (Figure 4).
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Figure 4. Average rearing performance for the two gestation periods required for the transition to 
signal feeding. EFS bars represent the results of the separate ESF control group. The signal bars include 
the breeding results of all sows in the signal feeding group regardless of their training status

Discussion

The study shows that it is possible to perform an operant conditioning of adult sows for 
individual acoustic signals under the conditions of intensive livestock farming. However, 
the training took considerably longer than in previous studies with a different station type 
and smaller groups (Manteuffel et al., 2010; Kirchner et al., 2014). This finding is consistent 
with previous results, which found a reduction and slower improvement of the sows’ 
classification competence when they were moved from a small to a large group (Manteuffel 
et al., 2013). Presumably, the reaction of the conditioned sows is more encumbered the 
larger the group becomes, because more high ranking sows occupy the feeding station 
(Manteuffel et al., 2010) or perform blank visits without feed allowance. Beside rank effects, 
effects from the liquid feeding system might have contributed to a prolonged training. The 
delay between detecting a sow in the station and feed dispersion with the liquid feeding 
system could be more than 30 s depending on whether feed was available in the pipes or 
the system was just flushed for cleaning. In addition, the original training procedure had 
to be altered to alleviate the feeding of naïve young sows. In contrast to previous studies, 
the present study indicates that ongoing calls of sows could be aborted regardless of their 
reaction to allow the feeding of naïve sows that entered the station during the call. This 
variation in behaviour outcome leads to a partial extinction of the conditioning and thus, 
a longer duration until the conditioning is consolidated (Bouton, 2002).

Earlier studies found fewer agonistic interactions and a reduced number of severe wounds 
with signal feeding than the present study (Kirchner et al., 2012). There are many possible 
reasons for this difference. The feeding station utilised with the previous studies had an 
animal identification at the entrance. Hence, the pigs could determine their feed access 
much quicker and without the need to prevail over a group of other sows also wanting to 
enter the station. In addition, the training was conducted in smaller and more homogenous 
groups of younger sows at a separate training station. 

The results show significant repetition effects for the wound score. This was anticipated 
for the signal feeding group because the predominant feeding procedure changed from 
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ESF to calls during the study. However, repetition effects were not expected for the control 
group. The cause could lie in factors which affected both groups, as mainly in repetition 
three more injuries than previously occurred. A plausible cause could be weather related 
changes in the average compartment temperature. Another factor could be outages of 
the liquid feeding system, which occasionally occurred in all repetitions but might have 
different effects depending on their precise timing.

In the present study, with booth feeding regimes, younger pigs were more affected by 
agonistic interactions. This was probably due to their lower rank which made them 
more often the target of attacks (Hoy et al., 2009). Once the signal conditioning is well 
established, a reduction of queuing behaviour at the station can be expected especially 
of experienced older sows with higher social ranks (Kirchner et al., 2012). This should in 
the long term reduce the wound score of younger sows and improve their feed access. 
The further course of this study will show whether this will reduce the amount of work 
entailed in the integration of young sows. At the same time, effects on the conception rate 
and on breeding results will be evaluated to quantify the economic effects from using 
signal feeding. 

Conclusion

First results from this ongoing study show that a transition from conventional electronic 
sow feeding to signal feeding can be completed in a reasonable time frame. In contrast 
to earlier studies, the present study found more lesions in sows from the signal feeding 
group during this transition phase. A reason for this finding could be a more challenging 
learning task and a prolonged training. No significant effect from the higher lesion score 
on the rearing performance was found. The further course of the study will show whether 
a well-established signal feeding system and a consolidated conditioning of the sows will 
reduce queuing behaviour and feeding related agonistic interactions. This could ease feed 
access especially for younger replacement sows. Such an effect would reduce the work 
load for the staff and might improve the conception rate and the rearing performance of 
younger sows. This will form the basis for a detailed analysis of the economic viability of 
signal feeding. 
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Abstract

A suitable virtual fencing system could improve pasture management and decrease labour 
and costs. However, recent research has shown that cows need training in order to be able 
to understand the virtual fencing mechanism. To improve the understanding of the cows 
it was envisaged to develop a new approach that supports the learning process. As cows 
rely more on visual cues than on audio signals, we set out to look into the possibility to 
use visual cues at least for training purposes. A first prototype with dual warning signals, 
based on audio and visual cues was developed. The idea behind it was to form a cue 
consequence association between the audio cue and the electric stimulus by temporarily 
supporting the learning efforts using visual cues. Therefore, a system based on a raspberry 
pi platform was developed. As a network and communication with a higher number of 
devices is paramount, the message queuing telemetry transport protocol was used. This 
protocol is particularly suitable for machine-to-machine communication through the 
‘publish/subscribe’ functionality. Based on theoretical considerations and pretests, a 
possible luminaire design was created and simulated with a simulation software. A first 
prototype was built and tested under different light conditions. The system has shown 
initial promise. However, as the visual cues do not work in sunlight, the next step will be 
to develop an automated learning system, which could be used between dusk and dawn. 

Keywords: dairy cows, visual cues, prototype, light conditions

Introduction

A suitable virtual fencing system could improve pasture management and decrease 
labour and costs. However, recent research has shown that cows need training in order 
to be able to understand the virtual fencing mechanism (pers. experimental Obs. and 
unpublished data). To improve the understanding of the cows it was envisaged to develop 
a new approach that supports the learning process. As cows rely more on visual cues than 
on audio signals (Moran & Doyle, s.a.), we set out to look into the possibility of using visual 
cues at least for training purposes. 

Conventional fencing, especially in difficult terrain, such as in the Alps, is expensive and 
labour intensive. A low energy-consuming virtual fencing device could reduce these costs 
significantly, if it was possible to train animals in such a way, that the triggering system 
is as effective as a conventional fixed or electric fence (Umstatter, 2011). Moreover, to 
locate the animal and to transfer data connected with the animal, such as locomotive or 
feeding activity, to a server could be an additional benefit of such a device. Particularly in 
extensive systems, a monitoring system for health and welfare can reduce the workload 
of a farmer considerably. 

A virtual fence can be defined as a structure serving as an enclosure, a barrier, or a 
boundary without a physical barrier (Umstatter, 2011). So far, most research has been 
carried out developing different prototypes of virtual fencing based on a combination of 
audio warning cues and electric stimuli (Campbell et al., 2019; Umstatter, 2011). In most 
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cases, the electronic device consists of a collar with integrated GPS to track animals and a 
triggering system to control and guide them. The system determines the actual position of 
the cow. If the animal tries to cross the predefined virtual border, the system first triggers 
a warning cue and if the animal proceeds, the system triggers an aversive stimulus. Often 
GSM (Global System for Mobile Communications) technology is used to communicate 
with the collar to redefine virtual boundaries and can be almost labour free. The aim of 
virtual fencing is to control and guide cattle without using conventional fencing in order 
to save labour and material costs. 

Research so far carried out was based on the analysis of different warning cues and 
aversive stimuli (Lee et al., 2009; Umstatter et al., 2009; Umstatter et al., 2013) and has also 
shown that it is key for animal welfare to develop a training system as the animals need 
to learn how the systems works.

Therefore, we set out to develop a virtual fencing system with dual warning cues, based on 
audio and visual cues. As cattle can have greater difficulty in locating the origin of sounds, 
they will use their sight to assist them to determine the source (Moran & Doyle, s.a.). Thus, 
the aim was to a) scope out the technical options for such a system and b) to investigate 
how dairy cows respond to visual cues. The objective in the longer-term is to investigate if 
visual cues can help to teach cows how a virtual fencing system works.

Material and methods

Prototype

A first prototype collar with dual warning signals, integrating audio and visual cues, was 
developed. Based on theoretical considerations and pretests, a possible luminaire design 
was created and simulated with the simulation program OpticStudio® (Zemax, LLC, USA; 
Figure 1). Technical limitations for the luminaire had to be accounted for as the system 
had to be integrated into a collar. Limiting factors such as size, cooling system and power 
supply had to be taken into account for the choice of lamp design. 

Figure 1. Light source simulation created with the software OpticStudio® (Zemax, LLC, USA)

The lamp was designed in the shape of a parabolic mirror and made of aluminium sheet as 
seen in Figure 2. The mirror had its focal point at 1 mm and an opening of 200 mm. Eleven 
LEDs with 1 W electrical power each and 110 lm luminous flux were used and mounted 
in the focal point. A reasonable thermal management and a mobile power supply in the 
desired device size were possible with electrical power of 11 W. 
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Figure 2. The luminaire design of the prototype with 11 LEDs

An evaluation process was then carried out to select a suitable prototyping platform. 
Established prototyping platforms such as the open source platforms Arduino (Arduino 
cc. Italy), Beagle Bone (BeagleBoard.org Foundation, Michigan, USA), and Raspberry Pi 
(Raspberry Pi Foundation, Great Britain) were examined and compared with rugged and 
high quality products from Toradex (Toradex AG, Switzerland). Different requirements such 
as the possibility of wireless communication, operating system, size, energy consumption, 
audio and video signals and price were evaluated (Table 1) and graded. The grading system 
ranged from one to five, with one being the lowest score (least suitable) and five being the 
highest (most suitable). 

The ability of the selected prototyping platform to network and communicate with a 
larger number of devices was paramount. For this type of network, the message queuing 
telemetry transport protocol was used. It is particularly suitable for machine-to-machine 
communication due to the ’publish/subscribe’ functionality.

A first prototype was then built and tested under different light conditions to gather 
information on its suitability for an animal experiment. 

Test of luminaires

Five luminaires were tested under controlled conditions. The trial environment had no 
relevant light sources with measurements showing 0 lx. The luminaires were put parallel 
with a distance of 1 m to the sensor, as seen in Figure 3, and were switched on for 30 s 
before measurements were taken. The aim of this test was to give a rough assessment of 
suitability, no standard deviation was determined. 

Figure 3. The test setup for luminaires under controlled conditions
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Results and discussion

As a result of the analysis of available prototyping platforms (Table 1), Raspberry Pi 3 was 
chosen, as this system is well suited for both operating audio and visual cues. Moreover, it 
is sufficiently flexible so that it can also be used if the system or the number of components 
needs to be expanded in future. 

Furthermore, it was necessary to create a luminaire, which can produce a strong visible line 
on the ground. The development phase identified challenges, which need to be overcome. 
The test of different luminaires highlighted the importance of taking the luminaire optics 
into account as the illuminated area has a high impact on the illuminance (Table 2). The 
greater the illuminated area, the more the illuminance is reduced when using the same 
electrical power. 

The last tested luminaire (11 W LED) was developed after the measurements of the former 
luminaires were taken and showing an illuminance of 1,080 lx with 11 W and 110 lm. This 
demonstrated that with a suitable mirror a stronger line could be produced. However, due 
to technical limitations such as size, cooling system and power supply, no stronger visual 
line could be achieved. In Figure 4 a prototype collar is shown exhibiting the visual line 
which could be used as a cue for cattle. 

Table 1. Comparison of potential candidates for the prototyping platform

Requirements Arduino 
UNO

Arduino 
Zero

Raspberry 
Pi

Beagle 
Bone

Toradex 
Products

Wireless communication IEEE 
802.11 (WLAN)

2 2 5 4 5

Operating System (Linux 
preferred)

1 2 5 5 5

JavaTechnology (JRE) 1 1 5 5 5

Accessible GPIO and library for 
easy use

5 5 5 5 5

Audio output (analogue) 2 2 5 2 5

Monitor output (analogue/
digital)

1 1 5 1 5

Energy consumption (low) 5 5 2 2 2

Size (small) 5 5 4 4 3

Price - performance 5 4 3 2 2

Online help / community/ 
libraries / tutorials / example 
projects

5 4 5 4 3

Expandability 4 4 5 4 4

Total 3.3 3.2 4.5 3.5 4.2
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Table 2. Comparison of illuminance of different luminaires. The luminaire 11 W LED (in bold) was 
developed as a result of the former measurements and was used in the prototype

Luminaire description Manufacturer Illuminance

50 W Low voltage halogen bulb with 
reflector (round)

BAUHAUS Fachcentren AG 4,000 lx

10 W LED with parabolic mirror from 
garden light (round)

Self-development 550 lx

30 W LED with self-made parabolic mirror 
(oblong)

Self-development 835 lx

100 W LED with self-made parabolic 
mirror (oblong)

Self-development 3,060 lx

11 W LED with self-made parabolic mirror 
(oblong)

Self-development 1,080 lx

On a bright summer day around 100’000 lx can be measured, at a cloudy summer day 
20’000 lx and in the shade in summer 10’000 lx (Rindergesundheitsdienst Schweiz, s.a.). 
The same source states that at a cloudy winter day we can find about 3’500 lx and in full 
moon 0.25 lx. Therefore, the developed luminaire will not work in sunlight. 

However, there are circumstances when visual cues could be used. It is an option to 
develop a training system, which for example might be used at night for training purposes. 
The idea behind it is to form a cue consequence association between the audio cue and 
the electric stimulus by temporarily supporting the learning efforts using visual cues. 
After a training period the visual cues could be stopped and the cows have to rely purely 
on audio cues. Intermittently refresher trainings could be envisaged to maintain a good 
cue-consequence association. A continuous use of visual cues has also the disadvantage 
that additional power needs to be provided. It should therefore be seen as a support for 
training purposes. 

Figure 4. Prototype of a virtual fence with an integrated visual cue system
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The next step of this research will involve different visual cues being presented to cows in 
a behavioural experiment in order to gather information on their responses. For the first 
trial, a projector will be used in a defined space where the amount of lux can be controlled. 
One of the visual cues to be presented is shown in Figure 5.

Figure 5. Projected line onto a rubber surface in a dairy shed, which will be used for animal behaviour 
trials testing visual cues

Conclusions and Outlook

The prototype system has shown some promise. However, as the visual cues do not work 
in sunlight, the next step will be to develop an automated learning system, which could 
be used between dusk and dawn. Dairy cattle trials will shed some light into the responses 
of animals to different visual cues. As a next step, the responses of dairy cows to different 
visual cues, from a solid line to a flashing line, will be tested. Furthermore, the developed 
prototype will also be tested on dairy cows. 

Acknowledgements

We gratefully acknowledge the funding received by Swiss Food Research. The study was 
part of a Master of Science student project undertaken by Andreas Kunz, NTB Buchs, 
Switzerland. 

References
Campbell, D.L.M., Haynes, S.J., Lea, J.M., Farrer, W.J. and Lee, C. (2019). Temporary Exclusion of Cattle 

from a Riparian Zone Using Virtual Fencing Technology. Animals 9(5), URL: https://doi.org/10.3390/
ani9010005.

Lee, C., Henshall, J.M., Wark, T.J., Crossman, C.C., Reed, M.T., Brewer, H.G., O’Grady, J. and Fisher, A.D. 
(2009). Associative learning by cattle to enable effective and ethical virtual fences. Applied Animal 
Behaviour Science, 119, 15–22.

Moran, J. and Doyle, R. (s.a) Cow Talk - Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian 
Farms. Available at: URL: http://www.publish.csiro.au/ebook/chapter/9781486301614_Chapter4. 
Accessed: 1st of March 2019. 

Rindergesundheitsdienst Schweiz (s.a.) Licht URL: http://www.gesunderinder.ch/Allgemeines/
Stallklima/Licht.aspx . Accessed: 1st of March 2019.

Umstatter, C. (2011). The evolution of virtual fences: A review. Computers and Electronics in Agriculture 
75, 10–22.

Umstatter, C. Brocklehurst, S., Ross, D.W. and Haskell, M.J. (2013). Can the location of cattle be managed 
using broadcast audio cues? Applied Animal Behaviour Science 147, 34–42.

Umstatter, C., Tailleur, C., Ross, D. and Haskell, M.J. (2009). Could virtual fences work without giving 
cows electric shocks? In: Lokhorst, C. and Groot Koerkamp, P.W.G. (eds.), Precision Livestock Farming 
`09, Wageningen Academic Publishers, Wageningen, NL, 161–168.



574      Precision Livestock Farming ’19

Localisation and accelerometer sensors for the detection of oestrus in dairy 
cattle 

S. Benaissa1,2, F.A.M. Tuyttens2,3, J. Trogh1, D. Plets1, L. Martens1, L. Vandaele2, W. Joseph1 
and B. Sonck2,4

1Department of Information Technology, Ghent University/imec, iGent-Technologiepark 15, 9052 Ghent, Belgium; 
2Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)-Animal Sciences Unit, Scheldeweg 68, 9090 
Melle, Belgium; 3Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Heidestraat 19, 
B-9820 Merelbeke, Belgium; 4Department of Biosystems Engineering, Faculty of Bioscience Engineering, Ghent 
University, Coupure links 653, B-9000 Ghent, Belgium
Corresponding author: Said.Benaissa@ugent.be 

Abstract

The aim of this work was to combine ultra-wide band (UWB) localisation tracking, a neck-
mounted accelerometer and a leg-mounted accelerometer for the detection of oestrus in 
dairy cows. Twelve Holstein cows with successful artificial insemination (AI) were used in 
this study. The sensors were attached two weeks before the expected day of oestrus and 
removed after AI. Different cow variables (e.g. lying time, number of steps, ruminating time, 
travelled distance) were extracted from the raw sensor data and used to build and test the 
detection models. Logistic regression models were developed for each individual sensor as 
well as for each combination of sensors (two or three). The performances were similar when 
one sensor was used only as when combining the neck- and leg-mounted accelerometer 
(sensitivity (Se) =75-78%, area under curve (AUC) =93-94%). The performance increased 
when localisation was combined with either the neck- or leg-mounted accelerometer, 
especially for the sensitivity (80% for leg accelerometer + localisation and 88% for neck 
accelerometer + localisation). The AUC were nearly the same (97%). The best performance 
was obtained with the combination of all three sensors (Se = 90%, AUC = 99%). Future 
work will consist of expanding this research to other herds with larger sample size as well 
as considering cows’ anomalies (e.g. mastitis, lameness) and other sensors (e.g. bolus or 
eartag to measure the temperature).

Keywords: Accelerometer, UWB localisation system, dairy cows, machine learning, 
K-mean, support vector machine, behaviours classification, oestrus, internet-of-animals

Introduction

The profitability of dairy farms depends greatly on the breeding efficiency of dairy cows 
and the timely detection of oestrus (De Vries, 2010). Without accurate detection of oestrus 
in artificial insemination (AI) breeding programs, mistakes can be made and costs can be 
elevated due to wasted straws of semen, technician costs and time. In addition, numerous 
studies have documented that additional days in which cows are not pregnant beyond the 
optimal time post-calving are costly (Groenendaal, Galligan, & Mulder, 2010; Meadows, 
Rajala-Schultz, & Frazer, 2010). Ultimately, accurate oestrus detection should be used to 
successfully breed cattle with AI. However, visual detection of oestrus becomes difficult 
in large sized herds, as the cows may not show visual signs of oestrus (e.g. restlessness, 
standing to be mounted) during the time visual observation is being performed due to the 
impact of stress and other diseases (e.g. lameness).

To manage oestrus detection in high density livestock farms, farmers increasingly rely 
on automated systems using sensors for the collection and the interpretation of animal 
data. Several studies have investigated a variety of sensors (pressure, activity meters, 
video cameras, recordings of vocalisation, measurements of body temperature and milk 
progesterone concentration) for oestrus detection (Reith & Hoy, 2018; Roelofs, López-
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Gatius, Hunter, van Eerdenburg, & Hanzen, 2010; Stevenson, 2001). On the basis of their 
review, Reith and Hoy (2018) recommended to give highest priority to the detection 
based on sensor-supported activity monitoring (e.g. accelerometers) as being the most 
successful tools for automated oestrus detection. Meanwhile, the increasing availability 
of positioning systems based on small devices unlock the potential of using real-time 
animal location data for the benefit of cow and farmer. Although recent studies (Homer 
et al., 2013; Porto, Arcidiacono, Giummarra, Anguzza, & Cascone, 2014; Tullo, Fontana, 
Gottardo, Sloth, & Guarino, 2016) started to involve positioning data for the monitoring 
of dairy cows, localisation sensors were never combined with neck- and leg-mounted 
accelerometers for oestrus detection up to now. This will likely increase the detection 
accuracy by expanding the range of predictor variable and allow automated alerting to the 
farmer for a wider range of issues (not only oestrus) that require his action or attention as 
compared to systems based on one sensor.

In the present study, ten cow variables were extracted from three sensors (i.e. neck- and 
leg-mounted accelerometers and localisation sensor). Three variables were extracted 
from each accelerometer (e.g. ruminating time, feeding time, and resting time from the 
neck-mounted accelerometer, lying time, lying bouts, and number of steps from the leg-
mounted accelerometer), and four variables were extracted from the localisation data (i.e. 
travelled distance, time in cubicles, time in feeding zone, time in drinking zone). These 
variables were reported previously as a good predictor for oestrus detection (Pahl, Hartung, 
Mahlkow-Nerge, & Haeussermann, 2015a; Reith, Brandt, & Hoy, 2014). This work is the first 
to investigate combining a neck-mounted accelerometer, a leg-mounted accelerometer, 
and a localisation sensor for the detection of oestrus in dairy cattle.

The use of a combination of sensors is likely to increase the detection accuracy by 
expanding the range of predictor variables and allow automated alerting to the farmer of 
a wider range of issues in addition to oestrus (e.g. lameness, calving) that require his action 
or attention as compared to systems based on one sensor. Moreover, smart communication 
between multiple sensors may considerably reduce the power consumption as compared 
to each sensor operating independently of one another. For example, when detecting a 
cow in lying down position by the leg-mounted accelerometer, the localisation sensor 
could be turned-off until the cow has changed position. This could save more than 50% of 
the energy of the position monitoring, since cows spend 12–14 hours per day lying down 
(Gomez & Cook, 2010). 

Material and methods

Animals and housing

In total, 12 cows (parity 2.8 ± 1.3) with successful insemination were used for the detection 
of oestrus events. The cows were housed with other cows (31 in total) in a free-stall barn of 
the Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium. 
The barn contains four areas of 30 m long and 13 m wide each, with individual cubicles 
and a concrete slatted floor. The cubicles (n = 32, width 115 cm, length from curb to front 
rail 178 cm, front rail height 70 cm, neck rail height 109 cm, neck rail distance from curb 
168 cm) were bedded with a lime-straw-water mixture. The cows were fed roughage ad 
libitum. The concentrates were supplied by computerised concentrate feeders. Drinking 
water was available ad libitum (two drinking troughs). This study was conducted between 
September 2017 and April 2018.

Sensors 

Each cow was fitted with three sensors: a localisation node, a leg-mounted accelerometer 
(right hind leg), and a collar-mounted accelerometer (Figure 1). For the localisation data, an 
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OpenRTLS ultra-wide band (UWB) localisation system (DecaWave, Ireland) was installed 
in the barn using seven anchors (including the master anchor). The sampling rate of 
the localisation system was set to 2 Hz to enable a logging interval of about four weeks. 
Accuracy measurements were performed beforehand. A localisation node was put in 46 
different locations in the cubicles and the alley. Then, a comparison was made between 
the actual locations and locations estimated by the localisation system. The mean and 
median accuracy were 38 and 34 centimetres. The acceleration data (i.e. three orthogonal 
accelerometer vectors) were logged with a sampling rate of 10 Hz (10 samples each second) 
using Axivity AX3 loggers (Axivity Ltd, Newcastle, UK). The clocks of the localisation system 
and the accelerometers were synchronised at the start of the experiments.

Figure 6. A cow wearing the three sensors

Data collection procedure

The sensors were attached two weeks before the expected day of oestrus and removed after 
the AI. Decisions about timing of insemination were made by the ILVO stock people. Not 
all inseminations were associated with real estruses as insemination might be performed 
on the basis of a false alert or erroneous interpretation of a cow’s behaviour. Therefore, 
to ensure that the data-set was based on true cases of oestrus, only data from periods 
around inseminations that led to confirmed pregnancy were used in this study. From 15 
cows, 12 cows with successful insemination were used to create the dataset.

Processing of sensors data

The data processing was performed using MATLAB software (Release 2018b, The 
MathWorks, Inc., Natick, Massachusetts, United States).

In total, three variables were extracted from each accelerometer (i.e. hourly ruminating 
time, feeding time, and resting time from the neck-mounted accelerometer, and hourly 
lying time, lying bouts, and number of steps from the leg-mounted accelerometer).

As presented in Benaissa et al. (2018), the data of the neck-mounted accelerometer were 
used to obtain ruminating, feeding, and resting times. We note here that resting behaviour 
is when the cow has a static position (inactivity), i.e. either standing or lying. Lying bouts 
and lying time were extracted from the leg-mounted accelerometer as presented in (Ito, 
Weary, & von Keyserlingk, 2009). Finally, a simple k-Nearest Neighbours (kNN) algorithm 
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was developed and validated (accuracy of 97% compared to direct observations) to count 
the number of steps based on the data of the leg-mounted accelerometer. 

In total, four variables were extracted from the localisation data for each one-hour time 
interval (i.e. travelled distance, time in cubicles, time in feeding zone, time in drinking 
zone). The travelled distance is the sum of all distances that are labelled as walking, along 
the trajectory. A distance between two location updates is labelled as such if the travelled 
distance exceeds a threshold within a certain interval. When a cow is located within the 
lying zone, e.g. the cubicles, a first timer is started. When this timer exceeds a hold-off 
time (i.e. one minute), the real lying timer starts. The purpose of the first timer is to remove 
false positives (e.g. when a cow is falsely located in the boxes for a short time). The timer 
stops when the cow is located outside the boxes for the same hold-off time. The times 
at drinking zone and feeding zone were calculated with the same procedure as time in 
lying cubicles but with another zone label. These zones are rectangles (or more generally 
polygons) that have to be specified once and can be drawn on the floor plan or defined in 
a text document.

Detection models

Since the aim was to build a model for binary classification (e.g. a cow is in oestrus or not), 
logistic regression was chosen. Also, logistic regression is widely adopted when interested 
in the impact of various variables (variables from different sensors in this case) on a 
response variable (Sperandei, 2014). All variables (feeding time, number of steps, lying 
time, etc.) were summarised in 1-h intervals. The 1-h intervals were adjusted relative to 
the time of the actual AI (0 is the time of AI) only one week before AI was used for the 
detection models, as the first week was considered a habituation period. A 24 h moving 
average was applied to smooth the data as performed in (Borchers et al., 2017). To estimate 
the changes over time of the cow variables, each value of the calculated hourly variables 
was subtracted from the mean value of the past 24 values of the same cow (i.e. 24 hours) 
as presented in (Rutten et al., 2017). Any alerts during hours -1 to -24 were treated as true 
positives. Finally, to measure the performances of the detection models, the leave one out 
cross validation strategy was used (Arlot & Celisse, 2010) to calculate the precision, the 
sensitivity, the specificity, the overall accuracy, and the area under curve (AUC). The data 
of one cow were used as a testing set and the data of the remaining cows were used as 
a training set. This was repeated for all cows in the data set and the average precision, 
sensitivity, specificity, and overall accuracy were considered.

Results and discussion

For the neck-mounted accelerometer, ruminating time decreased by 26% (P < 0.01) 
between the reference period (i.e. six days before the day of oestrus) and the day of AI. 
Similarly, resting time decreased by 23% (P < 0.01). However, feeding time did not show a 
significant change (P > 0.05). For the leg-mounted accelerometer, the lying time decreased 
by 38% (P < 0.01) and the number of steps increased by 95% (P < 0.01), while lying bouts 
did not change significantly (P > 0.05). Finally, for the localisation sensor, the travelled 
distance increased by 92% (P < 0.01) and the time in cubicles decreased by 32% (P < 
0.05). The change was not significant (P > 0.05) for both the time in drinking zone and in 
feeding zone. In comparison to other studies, Dolecheck et al. (2015) found that lying time 
decreased during the oestrus period by 58%. Time spent lying and resting time decrease 
around oestrus because of increased activity and restlessness (Jónsson, Blanke, Poulsen, 
Caponetti, & Højsgaard, 2011). This explains also the decrease of resting time. Ruminating 
time in our study decreased during oestrus by 37%. Reith and Hoy (2012) evaluated 265 
oestrus events, finding that ruminating time on the day of oestrus decreased by 17% (74 
min), but with large variation between herds (14–24%). In a follow-up study that looked 
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at 453 oestrous cycles, ruminating time decreased by 20% (83 min) on the day of oestrus 
(Reith et al., 2014). Pahl et al. (2015) also found a decrease in ruminating time (19.3%) on 
the day of AI. The decreases in ruminating time around oestrus found in the current study 
(26%) is comparable to previous studies, although a small number of cows was considered. 
The change in feeding time was not significant, similar to the conclusions reported by De 
Silva et al. (1981), who found no change in feed intake during the 3 d period around oestrus.

Table 1. Mean values and standard error (SE) of the cow variables obtained by the three sensors, 
[-24, 0] is the 24 hours before the AI (*P < 0.05, **P < 0.01, no asterisks means P > 0.05)

Sensors Variables [-168,-24] [-24,0] Difference

Neck 
accelerometer

Ruminating time [hours] 8.4±0.6 6.2±0.7 -2.2** -26%

Feeding time [hours] 4.5±0.5 5.1±0.3 0.6 13%

Resting time [hours] 7.3±0.7 5.6±0.5 -1.7** -23%

Leg accelerometer

Lying bouts [-] 6.8±1.2 6.1±0.8 -0.7 -10%

Lying time [hours] 12.0±0.9 7.4±1.1 -4.6** -38%

Number of steps [-] 2,470±210 4,824±302 2,354** 95%

Localisation

Travelled distance [m] 2,161±165 4,146±285 1,985** 92%

Time in cubicles [hours] 10.5±0.8 7.1±1.0 -3.4* -32%

Time in feeding zone [hours] 4.8±0.5 4.9±0.4 0.1 2%

Time in drinking zone [min] 14.4±10.6 19.1±13.2 4.7 32%

Detection performance for oestrus is listed in Table 2. Similar results were obtained when 
using one sensor as compared to combining neck- and leg-mounted accelerometers 
(Se = 75-78%, AUC = 93-94%). In both cases, the overall accuracy was around 95%. The 
performance increased when localisation with either neck- or leg-mounted accelerometer 
was combined, especially for the sensitivity (80% for leg accelerometer + localisation and 
88% for neck accelerometer + localisation). The AUC were nearly the same (97%). The use 
of one sensor limits the number of cow variables that can be accurately detected by the 
monitoring system. Although some studies (Mattachini, Riva, Bisaglia, Pompe, & Provolo, 
2013; Resheff, Rotics, Harel, Spiegel, & Nathan, 2014) suggest that one accelerometer could 
detect several cow variables, not all variables are detected with the same accuracy. As 
presented in Benaissa et al. (2017), neck-mounted accelerometer is better for monitoring 
ruminating and feeding behaviours, while leg-mounted accelerometer is better for lying 
behaviour monitoring (e.g. lying time, bouts). On the other hand, not all variables changed 
during oestrus. For example, the lying bouts and the time in feeding zone did not change 
significantly during the oestrus period. With all three sensors combined, the precision 
increased to 93% and the sensitivity increased to 90%. The use of different sensors 
increases the number of cow variables that could change during oestrus. These results 
show clearly an improved performance, enhancing the number of successful alerts and 
significantly reducing the number of false alarms. 
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Table 2. The precision (Pr), sensitivity (Se), specificity (Sp), overall accuracy, and AUC using 
one sensor, a combination of two sensors, and a combination of the three sensors

Model based on Pr [%] Se [%] Sp [%] Accuracy [%] AUC [%]

Neck Acc 91±1.8 77±1.1 93±0.3 95±0.2 93±0.6

Leg Acc 92±2.4 77±1.2 92±0.5 95±0.3 94±0.4

Localisation 89±2.0 75±0.7 92±0.6 94±0.5 93±0.4

Neck + Leg Acc 89±2.9 78±0.7 98±0.6 95±0.5 93±0.6

Neck Acc + Localisation 86±3.2 88±1.9 97±0.5 97±0.8 97±0.5

Leg Acc+ Localisation 88±1.3 79±2.4 98±0.2 96±0.4 96±0.7

All sensors 93±1.4 90±1.3 99±0.2 98±0.3 99±0.1

Conclusions

In the present study, the combination of accelerometers (neck- and leg-mounted) and 
a localisation sensor was investigated for the detection of oestrus in dairy cattle. The 
performance at detecting oestrus was similar for each sensor separately (Se = 75-78%, AUC 
= 93-94%). The performance (and the sensitivity in particular) increased when localisation 
was combined with either a neck- or a leg-mounted accelerometer, especially for the 
sensitivity (AUC = 97%). The best performance was obtained with the combination of all 
three sensors (Se = 90%, AUC = 99%). This study demonstrates the potential of combining 
different sensors to increase the detection performance of oestrus monitoring systems for 
dairy cattle. Future work will consist of expanding this research to other herds with larger 
sample size as well as considering cows’ anomalies (e.g. mastitis, lameness) and other 
sensors (e.g. bolus or eartag to measure the temperature).
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Abstract

This paper presents a system for animal monitoring on pasture that combines a state-
of-the-art object detection algorithm named YOLO, and low cost time-lapse cameras. 
The cameras network takes pictures of the flock every 30 seconds. The pictures are then 
analysed by several algorithms in order to automatically detect the animals and estimate 
their positions on the pasture. The system was tested on a 1,300 m2 pasture with 18 
creole goats and 22 kids. Based on 1,000 pictures selected randomly, the animal detection 
sensitivity was estimated to 81.3% and the precision to 97.1%. Unlike GPS, where one 
sensor per animal is needed, the system can be used to provide quantitative information 
on the entire flock using only three passive sensors. We used it to study the flock during 
two grazing weeks on the same pasture, with one month interval. We showed that from 
one week to another, the flock spatial distribution was highly correlated. The correlation 
is not constant but decreases gradually during the week, probably due to a decrease of 
the most appetizing resources. More generally, the flock successive positions can be used 
for quantitative studies on animal behaviour, animal health and welfare, or to improve 
pasture management. 

Keywords: animal monitoring, image analysis, animal activity, animal position

Introduction

Automatic acquisition of information on animals is of interest in several fields and already 
has a long history. Most examples can be found in ecology as in determining animal home 
range (Millspaugh and Marzluff, 2001), or describing animal social behaviour (Crawley 
et al.,). Some can be seen in agriculture as well (Fogarty et al., 2018), such as studying 
animal foraging behaviour (Baumont et al., 2000) or quantifying animal physiological 
status (Nilsson et al., 2015). The nature of the information that can be gathered is as 
large as the number of applications as, for example, animal weight (Jun, Kim, and Ji 2018) 
or urination events (Lush et al., 2018). In this study, we will focus on monitoring spatial 
location of animals. Monitoring displacement of animals can be particularly useful to 
determine health status and animal welfare (Oczak et al., 2016). It can also help to improve 
pasture management by better understanding pasture uses (Putfarken et al., 2008) or can 
help understanding host-parasite interactions (Bonneau et al., 2018). The most common 
technique for monitoring spatial location remains using GPS collar (Fogarty et al., 2018). A 
major drawback of on-animal sensors is that a device has to be attached on each animal, 
which limits the number of studied animals for cost reasons but also requires batteries to 
be reloaded regularly. Another constraint is the quality of GPS signal that can be randomly 
low or decreases because of the environment or time of the day. An alternative approach 
consists of using one sensor that will monitor the entire group of animals, such as a 
camera (Benvenutti et al., 2015). In this case, videos or pictures of the flock are stored 
and an automatic detection procedure can be used to detect animals on the pictures and 
estimate their positions. A major constraint in this case is camera field of view, which can 
be too limited to cover a large study area, although satellite imagery can be used (Fretwell, 
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2014). Nonetheless, in agriculture, many studies are conducted at the field or shelter scale 
and a small network of common cameras can be sufficient. Finally, automatic animal 
detection remains a difficult problem but recent developments in computer vision offer 
promising solutions (Hollings et al., 2018). In this study, we proposed to combine a state-
of-the-art object detection algorithm named YOLO (Redmon et al., 2016) to a network of 
time-lapse cameras in order to monitor a flock of 40 individuals.

Material and methods

Study site

The study took place at the INRA-PTEA farm located in Guadeloupe, French West Indies. 
The farm is mostly breeding creole goats and we selected a flock of 18 goats and 22 kids that 
are managed under rotational grazing. The flock is grazing successively on five different 
pastures, spending one week per pasture. We monitored the flock during a first week from 
28 December 2018–3 January 2019 and one month later when the flock was back on the 
same pasture, from 1 February to 7 February 2019. The pasture was approximately 1,300 
m2 and was selected for its regular rectangular shape (see Figure 1).

Time-lapse cameras network

We used three Brinno TLC200 Pro time-lapse cameras to take pictures of the flock every 
30 seconds, from 6 am to 6 pm. The cameras are distributed on one side of the pasture, 
spaced 21 meters from each other. The pasture was virtually divided into three different 
zones of 427 m2, 418 m2 and 490 m2, and one camera was allocated to each zone. Cameras 
were fixed on permanent steel posts at approximately 1 m 70 height, and kept the same 
positions during the experiment. See Figure 1 for a schematic representation of the 
monitoring system. 

Objects detection 

We used the convolutional neural network named YOLO (You Only Look Once) to detect 
objects on the image. YOLO was compared on different Pascal VOC image data sets and was 
shown to provide good precision while allowing real-time object detection. The algorithm 
is freely available and implemented in Python. For each picture, the algorithm output is a 
set of Bounding Boxes (bbox) around the detected objects.

Merging overlapping bounding boxes

In general, several parts of an object are detected. As a consequence, multiple bbox 
might correspond to the same objects and in some cases, a bbox can also contain several 
objects. We proposed to use a simple technique consisting of finding and merging all the 
overlapping bbox. In this case, the top left corner of the final bbox is equal to the maximum 
top left corner of all the overlapping bbox. 

Figure 1. Pasture schematic representation. Pasture proportions and relative distances between 
elements are respected
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The bottom right corner of the final bbox is equal to the maximum bottom right corners 
of the overlapping bbox. Unfortunately in some cases, bbox of several individuals are 
merged into one bbox. To quantify the frequency at which the bbox contained multiple 
individuals, we selected randomly 1,000 bbox after the merging process and counted the 
number of times multiple individuals were present. We found that in 19.6% of the cases, 
multiple individuals were present. See Figure 2 for illustrative examples.

Figure 2. The Bounding Boxes (bbox) merging problem. On the left are two examples of the YOLO 
algorithm outputs. The bbox are in white and we can see that several bbox are linked to the same 
individual. On the top pictures, there is one bbox surrounding two individuals, which results in 
multiple individuals in the same bbox after the merging process (top right picture). When the animal 
is isolated from others, the merging process results in only one bbox per individual (bottom right 
picture)

Image registration

At this stage, all the objects on the pictures are theoretically detected and it is now 
necessary to estimate their positions on the pasture.

We deployed a set of markers that can easily be seen on the camera pictures. We used steel 
posts knocked approximately 30 cm above the ground. The top of each post was painted 
in red to help detection. We also deployed some plastic red markers on the fence around 
the pasture. In total, 30 markers were used and kept at the same positions during the 
experiment. For each marker, we measured distances with at least three other markers, 
and used a triangulation technique to compute their spatial coordinates. The coordinates 
of the pasture top left corner, where the first camera is located, was fixed to . Finally, for 
each camera, the pixel coordinates of the visible markers and their spatial coordinates 
were used to fit a projective geometric transformation (Goshtasby, 1988). 

Removing false positive detections

After a first visual analysis of the results, we mainly observed three types of false positive 
detections: (i) some birds that are naturally present on the pasture, (ii) some of the fence 
parts and (iii) grass tussocks. To remove these false positive detections, we trained an 
image category classifier using a bag of visual words (Csurka et al., 2004). The detected 
objects of type (ii) and (iii) were generally detected on most of the pictures and it was thus 
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easy to determine the positions of these objects using a spatial occurrence frequency 
analysis. To construct the training data set for the image category classifier, we randomly 
selected bbox inside the high frequency zones and classified them manually. Finally, type 
(i) detected objects were not located on a specific location, but represent an important 
proportion of the detected objects. We selected randomly some of the detected bbox until 
100 bird pictures were found. One classifier was trained per camera and approximately 
650 pictures were used to train each classifier. 

Results 

Removing false positives detections

For each camera, the dataset was separated into a training dataset containing 60% of 
the pictures and a test dataset containing 40% of the pictures. The confusion matrix for 
each classifier is available in Table 1. On the entire experiment, approximately 31% of the 
detected bbox were removed by the classifier. 

Table 1. Confusion matrix for each category classifier of the cameras

Prediction cam1 Prediction cam 2 Prediction cam3

Goat Not Goat Goat Not Goat Goat Not Goat

True Goat 0.89 0.11 0.97 0.03 0.92 0.08

Not Goat 0.14 0.86 0.13 0.87 0.08 0.92

Method efficacy

We randomly selected 100 pictures of the time-lapse cameras and manually counted the 
number of true positives, false positives and false negatives detections. We then computed 
the sensitivity and precision of the method, respectively defined as:

true positives 
true positives + false negatives

 
  and    

true positives 
true positives + false positives

 

We found a sensitivity of 81.3% and a precision of 97.1%. The false negatives detections were 
mostly located in two different zones. The first zone is in front of the second camera, where 
a concrete post of approximately 1 m 20 height is installed (see Figure 1). The classifier 
was trained to delete the bbox containing the post and thus, all the animals around the 
post are generally deleted. The second zone, monitored by the third camera, is located at 
the end of the pasture where a natural hedge is present. The hedge appeared black on the 
camera pictures and the animal in front of it was very hard to distinguish. If the method 
efficacy is computed on all the pastures but these two zones, the precision is unchanged 
but the sensitivity is increased at 89%. Also, note that young kids can be hard to detect due 
to their small size. Finally, some false negatives detection might be caused by the category 
classifier. As shown in Table 1, the first classifier removed 11% of the bbox mistakenly. 

Application

We used our framework to compare pasture uses between each grazing week. We virtually 
divided the pasture into quadrats of 3 m by 3 m and computed the average quadrats 
occupancies, more precisely the number of animals detected on the quadrat, divided by 
the number of pictures. We computed the cumulated occupancy for each week and each 
day of the experiment. Visually, pasture occupancy distribution is very similar between the 
two weeks. We found a Pearson’s correlation coefficient between the quadrats occupancies 
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over the first and second week equals to 0.74. We also computed the quadrats occupancies 
on each grazing day. We found a Pearson’s correlation coefficient equals to 0.61 between 
the first and second grazing week, and equals to 0.65, 0.6, 0.57, 0.45, 0.29, 0.16 for the next 
six days. This certainly shows that the most appetising quadrats are grazed during the 
first days on the pasture and that grazing is more diverse at the end of the grazing period.

Discussion

Similar studies using image analysis to detect farmed animals are generally conducted in 
indoor environments with top view cameras. This problem configuration allows background 
subtraction techniques to be used, which generally exhibit better sensitivity values. Our 
case study is more complicated because the background is constantly moving due to light 
variations and to grass movement with wind. Also, because other objects can appear on 
the pictures (e.g. birds) and the contrast and luminosity are variable inside the pasture 
(e.g. shade or dark background). Nonetheless, our method provides encouraging results 
and a high precision value, meaning that detected bbox can be trusted. Our method still 
has to be improved, in particular for merging the bbox from YOLO. For example, each bbox 
can be reanalysed by YOLO in order to detect if multiple animals are present. To decrease 
the number of false negatives observations, more cameras can be used, for example, near 
the hedge at the end of the pasture. Reducing the number of objects on the pasture (e.g. 
the concrete post) can also help to reduce the number of false positives detections. 

Conclusion

We have designed a system allowing a flock of small ruminants to be monitored, for a 
relatively low cost. The system offers interesting perspectives in terms of grazing behaviour, 
pasture management studies, or for animal health and welfare.
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Abstract

Feeding behaviour in terms of duration and daily pattern contains valuable information 
about the metabolic health of dairy cows. Several commercial systems are available 
to measure this behaviour. However, since these sensors can be expensive, it would be 
beneficial to develop a simple and cost effective system for this purpose. Thus, the objectives 
of this study were: 1) to optimise the setup of a UHF-RFID system for monitoring feeding 
behaviour at the feeding fence by passive UHF ear tags and 2) to characterise the size and 
shape of the reading area of the system testing two different antenna positions relative 
to the feeding fence and two types of UHF ear tags. A free-form UHF cable antenna with 
6 m active length was placed along a section of the feeding fence in a conventional free-
stall barn using pipe clamps. The two antenna arrangements were compared by manually 
measuring the reading range in a grid with four measurement heights in front of and behind 
the feeding fence. The measurements revealed that a greater distance of the antenna to 
the wall resulted in a higher reading range. However, the reading range decreased along the 
antenna. The antenna position closer to the feeding fence in combination with ear tag Type 
B showed promising results. Thus, it was chosen for further tests. In a next step, the system 
will be extended along the feeding fence and validated with cows using video observations.

Keywords: ultra-high frequency radio frequency identification, feed fence, feeding time, 
validation, indoor positioning

Introduction

Feeding behaviour is among the most important behaviours and can be used as an 
indicator of animal health and welfare. Changes in feeding behaviour are not only caused 
by changes in feed or management, but especially by diseases or welfare impairments 
(Weary et al., 2009). To detect changes in behaviour reliably, automated technical systems 
are needed, that are able to record feeding behaviour. The most precise way to measure 
not only feeding time, duration and daily pattern is the use of feed bunk weighing systems 
with electronic identification of single animals (e.g. Chapinal et al., 2007). These systems 
are widely used in research, but are too expensive for use on commercial farms. Another 
way to record feeding and also rumination behaviour are sensor systems that either detect 
the jaw movements of the cow directly (Zehner et al., 2017) or indirectly by measuring the 
movement of the head or neck (Grinter et al., 2019) or ear (Reiter et al., 2018). However, 
these systems are also expensive and demand a power supply on the sensor. A possible 
solution for developing a cost effective feeding behaviour monitoring system could be 
radio-frequency identification (RFID) systems. Recently, researchers have applied especially 
ultra-high frequency (UHF) RFID technology for measuring different behaviours of pigs 
(Adrion et al., 2018), poultry (e.g. Li et al., 2017) and cattle (Toaff-Rosenstein et al., 2017). The 
advantages of this technology are a flexible and high reading range up to several meters, 
the ability to detect many animals simultaneously and the use of passive transponders, 
which do not require a battery.

The objectives of this study were: 1) to optimise the setup of a UHF-RFID system for 
monitoring feeding behaviour at the feeding fence by passive UHF ear tags and 2) to 
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characterise the size and shape of the reading area of the system testing two different 
antenna positions and two types of UHF ear tags. The overall aim was to optimise the 
system by finding a setup that allowed for reliable identification of ear tags in front of the 
feeding fence with no detections behind the fence, if possible. 

Material and methods

Experimental barn and technical equipment

The measurements were carried out in an experimental dairy barn for comparative 
emission measurements at BBZ Arenenberg in Tänikon) (Switzerland) described in Schrade 
et al. (2016). The barn is devided into two compartments for 20 cows each.

At the feeding fence of the western barn compartment, a free-form UHF cable antenna 
(Locfield® Antenna, Cavea Identification GmbH, Olching, Germany) was mounted. This 
type of antenna was chosen because of the possibility to cover a relatively long part of 
the feeding fence with only one antenna. The antenna had an active length of 6 m and a 
passive length of 1 m including the damping unit. It was made of a coaxial cable with 5 
mm diameter and an attenuation of approx. 0.29 dB/m. The antenna was connected to the 
UHF reader with a coaxial cable of 5 m length damping 0.27 dB/m (‘H-155 PE’, Belden Wire 
& Cable B.V., Venlo, Netherlands). In total, this resulted in a loss of approx. 3.5 dB from the 
reader to the tip of the antenna, where the antenna field originates. 

The reader used was an Impinj Speedway Revolution R420 model for the ETSI frequency 
range (Impinj Inc., Seattle, WA, USA). The output power of the reader was 31.5 dBm during 
the tests, resulting in an effective output power of approx. 28 dBm at the tip of the cable 
antenna. The receiver sensitivity was set to the maximum value of 70 dBm and the reader 
could flexibly switch between channels 4, 7, 10 and 13 (865.7, 866.3, 866.9 and 867.5 MHz). 
Additionally, the reader was operated in ‘dense reader mode (M = 8)’ to enhance the 
robustness against other activity within the UHF-RFID frequency range.

The tests were conducted with two different types of UHF transponder ear tags, which 
were both functional models and were not commercially available. Type A contained a 
transponder with a planar inverted F-shaped (PIF) antenna approx. 50 × 50 mm in size 
(deister electronic GmbH, Barsinghausen, Germany). It was combined with an Impinj 
Monza® 4D chip (Impinj Inc., Seattle, WA, USA) and integrated into a Primaflex® cattle ear 
tag (Caisley International GmbH, Bocholt, Germany) by injection molding (Figure 1). Type 
B was a functional model provided by Scot EID Livestock Traceability Research (Huntly, 
United Kingdom). It contained an Alien Garment Tag (GT) (‘ALN-9728’, Alien Technology 
LLC, San José, CA, USA) with a dipole antenna and an Alien Higgs® 4 chip. This tag was 
50 × 30 mm in size. It was encapsulated in an air-filled pocket molded onto a regular two-
piece ear tag for cattle.

Experimental Setup

Since the way of mounting and the proximity to surrounding materials strongly influence 
the antenna field and the reading performance of UHF flex-form cable antennae, the 
experimental setup is subsequently described in detail. 

Two different mounting positions of the antenna were tested (Figure 2). Since pre-tests 
showed that the antenna field was weakened severely in proximity to reinforced concrete 
or metal, the antenna was mounted with a distance to the feeding fence and the wall below 
the fence. For this purpose, six pairs of pipe clamps (diameter 2 inch at the fence, 1 inch at 
the antenna) were connected to the feeding fence (‘Comfort Flexi’, Krieger AG, Lenggenwil 
SG, Switzerland) and coupled with a metal pipe (diameter 0.5 inch). The first pair of clamps 
was mounted at a distance of 26 cm to the side wall of the barn compartment. The other 
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clamps followed along the feeding fence at distances of 179, 157, 161, 150 and 68 cm to 
fit in between the feeding places. The 1” clamps were filled with a rubber foam to hold a 
flexible PVC pipe (‘PLICA UV-FLEX M25’, Plica AG, Frauenfeld, Switzerland). The antenna 
was inserted into the flexible PVC pipe, so that it was mechanically protected. 

Figure 1. Left: UHF ear tag Type A, right: UHF ear tag Type B

Figure 2. Setup of the antenna at the feeding fence, left: Antenna Position 1, middle: Antenna Position 
2, right: ear tag holder (polystyrene foam) with supporting pipes of different lengths to maintain the 
measurement heights

The wall below the feeding fence was 14 cm wide. The top of the wall was 33 cm above the 
feeding alley and 48 cm above the walking alley behind the feeding fence. In Position 1, 
the antenna was mounted in a horizontal distance of 18 cm to the center of the wall and 
24 cm above the concrete floor of the feeding alley. In Position 2, the horizontal distance to 
the wall was reduced to 14 cm and the height above the floor was increased to 32 cm. This 
antenna position was chosen because it would interfere with the movement of the cows 
during feeding much less than Position 1. The length of the distance pieces between the 
two pipe clamps of each pair was 16 cm and 8 cm for Positions 1 and 2, respectively. The tip 
of the cable antenna was placed 63 cm apart from the side wall of the barn compartment. 
In this way, the antenna covered eight feeding places. Its active length ended 30 cm behind 
feeding place no. 8. The first feeding place of the fence was at a distance of 83 cm apart 
from the side wall. The further places followed in an interval of 78.5 cm. The moveable 
parts of the feeding places were set to ‘closed’ position for the experiment.
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Measurement procedure and test design

A coordinate grid was established to measure the reading range of the antenna in front 
of and behind the feeding fence. In the middle of each of the first nine feeding places 
measurement points were marked close to the feeding wall on both sides (+14 cm (front) 
and -16 cm (back) from the centre of the wall) and in greater distances (+32, +57, 32, 57 and 
82 cm). The coordinates in front of the feeding fence represented the middle and end of 
the floor coating, where the feed is normally provided to the cows. At the backside of the 
feeding fence, the measurement points at 82 cm were added to detect unwanted readings 
in this area. Pre-tests showed that beyond this point no ear tags could be detected in both 
antenna positions. The coordinates were repeated in four different heights above the floor 
on both sides of the feeding fence (30, 55, 80 and 105 cm). The bottom of the tags was 
positioned in these heights for the measurements.

Therefore, an ear tag holder was constructed out of polystyrene foam to ensure that all 
measurements were performed identically, at the correct height, and with as little as 
possible influence of the measuring person on the tags. Polystyrene foam has very little 
influence on the electromagnetic fields of the reader and tag (relative permittivity εr = 1.03) 
and is used as a standard mounting material in high-frequency tests. The tags were inserted 
in a vertical position into a notch in the material. A hole was drilled into the bottom of the 
holder to be able to put it on top of PVC pipes. Four PVC pipes with a diameter of 5 cm were 
cut in different lengths to hold the tags in the targeted heights above the floor. The distance 
between the top of the pipes and the bottom of the tag in the holder was 4 cm. For the 
measurements, the holder with the ear tag was positioned at a coordinate and then turned 
around 360 degrees horizontally. If at least one successful reading of the tag took place 
during this turn, the tag was labelled as ‘detected’ at this coordinate.

Three samples of each of the two types of UHF ear tags were randomly chosen for the experiment. 
Out of these samples, three pairs with one tag of each type were combined randomly and the 
measurement order within these pairs was also randomly chosen. The pairs were measured 
one after each other in a random order. First, all measurements with Antenna Position 1 were 
conducted. All measurements of each UHF ear tag were performed at once before measuring 
the next tag. The order of the measurements was the following: starting at the closest 
coordinate to the feeding wall at the front of the feed fence (+ 14 cm), first, the distance to the 
wall was increased by proceeding to the next coordinates (+32 cm, +57 cm). This was done for 
each of the nine feeding places one after each other. After finishing all measurements at one 
height, the measurements at the next height level were conducted identically. After measuring 
at the coordinates at the front of the feeding fence, the same procedure was conducted at the 
coordinates at the back of the feeding fence. The same procedure was followed with Antenna 
Position 2 with the same, but newly randomized ear tags. It has to be noted, that at a height of 
30 cm no measurements could be made directly in front of the feeding fence (+14 cm), because 
the antenna was blocking this position in both treatments.

Data analysis

For the analysis, the percentage of successful detections for each coordinate was calculated 
per type of tag and antenna position over all heights. At maximum, 12 detections were 
achievable during the measurements of three tags in four heights (only three heights 
at the coordinate +14  cm), which would be a detection rate of 100%. With these data, 
contour plots were created using Sigmaplot 13 (Systat Software Inc., San José, CA, USA). 
In addition, contour plots for each type of tag and antenna position were created for each 
measurement height separately. Further, the number of coordinates with at least one 
successful detection in front of and behind the feeding fence was calculated for each 
antenna position and type of ear tag.
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Results and discussion

The visualisation of the measurements showed that the reading area differed strongly 
between both antenna positions and also both types of UHF ear tag (Figure 3 and Figure 
4). Note that a detection rate of e.g. 25% means that this type of ear tag was detected at 
least three times at a certain coordinate. Thus, the visualisations in Figures 3 and 4 tend to 
underestimate the reliability of reading. It would be sufficient to read tags successfully at 
one or two measurement heights to detect the cows’ presence at the feed trough. Close to 
the floor most readings should take place when the cows are feeding. This indeed fits well 
to the results collected with both antenna positions in this experiment.

However, in all treatments, the reading area was not evenly shaped, but showed irregular 
gaps. In addition, areas with a higher reading range were also detected. Furthermore, a 
strong decrease of the reading range was visible over the length of the antenna, beginning 
with a high detection rate and greater reading area at the tip of the antenna. In general, 
with Antenna Position 1 the reading area was larger than with Position 2. For tag Type B a 
larger reading area could be measured with both antenna positions compared to tag Type 
A. Accordingly, with tag Type A reliable detection (> 25% detection rate) was only possible 
at six feeding places in a row in both antenna positions. Tag Type B was reliably detectable 
at nine (Antenna Position 1) and seven feeding places in a row (Antenna Position 2). 

The differences between the antenna positions and the types of UHF ear tag were also 
evident in the number of coordinates, at which at least one successful detection of a 
tag was registered over all measurement heights. Tag Type B was detected only at nine 
coordinates behind the feeding fence with Antenna Position 2 compared to 18 coordinates 
with Antenna Position 1. Interestingly, for tag Type A, a slight increase from two to five 
detections behind the feeding fence was registered in Antenna Position 2. 

Figure 3. Interpolated contour plot showing the percentage of successful detections per coordinate of 
UHF ear tag Type A over all heights and for both antenna positions. Major ticks on the x- and y- axes 
indicate the measurement coordinates
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Figure 4. Interpolated contour plot showing the percentage of successful detections per coordinate of 
UHF ear tag Type B over all heights and for both antenna positions. Major ticks on the x- and y-axes 
indicate the measurement coordinates

As mentioned above, for the detection of cows’ feeding visits it would be sufficient to detect 
the ear tags in a height of 30–55 cm. The treatment, which fullfilled this requirement best, 
was Antenna Position 2 in combination with tag Type B. Furthermore, above 55 cm height, 
at only six coordinates 16 and 32 cm behind the feeding fence readings were registered in 
this variant, which is promising in terms of a low error rate. 

The method applied for measuring the reading area in this experiment is rather simple 
compared to other methods of testing UHF-RFID systems (e.g. Derbek et al., 2007; Adrion 
et al., 2015) and also limited to this specific application environment in the experimental 
barn. Hoewever, the results were very consistent between all samples of each type of tag in 
both antenna positions. All things considered, this method seems to be a good compromise 
between the informative value of and effort for the measurements.

The results show the difficulty of generating an evenly shaped reading area with an UHF 
RFID system. Compared to low-frequency RFID systems, as presented, for example, by 
Brown-Brandl and Eigenberg (2011), UHF-RFID offers the possibility to use fewer antennas 
for the same number of feeding spaces, which could make such a system more cost-
effective for commercial applications. Especially with the flex-form cable antennas used 
in this study long reading areas can be covered. However, antenna fields always have a 
circular or elliptical shape, so that it is easier to adapt several small antenna fields to 
a rectangular reading area (e.g. shown by Li et al., 2017), than few large fields. The free-
form cable antenna exhibits a decreasing diameter of the reading field along the antenna. 
Hence, some overlap of the antennas might be necessary to cover the whole length of 
the feeding fence. The manufacturer suggests to insert small U-turns near the end of the 
antenna to strenghten the field there. Unfortunately, with the need to protect the antenna 
mechanically, this was not possible in the current setup. 

It was expected that no detections would be registered behind the feeding fence due 
to reflection of the antenna field on the metal of the fence. However, the opposite was 
the case. In particuclar, very close to the feeding wall, which is made out of reinforced 
conrete, many readings took place. A possible explanation is that due to the proximity 
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of the antenna to the wall, the antenna field coupled with the metal within the concrete 
wall, making the wall part of the antenna. This not only led to unwanted readings behind 
the feeding wall, but also was a major loss of energy that would have been useful for a 
stronger antenna field at the end of the antenna.

However, the results with Antenna Position 2 were promising for further tests. Especially 
with tag Type B up to 7 feeding spaces were reliably covered by the reading field while 
showing a reasonable amount of unwanted detections. It can be expected that the reading 
area will be smaller when the ear tags will be attached to the cows, because the ear tissue 
aborbs radiation from the reader and causes a shift of the tag resonance frequency (Adrion 
et al., 2017). Even though this could impair the readings in front of the feeding fence, this 
could also reduce the number of unwanted readings behind the feeding fence. 

Conclusions and outlook

The results of this experiment point out the challenges of setting up UHF antennae in a 
barn environment. With the free-form cable antenna used, the influence of metal in the 
surrounding area was evident. Thus, thorough testing of the system setup is necessary 
for every UHF RFID application. However, UHF RFID still offers greater flexibility for 
monitoring animal behaviour in various applications compared to other RFID frequencies. 
In the experiment conducted, an antenna setup in combination with a UHF ear tag could 
be found, which seems promising for detecting feeding visits of dairy cows. As a next 
step, the system will be extended along the feed fence using three cable antennae and 
validated with video observations as a gold standard. First results of the validation will be 
presented at the conference.
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Abstract

Animal behaviour is one of the indicators of animal welfare and can be used to assess how 
different housing systems and management strategies affect the herd. Precision Livestock 
Farming tools can concretely help the farmer to monitor the behaviour of each individual 
animal in the barn. In order to implement these techniques, it is however necessary to 
define the relationships between cow behaviour and environmental parameters like 
temperature humidity index (THI). The present study aimed to evaluate the influence of 
climatic conditions (temperature and relative humidity) on the behaviour of a group of 
primiparous dairy cows. 

Behavioural activities of all cows in the group were monitored by continuous video 
recording for 296 days (from September to July). To assess the effects of THI on the 
behaviours logistic regression analysis has been applied.

Results confirmed that THI can affect behavioural indices. The average daily lying index 
varied from 54% in winter to 43% in summer despite in the latter period THI values were 
much lower than the heat stress threshold (average THI: 74). The statistical approach 
adopted in this study, after a validation process through the use of accelerometers, could 
be the starting point for the development of predictive models. The use of this kind of tool, 
may offer a valid support to the farmer to monitor cow behaviours and to adopt mitigation 
measures in case of heat stress.

Keywords: Precision livestock farming, THI, dairy farming, lying time

Introduction

Lying down and resting behaviours are important for cow health, welfare, reproductive 
and productive status (Westin et al., 2016). Changes in lying behaviour can be caused by 
diseases, housing conditions, stocking density and temperature and humidity (Kok et al., 
2015). Time spent lying down, the frequency of lying bouts, and the duration of individual 
bouts are considered to be useful indicators for animal welfare and have been used to 
evaluate stall comfort (Mattachini et al., 2011). 

Currently, lying behaviour can be assessed using continuous observations from video 
recordings or data from sensors (e.g. accelerometers) (Diosdado et al., 2015; Kok et al., 
2015). Information on behaviours deriving from sensors can be used as a clear welfare 
indicator (Neethirajan et al., 2017) and especially in the case of heat stress (Herbut & 
Angrecka, 2018), that seriously affects feed intake, cow body temperature, maintenance 
requirements and metabolic processes, feed efficiency, milk yield, reproductive efficiency, 
cow behaviour and disease incidence (Biffani et al., 2016). Heat stress is an important 
threat to cattle breeding, especially in the Mediterranean basin (Moretti et al., 2017), where 
overcrowding and the combination of high temperatures and high humidity can result 
in harsh conditions for dairy cows. Experiencing uncomfortable thermal conditions (due 
to the combination of high temperature and humidity) affects the capacity of cattle to 
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dissipate heat and leads to an increase in body temperature over the physiological limits 
(Formaggioni et al., 2018).To this purpose, the temperature-humidity index (THI), an index 
that combines the simultaneous effect of temperature and humidity, has been widely 
used to evaluate heat stress in this species (Abeni & Galli, 2017; Herbut & Angrecka, 2018; 
Moretti et al., 2017). 

Since dairy cows modify their behaviour as a function of the temperature and the humidity, 
in terms of drinking, feed intake, and movement (Polsky & von Keyserlingk, 2017), the 
present study aimed to evaluate the influence of climatic conditions (temperature and 
relative humidity) on the behaviour of a group of primiparous dairy cows using digital 
images.

Material and methods

2.1 Animals, Housing and Cow Selection

Data were collected at the experimental farm A. Menozzi (Landriano, Italy; 45°19’16.5”N, 
9°15’56.4”E) of the University of Milan, for almost a year. Dairy cows were housed in a 
freestall pen in a loose-housing layout with a total of 130 cubicles having rubber mats 
and 106 feeding places. A total mixed ration (TMR) was delivered once daily beginning at 
approximately 10.00 h. Cows were milked twice daily at approximately 08.30 and 21.00 h. 

In the study, a total of 35 primiparous dairy cows during all lactation period were selected. 
For each cow, the monitoring period started from the first days after calving.

2.2 Behavioural and Environmental Data

All behaviours of the cows were continuously monitored using a video recording system 
throughout the study, except at the times when the cows were milked. The video 
surveillance system consisted of four infrared (IR) day/night weather-proof varifocal 
cameras with 42 IR LED for night vision (420SS-EC5, Vigital Technology Ltd., Sheung Wan, 
Hong Kong) connected to a recording personal computer. The cameras (four for each farm) 
were placed about 5 m above the pen floor. Behaviours recorded were lying, standing, 
feeding, drinking and perching.

To understand the effect of the temperature and humidity on cow behaviours, four data 
loggers (HOBO U12 Temp/RH/Light/External Data Logger, Onset Computer Corporation, 
Bourne, MA, USA) were placed in four separate locations at a height of about 2 m above 
the floor and data were collected for 296 days (from September to July). The recording 
interval for microclimatic data was set at 30 min. Temperature–humidity indices (THI) 
were calculated according to Yousef (1985). 

An average THI was determined from the calculated THI for each position in the barn.

2.3 Data Editing and Statistical Analysis

Dataset included video recordings for 296 days (from September to July). During the 
manual labelling of video recordings, all the activities performed by the herd were recorded 
once per hour, counting the number of cows performing a specific behaviour. Labelling 
procedure was performed by five trained labellers with a inter-observer reliability of 
97.09% agreement for the behavioural activities analysed.

Lying behaviour (LYI) was considered when the cow occupied the cubicle laying on it. The 
feeding (FEE) and drinking behaviour (DRI) were considered when the cow was in the feed 
bunk and at the drinker, respectively. A behaviour was considered as standing (STA) when 
cows were in the alleys. Perching (PER) was classified when cows had the front legs in the 
cubicle and the rear legs were in the alley. 
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Behavioural data were combined with environmental parameters, using the date and the 
hour as a merging criterion, successively. Months were grouped in seasons and hours of 
the day were grouped in four classes (morning, afternoon, evening and night).

THI was subdivided in five classes (<50; 50-57; 57-62; 62-69; >70) to evaluate differences 
in the behaviour due to relatively small variation of THI. Furthermore, the THI class 57 - 
62 (between 13–19 ºC at 50% of relative humidity) was considered as a reference class for 
the analysis, because it represents the centre of cows thermal comfort zone, that ranges 
between 5–25 ºC (Correa-Calderon et al., 2004). 

Multivariable logistic regression models (Proc LOGISTIC, SAS, Cary, NC, USA) were built to 
test the probability of changes in lying time according to THI classes (using as a reference 
the class 57 - 62), seasonality and excluding data collected in night-time hours (from 00.00 
h to 06.00 h). The results of this kind of analysis are the Odds Ratios (ORs). ORs show 
the association between the occurrence of a behaviour (e.g. lying or standing) and the 
environmental parameters (e.g. THI, season, day part). 

Finally, results were plotted as forest plot that allows the comparison of the results of the 
logistic regression models. 

Results and discussion

The average time spent lying, standing and perching in relation to the average THI is 
reported in Figure 1. 

Figure 1. Average time spent lying, standing and perching in relation to the daily average 
THI

Results of the LOGISTIC Procedure showed that all the effects included in the model (THI 
classes, the part of the day and the season) were highly significant (P > 0.001), showing a 
relevant effect of climatic condition on cow behaviours. 

In particular, as it is possible to see from Tables 1–4, all the classes of THI have a significant 
effect on the four activities examined. The Odds Ratios (ORs) reported in Figures 2-5 for 
the four activities, show the measure of association between the THI and the recorded 
behaviours. ORs represent the odds of having the cow, or the group of cows, lying in the 
cubicle compared to the odds of having the cow, or the groups of cows, performing other 
behaviours (standing, feeding, drinking and perching), given the same THI. ORs higher 
than 1 means that there is a high association between the behaviour and the class of THI, 
while, ORs lower than the unit means a reduced association between the behaviour and 
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the THI. In Tables 1 - 4 also, 95% Confidence Interval (95% CI) are reported. The 95% CI is 
used to estimate the precision of the OR. A large CI indicates a low level of precision of 
the OR, whereas a small CI indicates a higher precision of the OR. 95% CI is also used as a 
proxy for the presence of statistical significance if it does not overlap the null value (e.g. 
OR = 1) (Szumilas, 2010).

ORs lower than 1 in Tables 1-4 represent the lower incidence of standing, feeding, drinking 
and perching behaviours compared to the lying behaviour for the given class of THI. As 
an example, standing time is lower compared to lying time when the THI is lower than 57 
(THI < 50: OR = 0.686; THI 50-57: OR = 0.85), while when cows experienced THI higher than 
62, they prefer to stand rather than lie in the cubicle (THI 62-69: OR = 1.15; THI > 70: OR = 
1.087). The same trend is reported graphically in Figure 2. 

Table 1. Odds ratio estimate for the variable standing collected with the analysis of digital images

Variable Estimate SE Odds ratio 95% CI P-value

Intercept -1.06 0.029 <.0001

THI <50 -0.38 0.026 0.686 0.643-0.731 <.0001

THI 50-57 -0.16 0.021 0.85 0.808-0.894 <.0001

THI 62-69 0.14 0.033 1.15 1.105-1.198 <.0001

THI >70 0.08 0.029 1.087 1.028-1.149 0.004

Figure 2. Forest Plot of the Odds Ratio of the Variable Standing vs Lying

Similar results were obtained for the perching behaviour (Table 2). Indeed, the incidence of 
the perching behaviour compared to the lying behaviour was highly associated to hotter 
conditions (THI 62-69: OR = 1.174; THI >70: OR = 1.245). Results for standing and perching 
behaviours are in line with literature, since those behaviours are commonly adopted by 
cows to cope with heath stress (Allen et al., 2015; Herbut & Angrecka, 2018).
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Table 2. Odds ratio estimate for the variable perching collected with the analysis of digital images

Variable Estimate SE Odds ratio 95% CI P-value

Intercept -2.043 0.04 <.0001

THI <50 -0.3761 0.046 0.687 0.628-0.751 <.0001

THI 50-57 -0.1792 0.035 0.836 0.781-0.895 <.0001

THI 62-69 0.1607 0.027 1.174 1.113-1.239 <.0001

THI >70 0.2195 0.037 1.245 1.159-1.338 <.0001

Figure 3. Forest Plot of the Odds Ratio of the Variable Perching vs Lying

Also, feeding and drinking behaviours are highly affected by climatic conditions. In 
Table 3 and Figure 4, it is possible to notice that lower THI (below 57) reduce the feeding 
behaviour (THI < 50: OR = 0.57; THI 50-57: OR = 0.826) compared to the lying behaviour. 
In other words, cows prefer to lie down in the cubicle rather than going to the feed bunk 
when temperatures are too low (Table 3). The same situation can be observed when the 
temperature is too high (THI above 70) and may lead to lack of appetite.

Table 3. Odds ratio estimate for the variable feeding collected with the analysis of digital images

Variable Estimate SE Odds ratio 95% CI P-value

Intercept -0.2179 0.022 <.0001

THI <50 -0.562 0.025 0.57 0.543-0.598 <.0001

THI 50-57 -0.191 0.019 0.826 0.795-0.858 <.0001

THI 62-69 0.037 0.016 1.038 1.006-1.071 0.020

THI >70 -0.1966 0.024 0.822 0.784-0.861 <.0001

As expected, drinking behaviour (Table 4) was highly associated to climatic conditions. 
Also, for this behaviour, the highest incidences were observed when the THI was greater 
than 62 (THI 62-69: OR = 1.432; THI >70: OR = 1.119). 
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Table 4. Odds ratio estimate for the variable drinking collected with the analysis of digital images

Variable Estimate SE Odds ratio 95% CI P-value

Intercept -2.4606 0.051 <.0001

THI <50 -0.5195 0.060 0.595 0.529-0.669 <.0001

THI 50-57 -0.1467 0.046 0.864 0.79-0.944 0.001

THI 62-69 0.3593 0.035 1.432 1.337-1.534 <.0001

THI >70 0.1127 0.052 1.119 1.012-1.238 0.029

In general, above THI values of 70 there is a decrease in the ORs for the behaviours of 
standing, feeding and drinking compared to THI values between 62–69 (Figures 2, 4 and 5). 

Figure 4. Forest Plot of the Odds Ratio of the Variable Feeding vs Lying

Figure 5. Forest Plot of the Odds Ratio of the Variable Drinking vs Lying
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These situations can occur, since in cows, depression in feed consumption is the most 
important reaction to heat exposure due to the suppressive nerve impulses on the 
hypothalamus in an attempt to create less metabolic heat (Habeeb et al., 2018).

Furthermore, in extreme cases of heat stress, a cow’s thirst can be inhibited or completely 
depressed by altered mental states induced by hyperthermia (Polsky & von Keyserlingk, 
2017). 

Conclusions

The present study aimed to evaluate the influence of climatic conditions (temperature 
and relative humidity) on the behaviour of a group of dairy cows. Results of the analysis 
showed the clear and well-known association between the climatic conditions and lying, 
standing, feeding, drinking and perching behaviours. The statistical approach adopted 
in this study, after a validation process through the use of accelerometers, could be the 
starting point for the development of predictive models. Such type of mathematical 
models could be used to give an early warning on behavioural abnormalities linked to 
climatic conditions on the single cow or on the entire herd, compared to historical data. 
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Abstract

The understanding of individual feed intake of grazing cows is essential for monitoring the 
nutrient intake of the animal, to calculate feed efficiency and increase animal and pasture 
productivity as well as tailored herd and pasture management. However, the measurement 
of individual herbage dry matter intake (hDMI) of individual cows is laborious and may be 
challenging in commercial grass-based dairy systems. The aim of this study was to assess 
the application potential of machine learning algorithms (random forest) to estimate 
the individual hDMI of grazing dairy cows in an intensive grazing management system 
using animal behaviour characteristics. This study was performed at a research farm on 
n = 41 animals with the established reference value for measuring feed intake based on 
the n-alkane technique. The database for model development included individual cow 
information, on-field grass measurements, grass quality as well as detailed individual cow 
behavioural characteristics based on the RumiWatchSystem. Random forest regression 
was used to predict hDMI. Recursive feature elimination (RFE) was used to select the best 
subset of predictors to be included in the model. To overcome issues associated with the 
relatively small sample size of n = 68 weekly values in total a nested cross-validation 
procedure was implemented. Results showed that RF has good potential for the prediction 
of hDMI in grazing dairy cattle. However, further studies are required to fully assess 
performance of this method and identify new potential predictors for hDMI.
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Introduction

Pasture growth and utilisation have been reported as the main factors affecting 
profitability of pasture-based dairy farms (Hanrahan et al., 2018). A better understanding 
of individual herbage dry matter intake (hDMI) at pasture has the potential to improve 
herd and grassland management. However, conventional methods for hDMI estimation, 
such as the n-alkane technique, are laborious and require specific equipment (Hellwing 
et al., 2015). In recent years, PLF technologies such as behaviour sensors have become 
largely available to dairy producers and can provide fast and easy access to a wide range 
of information about both pasture and cows (Shalloo et al., 2018). The aim of this study 
was to assess the application of a machine learning algorithm (random forest) for the 
estimation of individual hDMI of grazing dairy cows based on readily available data and 
information collected by PLF sensors. 

Material and methods

The study was performed during the spring and summer of 2016 (27 March 2016 – 31 
July 2016) at the Teagasc’s research farm in Moorepark, Fermoy, Ireland. Forty-one spring 
calving dairy cows were included in the study, 24 of them were Holstein-Friesian, nine 
were Jersey and eight were crossbreeds. Ten primiparous cows and 31 multiparous cows 
were included, with an average parity of 2.57±1.41. All cows calved between 26 January 
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2016–28 February 2016. The body weight (BW) of cows included in the study was 470±65 
kg while milk yield was 20.8±2.3 kg/cow/day.

During the experiment, cows grazed a perennial ryegrass-based pasture with no supplementary 
feeding. Cows were milked twice daily (at 7:00 and 14:30) and fresh pasture was offered after 
each milking. As the cows were involved in another on-going experiment regarding restricted 
pasture allocation (Werner et al., 2019), a wide range of daily herbage allowances (DHA) was 
available. On average DHA was 13.6 kgDM/cow/day, ranging from 9.0–17.0 kgDM/cow/day 
(3.5 cm above the ground). Pre- and post-grazing compressed grass heights (PREGH and 
POSTGH) were measured daily using a rising plate meter (Jenquip, Fielding, New Zealand). 
The PREGH and POSTGH were 8.8±1.9 cm and 3.8±1.0 cm, respectively. Representative grass 
samples from each paddock were collected weekly and sent to an external lab for analysis. 
Results showed a crude protein (CP) content of 21.4±1.7%, 23.3±3.1% acid detergent fibre 
(ADF), 40.1±2.4% neutral detergent fibre (NDF), 26.3±2.7% non-forage carbohydrates (NFC) 
and 11.84±0.17 MJ/kgDM metabolizable energy (ME). 

The experiment consisted of two observation periods, which lasted five weeks during 
spring and one week during summer. During observations, cows were fitted with the 
RumiWatchSystem (Itin+Hoch GmbH, Liestal, Switzerland), which consisted of a noseband 
sensor and a pedometer. This system was capable of monitoring cows’ grazing behaviour, 
rumination and physical activity in a detailed and accurate manner (Werner et al., 2018). 
Behaviour parameters measured by the RumiWatchSystem and retained in the final 
dataset are reported and described in Table 1. 

Table 1. Behaviour parameters measured by the RumiWatchSystem and retained in final model for 
analysis

Parameter (unit of measure) RumiWatch Output Mean±SD

Ruminating chews frequency (n/min) CHEWSPERMINUTE 49.5±5.8

Ruminating bouts started (n/day) RUMIBOUTSTART 13.6±2.0

Ruminating time (min/day) RUMINATETIME 456±65

Grazing bites (n/day)1 EATBITE 33,413±4,818

Feeding bite frequency (n/min)2 EAT1CHEW/EAT1TIME 74.8±3.6

Grazing bite frequency (n/min)1 EATBITE/EATTIME 54.6±5.3

Grazing bouts (n/day) GRAZINGSTART 8.0±1.6

Total feeding time (min/day) EATTIME 611±51

Feeding time with head down (min/day) EAT1TIME 512±56

Feeding time with head up (min/day) EAT2TIME 99±33

Other activities time (min/day) OTHERACTIVITYTIME 368±83

Other chews (n/day) OTHERCHEW 1,186±401

Walking time (min/day) WALKTIME 95±20

Laying bouts (n/day) LAYDOWN 7.7±1.7

Laying time (min/day) LAYTIME 517±83

1Grazing bites are defined as prehension bites or jaw movements for ripping the grass; 2Feeding bites are defined 
as all the feeding jaw movements taken with head down 
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Individual hDMI was estimated with the n-alkane technique (Dillon & Stakelum, 1989). 
Cows were dosed with a C32 n-alkane marker. Faecal samples were collected twice daily 
in the paddocks, before both am and pm milking and analysed in a lab. Estimation of hDMI 
was based on the amount of marker found in faeces and yielded weekly average values 
for each individual. As the n-alkane technique has demonstrated reliable estimates of 
individual intake (Wright et al., 2019), values obtained with this method were used as the 
reference hDMI.

Data preparation and analysis

A dataset containing all possible predictors and reference hDMI was built. As the 
reference hDMI was only available as weekly means, all other data originally recorded 
in different time frames were converted to obtain weekly values. Initially, 103 variables 
were acquired which were then filtered to improve model prediction performance. 
Twenty-one descriptors were excluded for having the same value for more than 95% 
of the dataset. Fifty-two redundant variables were filtered off until no remaining pair-
wise correlations exceeded rp = 0.9 (Pearson correlation). As RF cannot deal with missing 
values, incomplete observations had to be removed as well. The final dataset consisted of 
68 cow-week observations (rows) and 30 variables (columns) including cow characteristics 
(cow ID, breed, BW, parity, DIM), grass field measurements (DHA, PREGH and POSTGH), 
grass lab analysis (NDF, ADF, NFC, CP, ME), cows’ behaviour data (CHEWSPERMINUTE, 
RUMIBOUTSTART, RUMINATETIME, EATBITE, EAT1CHEW/EAT1TIME, EATBITE/EATTIME, 
GRAZINGSTART, EATTIME, EAT1TIME, EAT2TIME, OTHERACTIVITYTIME, OTHERCHEW, 
WALKTIME, LAYDOWN, LAYTIME; Table 1) and hDMI.

Data analysis was performed using the open source R statistical software (R Core Team, 
2018). Random forest (RF) regression was used to predict hDMI. The RF model is a machine 
learning method for classification and regression analysis that uses an ensemble of 
randomised decision trees to define its output (Breiman, 2001). To overcome issues 
associated with the relatively small sample size (n. 68), avoid overfitting and obtain a 
robust evaluation of model performance, a nested cross-validation (CV) procedure was 
implemented (Figure 1). This method consisted of an inner and outer repeated CV loop 
analysis, each with three folds and ten repetitions. The inner CV was used to tune model 
parameters, subset predictors and select the best model. Then, generalisation error was 
estimated by averaging the test set scores over several dataset splits in the outer CV 
loop. In the inner CV, recursive feature elimination was used to select the best subsets 
of predictors to be included in the models. Variable importance was computed for any 
variable included in the models selected in the inner CV and described the deterioration in 
prediction accuracy of the model when excluding that particular descriptor. Root-mean-
square error (RMSE) and explained variance were used to evaluate model performance in 
both the inner and outer CV loops.

Results and discussion

The hDMI of cows included in the experiment, as estimated with the n-alkane method, was 
16.35±4.4 kgDM/cow/day. The RF models produced were capable of explaining 64.1±8.5% 
of the variance in hDMI, with an average root-mean-square error (RMSE) of 2.66±0.37 
kgDM/cow/day (Outer CV; Table 2). 
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Figure 1. Workflow of the data preparation and modelling process based on a nested CV procedure

Table 2. Performance estimates of the random forest models in the inner (training set) and outer 
(test set) CV loops

Inner CV Outer CV

mtry1 3.30±1.26

n. of predictors 10.57±3.86

Explained variance (%) 67.3±13.4 64.1±8.5

RMSE2 2.63±0.55 2.66±0.37

1number of variables randomly sampled as candidates at each split; 2root-mean-square error

By recursively splitting the dataset in train and test sets, the nested CV procedure ensured 
data used to train the model was not used to test it providing a robust evaluation of model 
performance (Cawley & Talbot, 2010). The relatively large variation in model performance 
metrics for both the inner and outer CV loops shows that RF may produce instable results 
when dealing with small sample sizes. The method employed showed an effective tool to 
overcome this issue as variation in model performance is captured and can therefore be 
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evaluated. Also, consistency between performance measured in the inner and outer CV 
loops indicates the method used was capable of preventing overfitting. 

The number of predictors retained in the models by RFE (inner CV) was 10.57±3.86 (Table 
2). Figure 2 shows the improvement in model performance (RMSE) with increasing number 
of variables included during the model training process. Variable importance analysis 
(Figure 3) showed that grass quality parameters (NDF, ADF, NFC) are the most important 
predictors of hDMI. In the current study, grass quality was more important than DHA and 
PREGH and POSTGH in predicting hDMI. These outcomes confirm that maintaining high 
grass quality is key to maximise hDMI at pasture (Dillon, 2006). Cows’ bodyweight, DIM and 
parity were also highly associated with hDMI. This indicates that a high variation in hDMI 
may exist among individuals. Overall, behavioural measures were shown to affect hDMI 
to a rather limited extent with just two variables (EAT1CHEW/EAT1TIME and LAYTIME) 
ranked among the ten most important predictors. Surprisingly, although a number of 
grazing bites is thought to be strictly related to hDMI (Umemura et al., 2009; Oudshoorn 
et al., 2013), EATBITE was among the least important variables being excluded from one-
third of the models trained in the inner CV. Obviously this suggests that predicting hDMI 
based on behavioural measures alone may pose some challenges. 

Figure 2. Root mean square error (RMSE) vs number of variables included in the models during model 
training process (inner CV)

In a recent study Rombach et al. (2019) also explored the possibility of modelling hDMI 
of grazing dairy cows based on behavioural data measured with the RumiWatchSystem 
and other accessible measures including cow characteristics, milk production and grass-
related variables. Their results also highlighted that behavioural characteristics alone 
may not allow a sufficiently accurate estimation of individual hDMI. 
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Figure 3. Random forest variable importance plot (left) and n. of times variables were selected by RFE 
(right) within the inner CV (train set)

Conclusions

Results showed that maintaining high grass quality is paramount to achieve high hDMI in 
pasture-based dairy systems. Random forest has been shown to have good potential for 
the prediction of hDMI in grazing dairy cattle. The nested CV procedure used in the current 
study allowed a robust estimation of model performance, even with a small sample size. 
Behavioural measurements showed limited importance in the RF model developed. Further 
research is required to identify new potential predictors and fully assess performance of 
machine learning algorithms for modelling of individual hDMI of grazing dairy cattle.
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Abstract

Climatic change induces challenges in grazing management, which could tempt farmers 
to keep their cows indoors. To assess the environmental and economic impact of diets 
with different percentages of grazed grass, 33 Holstein cows in early lactation were divided 
into three groups from 27 April to 7 July 2018. These groups were allocated an increasing 
proportion of grazed grass in their diet. No access to grazed grass was possible for Group 
1 (0%), while Group 2 and 3 were granted access to pasture 21w. Group 2’s (100%) diet 
was composed of 100% grass. Group 3 (50%) received silage in the barn as well as grazed 
grass. The access to pasture was adapted to achieve a proportion of 50% grass in the 
diet. Sward height was measured every week with an electronic rising plate meter (EC 
20®), and the nutritional composition of grazed grass was evaluated. All the groups’ diet 
was complemented with concentrates delivered by the automatic concentrate supplier, 
where the Guardian® was located in order to measure the methane emitted at each 
visit. Methane emissions were also assessed by predictions based on the mid infra-red 
(MIR) spectrum of milk samples. Animal performance was recorded and the milk carbon 
footprint was estimated by the Feedprint®. No difference in milk yield between the groups 
was recorded. Predictions based on the MIR spectra analysis showed a slight decrease 
in methane emission per cow and per day in the 100% group, but this decrease was not 
confirmed by the breath samples measurements. The feeding costs were in favour of the 
100% group. The carbon-footprint of the milk produced with 100% or 50% of grazed grass 
was lower than for the zero-grazing cows.

Keywords: grazing, methane emissions, milk carbon footprint, grazing practices, dairy 
cows

Introduction

Grasslands are recognised as playing the role of carbon sink, allowing the mitigation of a 
substantial amount of greenhouse gases from the agricultural sector (Soussana et al., 2010). 
Yet, grazing may contribute to the preservation of these areas. A survey undertaken during 
the Life project Dairyclim showed that the difficulty in managing grazing was a decisive 
factor for stopping grazing (Lessire et al., 2018a). Other invoked reasons for abandoning 
this practice are economic and climatic. Especially in intensive farms, farmers prefer 
to feed the cows with a controlled diet indoors, even during the summer period. In this 
context, the aim of this trial was to assess how the percentage of grazed grass in cows’ diet 
could influence production performances and environmental indicators such as methane 
emissions and the carbon footprint (CF) of milk. The economic impact of grazing was also 
estimated through the calculation of feeding costs linked to the different diets.

Material and methods

The study was conducted at the Centre of Agronomic Technologies (CTA) in Belgium from 
19 May 2018–6 July 2018, after a three week transition period. Thirty-three Holstein cows 
in early lactation were divided into three groups balanced on milk yield (MY), days in 
milk (DIM) and lactation number (LN) (Table 1). Each group received a different amount 
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of grazed grass in the ration. The first group was kept indoors. The percentage of grass 
was therefore 0%. The second group (100%) had access to pasture. For the third group, the 
allocation of grazed grass was estimated at 50% on the basis of sward height measurements 
and grazing time. This group was offered a partial mixed ration in the barn. The different 
rations are described in Table 2.

Table 1. Description of the three groups at the beginning of the trial

Nbr cows DIM LN MY  
(kg cow-1d-1)

Group 0% 11 133 ± 58 1.9 ± 0.9 29.5 ± 4.9

Group 50% 11 134 ± 59 2.1 ± 1.0 28.0 ± 6.8

Group 100% 11 133 ± 43 2.0 ± 0.9 26.4 ± 6.0

Abbreviations: DIM: days in milk; LN: lactation number; MY: milk yield

All the rations were calculated to ensure energy inputs of 20 KVEM (142 NEL). The Groups 0 
and 50% received a ration mainly composed of forages: (Group 0 - 78.8% and Group 50 - 35%). 

Table 2. Description of the diet allocated to each group

% DMI Group 
0% grazing

Group  
50% grazing

Group 
100% grazing

Grass silage 33.7 - -

Alfalfa silage 19.5 20 -

Maize silage 17.6 7 -

Beet pulp silage 8 8 -

Barley 4.2 4 -

Concentrate rich in protein (40%) 8.5 2 -

Grazed grass - 50 91

Concentrates ACS 8.5 9 9

Total DMI 21.6 20.4 19.8

Foreseen production
25.6 L (energy)

29.7 L (protein)

24.3 L (energy)

29.1 L (protein)

24.8 L (energy)

31.2 L (protein)

Abbreviations: ACS: automatic concentrate supplier; DMI: dry matter intake

The milk production and the concentrate consumption were recorded daily. Methane 
and CO2 in breath samples were analysed by the Guardian® inserted in the automatic 
concentrate supplier. Methane productions were estimated following the method 
described by Haque et al. (2014). Individual milk samples were analysed twice per month 
for milk quality and for methane emissions, evaluated by milk spectra analysis based on 
the method described by Vanlierde et al. (2016).

Sward height was measured by the EC20® rising plate meter every week, in order to have 
an estimation of the grass availability and growth. The grass density was measured in a 
plot excluded from grazing, where grass was mowed on a 10 m length band every week. 
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The mowed grass was weighted and dried to calculate the grass density. The difference 
between sward height at the paddock entrance and exit, multiplied by the grass density 
and the surface of the paddock, provided the amount of grass eaten. This amount was then 
divided by the number of cows present on the paddock. Hand-plucked samples of grass 
were taken from the grazed paddock to determine its nutritional value. Meteorological 
data collected in a CTA weather station were also compiled to establish a link between the 
weather and the recorded grass growth.

The carbon footprint of feeding was estimated first by calculating the emission factors 
(kg-eq CO2) of each feed component using the Feedprint® (Vellinga et al., 2014), and then by 
adding them on a prorata basis of their % in the ration.

Feeding costs were calculated on the basis of purchase invoices. The silage production costs 
were estimated with the software “Dégâts du gibier”, developed by Fourrages Mieux. The 
costs of grazed grass took into consideration the grass yield and the inputs to the pastures. 

Descriptive data analysis was made using the software R (R-core Team 2016). Further 
analysis of methane emissions and animal performance was performed with Proc mixed 
(SAS 9.3). The model included a repeated statement (repeated days/subject animal) and a 
covariance analysis type cs. 

Yij= µ + Gri + NLj+ periodk + concentratel +DIMm + periodk X Gri+ eijklm

where µ = the overall mean with fixed effects being Gri = group effect (i = 1–3 for group 
1 = 0% to group 3 = 100%); NL: effect of lactation number (k =1–3 - 1 = primiparous, 2: 2d 
lactation and 3 = over the second lactation); concentrate: concentrate consumption (kg 
cow-1.d-1); DIMm:days in milk; periodk: period of measurement (May - June); periodk X Gri: 
interaction group X periodl; eijklm: residual error. 

The model calculating the methane from breath samples also took in consideration the 
weight of the cow (kg), the sampling duration (min) and the number of samplings (n per 
day) in the automatic concentrate supplier.

Results

The meteorological data showed that the average temperature was higher than usual 
during the three months of the trials: 15.7 ºC; 17.2 ºC and 20.9 ºC, respectively in May, 
June and July, compared to the values from the last 25 years: 12.9 ºC; 15.45 ºC and 17.5 ºC, 
respectively in the same months. The rainfalls were more intense in May (78 mm in May 
vs 63.6 mm (25 year value)) while a drought occurred in July (10.1 mm vs 85.7 mm (25 
year- value)). It must be noted that the precipitations observed in May and June (55.8 mm) 
were boosted by some days with intense rainfalls (>10 mm: 1 d in May – 2 d in June). These 
weather conditions favoured a higher grass growth rate in May and June (72.2 kg DM ha-

1.d-1 in May; 40.3 kg DM ha-1.d-1 in June vs 56.4 kg DM ha-1.d-1 in May and 28.7 DM ha-1.d-1 in 
June 2017). During the trial period, the grass density was 280 DM ha-1. 

The mean grass intake was 16.2 kg DM for Group 100% and 10 kg DM for Group 50%. The 
nutritional values of grass were very good, with an energy supply of more than 1 KVEM 
(7.10 NEL) per kg DM and a protein content of over 20%. The values of 2017–2018 were very 
close (212 g kg DM-1 in 2018 vs 215 g kg DM-1 in 2017; VEM: 1,003 g kg DM-1 in 2018 vs 1,014 
g kg DM-1 in 2017). 

No statistical difference in milk yield (MY) or in energy corrected milk (ECM) yield was 
observed during the trials’ period (Table 3). The methane emissions predicted by MIR were 
lower in the groups 100% and 50% compared to 0%, but the breath samples analysis did 
not confirm this result. 



616      Precision Livestock Farming ’19

Table 3. Production recorded in the three groups during the trial period

Group 
0%

Group 
50%

Group 
100%

Signification 
stat

MY 

(kg.cow-1.d-1)
28.5 ± 1.3 27.2 ± 1.2 25.2 ± 1.3 ns

F% 3.78 ± 0.15 3.81 ± 0.15 3.60 ± 0.15 ns

Prot% 3.21 ± 0.07 3.18 ± 0.06 3.06 ± 0.07 ns

ECM 

(kg.cow-1.d-1)
27.5 ± 1.5 25.2 ± 1.4 24.2 ± 1.5 ns

Methane MIR (g.cow-1.d-1) 475 ± 9 440 ± 9 430 ± 9 *

Methane Guardian (g.cow-1.d-1) 453 ± 47 459 ± 31 472 ± 45 ns

Values are LS means ± SE. 
Abbreviations: MY: milk yield; F: milk fat content; ECM: energy corrected milk; MIR: mid infra-red; NS: not 
significant; *: p < 0.05

The drought induced a reduction in the annual grass production so that the production 
costs of grazed grass were higher than in past years. For example, it was estimated at €60 
per TDM in 2017, while it reached €90 per TDM in 2018. Despite this, the feeding costs of 
group 100% were approximately half those of 0% group. The 50% group had intermediary 
values (Table 4). The milk revenue was calculated on the basis of milk sale prices during 
the trials’ period. Although we observed a lower milk, fat and protein production, the net 
margin was favourable for grazing groups. 

The Carbon Footprint of the 100% and 50% ration was lower than that of the 0% (8,549 g 
eqCO2 - 8,765 g eqCO2 in groups 100% and 50%, respectively vs 10,360 g eqCO2 in group 0%). 
Due to a lower MY in group 100%, the reduction of the Carbon Footprint g eqCO2 per kg 
milk or per kg ECM was attenuated. 

Table 4. Feeding costs, milk revenue and CF (Climate impact) calculated in the different groups

Group 0% Group 50% Group 100%

Costs per cow.d 4.72 € 3.36 € 2.19 €

Costs per 100 kg milk 16.6 € 12.3 € 8.7 €

Sale price 1kg ECM 7.99 € 7.63 € 6.73 €

Net margin per cow.day 3.26 € 4.27 € 4.54 €

Total CF in daily diet 10,360 g eqCO2 8,765 g eqCO2 8,549 g eqCO2

CF. kg milk-1 356 g eqCO2 322 g eqCO2 339 g eqCO2

CF. kg ECM-1 369 g eqCO2 361 g eqCO2 353 g eqCO2
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Discussion

The grass growth rate observed in May and June allowed the group 100% to reach the 
same milk production level as groups 0% and 50%. Statistically, significant differences in 
methane emissions between treatments were not recorded, while these were recorded 
between Groups 0% and 100% using MIR predictions. This is consistent with the results 
observed in 2017 (Lessire et al., 2018b). Discrepancies in methane estimations obtained 
with the methods based on breath samples and MIR spectroscopy were also reported in 
another study (Shetty et al., 2017) and could be attributed to several factors. One is that 
the methane in breath samples was measured over several days, and breath samples were 
taken every three seconds during the visits in the concentrate supplier. By comparison, 
only two milk samples per period were made. Finally, the methods to assess methane 
emissions are different: one is based on CH4:CO2 ratio in breath samples, and the other one 
on milk spectra analysis. 

A slight decrease in the carbon footprint of produced milk was observed for both rations 
based on 100% and 50% grazed grass. It has to be noted that only the climate impact was 
taken into consideration and not the other indicators like LULUC changes or biodiversity 
index. This evaluation has yet to be completed. 

Feeding costs were reduced as grazed grass intake increased. Even with the slight numerical 
reduction in MY for group 100%, costs were quite divided by two, allowing the group 100% 
to record the highest net margin. 

Conclusion

Full grazing was beneficial in terms of economic performances. No statistically significant 
difference in zootechnical performance was observed. These results arose from the 
analysis of data collected in May and June, a period of intense growth rate. The follow up of 
the whole season suggests that these results would not be as beneficial in July and August 
because of droughts and their effect on grass growth. No difference in methane emissions 
per cow per day was registered. The carbon footprint calculated on the daily diet was 
favourable to the grazing groups but when reported by kg milk or kg ECM, this was less 
advantageous. Due to climatic uncertainties, complementing grass with forages has to be 
recommended to maintain animal performances, preserve grazing, and still contribute to 
decreasing the feeding costs and the environmental impact of dairy products. 
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Abstract

This research paper addresses the hypothesis that heat stress can be mitigated better by 
tailoring the cooling management to the cow’s feeling.

In the summer, cooling systems help the high-yielding dairy cows to maintain body 
temperatures in intensive systems. Those cooling systems often function at a constant 
schedule, based on measurements of the environment and not of the animal itself. We 
propose a method utilising a dynamic cooling system, based on sensors that measure 
the cows’ core temperatures. Thus, cooling can be activated when needed, and is most 
efficacious. A total of 30 lactating cows were randomly assigned to one of two groups which 
received two different evaporative cooling regimes: a control group, which received the 
common methods used in farms, time-based cooling; and an experimental group, which 
received the sensor-based cooling regime, that was changed every week (3 month in total) 
according to the cow’s response to last week’s change in terms of body temperature, as 
measured by reticulorumen boluses. The two groups of cows had similar milk yields (44.7 
kg/d), but those in the experimental group had higher milk fat (3.65 vs 3.43%), higher milk 
protein (3.23 vs 3.13%), higher energy corrected milk (ECM, 42.84 vs 41.48 kg/d), higher fat 
corrected milk 4%; (FCM, 42.76 vs 41.34 kg/d) and shorter heat stress time (5.03 vs 9.46 
hours/day) compared to the control. Dry matter intake was higher in the experimental 
group. Daily visits to the feed trough were less frequent, and with each visit lasting longer. 
The sensor-based cooling regime may be an effective tool to detect and ease heat stress in 
high-producing dairy cows under summer heat load in arid and semi-arid zones.

Keywords: Body temperature, eating behavior, PLF 

Abbreviations:

ECM: energy corrected milk

FCM: fat corrected milk

PLF: precision livestock farming

RFI: residual feed intake

RFID: Radio frequency identification

RT: reticulorumen temperature

SB: sensor based 

SE: standard error mean 

TB: time based

THI: temperature humidity index 

TMR: total mixed ratio 

VT: vaginal temperature

Introduction

The industry loses millions of dollars annually due to reduced milk production during 
the summer months (St-Pierre et al., 2003, West, 2003, Stull et al., 2008, Ferreira et al., 2016, 
Polsky and von Keyserlingk, 2017). Over and above, heat stress conditions are associated 
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with reduced eating, reduced feed efficiency, seriously impaired fertility (Schueller et al., 
2014, Mellado et al., 2015) and cow discomfort (Honig et al., 2012). The definition of the 
cow’s thermoneutral condition, i.e. when the cow feels comfortable (because the heat 
production and the heat loss are balanced) varies: Piccione & Refinetti (2003) established 
the optimal body temperature as ranging from 38.6–39 ºC, whereas Prendiville et al. (2002) 
suggested a lower range, of 38.2-39 ºC. 

Respiration rate (Strutzke et al., 2018) panting and body temperature measurements 
(Ammer et al., 2016) can be evaluated as indications of heat stress. Temperatures can 
be measured from various places in the body, e.g. rectum, vagina, peritoneum, ear, and 
reticulorumen (Ji et al., 2017). Although rectal measurement is reliable, it has a low 
sampling rate, since it is done in a commercial way (Reuter et al., 2010) manually and 
requires restraining the cow. Electronic, wireless measurements enable higher sampling 
frequency. Vaginal temperature is measured commercially (Burdick et al., 2012) either 
manually or by an electronic logger inserted for a few days. The downside of the logger is 
the short period of time that it can remain in the vagina, and the impractical way in which 
the data is manually downloaded when the logger is removed. Now, the temperature of 
a cow can be measured in real-time by a bolus inserted into the rumen (reticulorumen). 
The boluses can measure the reticulorumen temperature as well as the pH. Wireless 
boluses are able to send data every ten minutes. The data can be stored in the cloud/
computer. Depending on the battery life of the different bolus models, measurements can 
be taken for up to a year (Ammer et al., 2016). The disadvantage of the bolus method is 
the location of the sensor in the reticulorumen, where it is affected by fermentation heat 
which is constantly 0.5 ºC greater than the cow’s core body temperature or by the cooling 
effect of the cow’s drinking water (Bewley et al., 2008). In order to address this issue and 
represent the cow’s body temperature (vaginal) using reticulorumen temperature (bolus 
sensor), an algorithm was recently developed to remove drinking points from reticular 
temperature and correlate the reticulorumen fermentation temperature to the vaginal 
temperature (Goldshtein, 2018). Goldshtein algorithm quantifies the correlation between 
vaginal temperature and reticular temperature and enables reliable on-line continuous 
measurement of a cow’s body temperature with the ruminal bolus.

To reduce heat stress, dairy barns located in arid or semi-arid climate zones use: shaded 
resting areas, shaded feeding and watering sites, ventilation, and evaporative cooling 
(Bucklin et al., 1991, Ji et al., 2017), using fans and water sprinklers (Flamenbaum et al., 
1986, Tresoldi et al., 2018, 2019). Evaporative cooling is carried out several times a day, 
usually three to eight sessions a day, lasting 30-40 minutes each, at fixed hours, in cooling 
yards or along the feeding lanes (D’Emilio et al., 2017). If the night temperature exceeds 
a certain level, a night cooling session is often added. In all of the studies reviewed, the 
cooling sessions were scheduled at constant times, regardless of the weather or conditions 
of the individual cow. 

Hypotheses: A ruminal bolus sensor-based [SB] cooling method can be used to establish a 
cow cooling regime, which is more effective than a fixed, time-based [TB] cooling regime, and 
ensures that the average body temperature of a cow group does not exceed the heat stress 
threshold (39 ºC). A cooling method based on the cow is more efficacious in reducing the cow’s 
heat stress, functioning, output, and comfort than is one based on the cow’s environment. 

Therefore, the goal of this study is to describe the sensor-based method for scheduling 
the cooling sessions, and to validate this method on a research farm under severe heat 
conditions. Specifically, the goal of this study is develop (1) and test (2) a new cooling 
system based on the temperature of the cows, thus enabling the cooling sessions to be 
scheduled so as to closely respond to the cows’ needs. 
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The innovative aspect 

Using a bolus as a sensing device, cooling can be tailored to the cows’ needs, 
thereby improving the cow’s eating behaviour, milk production and comfort. 
 
Material and methods

Concept

We set the body temperature heat stress threshold at 39 ºC. Information about the cow’s 
body temperature is collected and processed over a period of a week before a cooling 
decision is made. The critical periods during the day with the highest temperatures are 
recognised and cooling sessions are added or adjusted for these periods at the beginning 
of the following week. Hypothesis: correct cooling sessions can decrease the cow’s 
temperature. Constant cooling sessions were compared with the other group, which 
was cooled by the sensor-based regime. The novelty of this method is using information 
obtained from low-cost commercially available sensors to improve the cow welfare and 
farm management by adapting the cooling schedule to the cows’ needs and environmental 
conditions.

Statistical tools 

The two cooling methods, TB and SB, were compared during the fifth through eighth weeks 
of the experiment with respect to the parameters: DMI, daily eating time, eating rate, visit 
frequency, visit length, visit size, diurnal eating distribution, daily lying, rumination time, 
milk yield of, 4% FCM and ECM, milk composition and efficiency in terms of RFI and ECM/
DMI. All of the data were summarised for each day at the end of the experiment.

Data were analysed using a GLM F-test in JMPpro-13.0 software (SAS Institute Inc., 2016), 
with ANOVA repeated measures of cow as the subject. Tukey’s HSD tests were used for 
comparisons of means between groups. Average DIM, parity and milk yield of the two 
cooling groups were kept similar during the experiment and calculated separately for the 
crossover. Covariance corrections were taken into account.

Reticulorumen data compared to vaginal data

RT data were compared to VT data using a model that was developed in a preliminary 
study conducted in the summer of 2016 (Goldshtein, 2018). The RT data, recorded every 
hour for 14 days, was analysed once a week and averaged for the aggregated group 
temperature, such that one aggregated hour represented the same hour of the previous 
14 days for all cows. This data was used to evaluate the cow’s heat stress using the RT 
to reflect the VT. During the first four weeks of the experiment (Figure 3), the times and 
durations of the cooling sessions were also changed according to the THI forecasted by the 
Agro meteorology unit in the Israeli Ministry of Agriculture. (Magrin et al., 2017).

Results and discussion

During the fourth week, the length of time of the additional cooling sessions was modified, 
until the preferred cooling regime for the SB cows was reached. Under the preferred cooling 
regime achieved from the fourth week on, the animal temperature of the SB group did not 
reach the 39 ºC heat-stress threshold (Figure 1). Figure 1 is the result of almost two months 
of trial and error until the situation in Figure 1 was reached. 
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Figure 1. Weeks 5-8. Average body temperature (Y-axis) by hour (X-axis) during fifth to eighth weeks of 
the experimental period (when preferred cooling regime was achieved). Two treatments: sensor based 
(SB, black line, eight cooling sessions in gray columns), vs the time based (TB) group (blue line, three 
cooling sessions in blue columns), THI* is the green line; the predefined heat stress threshold (39.3 ºC) 
is marked by a red horizontal line. 

*THI — temperature-humidity index in this experiment ranged from 73–81 THI.

Minimal required number of boluses

A nearby commercial farm was equipped with 97 boluses in the cows with the same 
experimental setup. Using an extrapolation of the SD formula (N=∑(x-x ̅ ̇ ) 2 ⁄ SD) we found 
that accurate monitoring of a group can be achieved with 30% of the group equipped with 
reticulorumen boluses (Figure 2). 

Figure 2. The minimum number of boluses needed for accurate sampling in one herd group. It can 
be seen that under 30% of the cows the sampling accuracy is insufficient due to high variance in 
temperatures
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Although milk yield was similar in both groups (Table 1), under the preferred cooling 
regime (Figure 1), the SB group had higher milk protein (Table 1), higher milk fat and 
therefore, higher ECM and FCM 4% yields compared to the TB cows (Table 1).

Table 1. Production performance of the groups that experienced time-based (TB) cooling compared 
with the group that experienced sensor-based (SB) cooling

Measurement TB SB SEM p

N 15 15

Milk, kg/d 44.7 44.7 0.37 0.99

Milk Fat, % 3.46 3.72 0.01 0.001

Milk Protein, % 3.15 3.26 0.01 0.001

Milk Lactose, % 4.89 4.83 0.01 0.001

ECM, kg/d 41.3 42.8 0.30 0.001

FCM 4%, kg/d 41.0 42.7 0.30 0.001

ECM/DMI 1.59 1.53 0.01 0.001

RFI, kg DM/d 1.03 1.03 0.01 0.93

ECM= energy corrected milk; FCM 4%= 4% Fat corrected milk; DMI = dry matter intake; RFI = residual feed intake 
[actual DMI – predicted DMI, (NRC, 2001)]

Conclusions

The sensor-based cooling regime maintained the cow’s body temperature under 
a predefined heat stress threshold of 39 ºC. The cows under 39 ºC showed higher DMI 
consumption (28.4 vs 26.4), higher ECM (42.8 vs 41.3) and FCM productions levels (42.7 vs 
41), and were more comfortable in terms of rumination.

Adapting the frequency, timing and duration of the evaporative cooling sessions to the 
real-time reticulorumen temperature might be a practical tool for farmers in semi-arid 
zones. Elsewhere, in extreme climate events, this sensor-based method may enable the 
dairy farmer to cope with the effect of climate change and ease the heat stress of cows.
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Abstract 

The aim of this study is to compare the performances of different data driven methods 
for their ability in early detection of clinical mastitis. Many scientific papers on data 
driven methods for early mastitis detection have been published in the last decade. The 
performances vary greatly as well as the data used, the applied time window, and the 
gold standard definition. To compare the performances of these data driven methods, this 
study applied various data driven methods including time series filtering and classification 
methods (i.e. Naïve Bayesian networks and Random Forest) under similar conditions. 
Forecast errors and filtered means of the time series models were used to distinguish 
mastitis cases from non-cases. Moreover, we focused solely on electrical conductivity (EC) 
measures of milk to detect clinical mastitis. Data for this study were provided by Lely 
Industries and originate from 57 farms in six different European countries with a total of 
1,094,780 cow milkings with EC measurements at quarter milk level. It is hypothesised 
that the performances with respect to mastitis detection will differ substantially between 
the different methods, and that the ranking of methods is not consistent across different 
datasets. Despite this, our preliminary results suggest that the performances of Naïve 
Bayesian networks and Random Forest do not vary much. The various filtering methods 
also present similar results. Although our naive approach of data handling allows us to 
compare different methods, we expect that each method in itself have the potential to 
improve when other (historical) variables than just EC are included.

Keywords: mastitis, classification, transformation, filtering, EC

Introduction

Sensors generate a large amount of data but as such do not provide any information on 
which decisions can or should be taken. With the development of mastitis sensor systems, 
an increasing number of scientific papers on early mastitis detection are being published 
(Hogeveen et al., 2010), and various data driven methods are applied to translate sensor 
data into useful information for mastitis detection (Dominiak and Kristensen, 2017). Not 
only do these publications report a wide range of applied methods, but they also use a 
wide variety of gold standards for mastitis, time windows for detection, and the selection 
of sensor data. This makes the studies difficult, if not impossible, to compare. 

Timely detection of mastitis is of interest from an animal health and welfare perspective, but 
also plays an important economic role. Milk electrical conductivity (EC) is the most commonly 
used sensor data to detect clinical mastitis (De Mol and Ouweltjes, 2001; Khatun et al., 2017). 
Other sensor data like milk colour, somatic cell count, and milk yield have been used to classify 
abnormal milk, often caused by clinical mastitis (Ebrahimie et al., 2018). For the early detection 
of mastitis, alerts need to be generated. This is commonly achieved by applying methods that 
can produce an alert when the measured sensor data (that are considered a proxy for cow health 
status) deviates from the expected measurements (being a proxy for a normal, i.e. healthy status). 
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In the search for a perfect alert (that is, all mastitis cases receive an alert in time with 
100% positive predictive value) a combination of different data driven methods have been 
used. Roughly we can distinguish three method families: filter methods, transformation 
methods, and classification methods. Filtering is a pre-processing method that defines, 
detects and corrects errors of raw sensor data to minimize the impact of these errors on 
the succeeding subsequent analyses. Filtering methods are used to remove noise from 
time series measurements and thus highlight the underlying trends from a signal and 
estimate the true underlying value. Transformation methods are also referred to as a pre-
processing step which makes input data more amendable by changing a range of numbers 
from one representation to another. Filtering or transformation methods to the data can 
result in more suitable parameters to be used for classification. Classification methods are 
used to convert the sensor data into and alert for mastitis detection. 

The accuracy of the classification methods are evaluated by calculating the specificity 
(Sp) and sensitivity (Se), which are statistical measures of a binary classification test. 
Studies report various performance levels, ranging between 69 - 99% for Sp and 32 -100% 
for Se (Hogeveen et al., 2010, Dominiak and Kristensen, 2017). Most of these studies 
used a combination of sensor and non-sensor data. When based solely on sensor data, 
the detection of all clinical mastitis cases, with a manageable number of false positive 
attentions, remains highly challenging. 

Improving the performances of classification methods can be achieved by combining 
different data sources and changing the time-window. The objective of this paper is to 
evaluate the performances of several data driven methods for the early detection of 
clinical mastitis under similar conditions (i.e. data input, data selection criteria, time-
window and gold standard). With this paper we want to strengthen the knowledge on the 
performance of different methods in relation to mastitis detection. 

Material and methods

Data management

For this study we used sensor data on EC and somatic cell count (SCC), which had been 
automatically recorded using Lely milking robots, along with information to identify the 
individual cow and the herd it came from. Lely Industries (Maassluis, the Netherlands) 
provided these data. 

We included a total of 296,501 records from 344 individual cows, encompassing 57 farms 
in four different European countries. Each individual cow was only represented with a 
single lactation. The included records were all made on days in milk (DIM) between 4 and 
305. Only cows where SCC had been recorded at least once per week during this period 
were included in this study. 

A SCC above 150,000 cells/mL was considered elevated for primiparous cows, and 250,000 
cells/mL was considered elevated for multiparous cows, in accordance with Dutch 
standard practice based on the paper by Schepers et al. (1997). A cow was defined as having 
a mastitis event (ME) based on Kamphuis et al. (2016): at a given observation time if at least 
two of the three most recent milkings showed elevated SCC. A single mastitis event was 
not limited to three consecutive milkings, but could continue as long as SCC is elevated. 
The ME start at the milking where SCC is elevated for the first time, and ends at the last 
observation of elevated SCC, followed by four observation without SCC elevation. 

From the 344 cows, 19 cows did not experience any ME. The cows, which did experience 
mastitis at least once (N = 325), were divided into a training set for training different 
classification methods, and a test set for assessing the performance of these trained 
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models on independent data. This division was based on farm, where 2/3 of the farms 
were randomly selected to be used in the training set, and the remaining 1/3 were used 
as the test set. This division by farm was done to ensure independence between training 
and test data. 

Time series filtering

For this study, we implemented a total of four different time series filtering methods, which are 
commonly used in the scientific literature relating to precision livestock farming. These filtering 
methods were optimized on the 19 cows without any ME in their lactation. The filtering methods 
were, in order of increasing complexity: 1) a moving average (MA), 2) an exponentially weighted 
moving average (EWMA), 3) a univariate dynamic linear model (DLM), and 4) a multivariate 
DLM. These were all implemented in R (R Core Team, 2017). Each of the filtering methods was 
optimised by finding the value of the relevant variables (see below), which minimised the root 
of the mean squared errors (RMSE) when applied to the filtering optimisation data. 

Moving Average (MA)  
At each time step, the filtered value, zt, is defined as the simple mean of the n most recently 
observed values, with n being a predefined integer value called the "window length". The 
forecast for the observation at a given time t is given as the filtered value, zt-1), at time t-1. 
The forecast variance is estimated as

σzt
2 ≈ σ

2  
n

                                                                      (1)

where σ2 is the variance of the observed values and kt is the window length. The MA was 
optimised for this study by trying values of n between 1–10 by steps of 1. 

Exponentially weighted moving average (EWMA)

At each time step, the filtered value is defined according to the following equation:

zt = λ∙kt + (1-λ)∙ zt-1                                                          (2)

where λ is a scale factor which can take values between 0–1, and kt is the observed value 
at time t. The forecast for the observation at a given time t is given as the filtered value, zt-1, 
at time t-1. The forecast variance is estimated as

σzt
2 ≈ σ2 ∙ ( λ 

2-λ
)                                                               (3)

where σ2 is the variance of the observed values. The EWMA was optimised by trying values 
of λ between 0–1 by steps of 0.01.

The univariate and multivariate dynamic linear model (DLM)

For this study, we implemented first-order univariate and multivariate DLMs without 
systematic growth components. At each time step, the EC values are filtered using the 
Kalman filter, as described in detail by West & Harrison (1997). The filtered values of 
one (univariate) or four (multivariate) EC values at time step t are defined by the system 
equation:

θt = θt-1 + wt                                                                (4)

where θt is the parameter vector, and the error term is defined as wt ≈ N(O,W) with W being 
the systematic co-variance matrix. In our implementation, W was estimated continuously 
during the Kalman filtering by means of a discount factor, δ, which can take values 
between 0–1 (West & Harrison, 1997). The discount factor was optimised separately for 
the univariate and multivariate DLM by trying values of δ between 0–1 by steps of 0.01. 
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Forecasts of the expected EC values at time step t are made according to the observation 
equation:

Yt = θt + vt                                                                 (5)

where Yt is the observation vector with a length of 1 for univariate model and 4 for the 
multivariate model. The error term is defined as vt ≈ N(O,V) with V being the observational 
co-variance matrix, with the dimensions 1×1 for the univariate model and 4×4 for the 
multivariate model. The values of V were found using the expectation maximization 
algorithm, as described in detail by West & Harrison (1997.

At each observation time, the forecast errors were calculated according to equation 6. 

et =Yt - θt                                                                  (6)

Given the forecast errors for each observation time, the parameter vector values are 
updated using the Kalman filter (West and Harrison, 1997). The forecast variance-
covariance matrix is estimated as part of the Kalman filtering (West and Harrison, 1997). 
The dimensions of this matrix is 1×1 for the univariate DLM and 4×4 for the multivariate 
DLM. 

Standardization

For the MA, EWMA, and the univariate DLM, the forecast errors were standardised using 
the forecast variance, according to equation 7.

  
                                                       (7)

For the multivariate DLM, the forecast errors were standardised in the same way, except 
using only the diagonal values of the forecast variance - covariance matrix.

Observation classification

The four optimised time series filtering models were applied to the of EC observations in 
the original training set, resulting in four different new training sets. These new training 
sets contained 12 predictor variables per observation, namely the unfiltered EC values, 
the filtered EC values, and the standardised forecast errors for each of the four quarters. 
Based on these predictor variables, different machine learning methods were trained to 
classify the individual milkings as being from a mastitis positive or negative milking, as 
described below. 

Random Forest and Bayesian Network

We set up an experiment in the machine learning and data mining tool WEKA (Witten 
and Frank, 2005) to be used for each of the four training datasets. In the experiment, 
two main algorithms were selected, namely Random Forest (RF) and Bayesian network 
(BN). Each of these two algorithms were set up with different combinations of parameter 
settings resulting in a total of 31 different model configurations to be evaluated (for details, 
see Tables 1 and 2). Each of these model configuration was evaluated with 5-fold cross 
validation on each of the training datasets. Mastitis (yes/no) was used as the categorical 
output variable. No further pre-processing was performed.
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Table 1. Overview of the parameter settings used with the random forest method

Main algorithm
Parameter settings

Abbreviation
No. of trees Seed

Random Forest

3 1 - 5 RF031 - RF035

10 1 - 5 RF101 - RF105

25 1 - 5 RF251 - RF255

Table 2. Overview of the parameter settings used with the Bayesian network method

Main algorithm
Parameter settings

Abbreviation
Search algorithm Max number of parents

Bayesian network

Local 1 - 5 BNL1 - BNL5

TAN N/A BNTan

Tabu 1 - 5 BNT1 - BNT5

Hill Climber 1 - 5 BNH1 - BNH5

Each of the 31 model configurations produced a probability of having mastitis for each 
record in each of the four training sets. If this probability was > 0.5, the final output was 
categorised as 1 (mastitis predicted), and else the final output was categorised as 0 (no 
mastitis predicted). These predictions were compared with the true status of each record 
to assess true positive (TP), false negative (FN), true negative (TN), and false positive 
(FP) predictions per records. Per model, threshold settings were changed such that Se of 
finding ME was ~60% at milking level. At that level, FAR1000 was reported. This process 
was repeated for each of the four training sets using Weka experimenter. Based on these 
performance parameters, one model configuration for each of the two main algorithms 
was selected for further analysis. 

Model testing

The selected configurations of the three classification models (RF, BN, and Sewhart control 
chart) were applied to each the four related test dataset, probabilities were produced for 
each records, and these probability were transformed into a 0/1 output, depending on 
the threshold. We then applied the time-window proposed by Kamphuis et al. (2016) to 
compute TP and FN alerts for each ME. This time-window assumes that an alert from 
any mastitis detection model can be expected from up to two milkings prior to the first 
milking of an ME, and then for the entire duration of an ME. Alerts earlier than the two 
milkings prior to the start of an ME, or after the last milking of an ME are thus considered 
as a FP alert. Subsequently, each ME is counted as either being missed (one FN alert) or as 
one correctly identified ME (one TP alert), although more than one milking within a ME 
could have received a TP alert. For milkings not belonging to an ME, which thus had a true 
no-mastitis status, no time-window was used. This means that each no-mastitis milking 
receiving an alert by the model were counted as FP, and each no-mastitis milking not 
receiving an alert were counted as TN. The TP and FN were used to compute Se, while the 
TN and FP alerts were used to compute the number of alerts per 1,000 milkings (FAR1000). 
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Per model, threshold settings were adjusted such that Se of finding ME was ~60%. At that 
level, FAR1000 was reported. Furthermore, the specificities and error rates were calculated 
as secondary measures of performance for the different classification methods.

Results and discussion

The aim of this study was to compare the performances of different combinations of filtering 
and classification methods under standardised conditions. The ability of human milkers to 
detect clinical mastitis has been reported with an average sensitivity of 80%, although this 
number in practice depends on the skill of the milker and the severity of the mastitis case 
(Hillerton and Kliem, 2002). For comparison, the scientific literature reports an average 
sensitivity of 60% when using automated detection systems in the field (Hogeveen et al., 
2010). For this reason the sensitivity in this study was fixed at 60%, and thus the threshold 
for which outputs would count as alarms was optimised for each classification methods. 
Table 3 summarises the performances achieved with the various method combinations.

Table 3. Preliminary results of the data driven methods

Classification 
method

Filtering 
method1 Sensitivity (%) Specificity (%) FAR10002 Error 

rate (%)

Random forest

MA 59.9 74.8 217.7 95.6

EWMA 60.8 73.7 227.6 95.8

DLM uni 60.2 75.2 214.2 95.6

DLM multi 60.7 74.1 224.2 95.7

Bayesian network

MA 60.5 73.0 233.3 96.0

EWMA 60.3 73.8 226.5 95.9

DLM uni 59.4 71.8 234.7 96.1

DLM multi 59.9 74.1 224.5 95.8

1Filtering methods: moving average (MA), exponentially weighted moving average (EWMA), univariate dynamic 
linear model (DLM uni), and multivariate DLM (DLM multi); 2Number of alerts per 1,000 milkings

The results obtained for the test data were comparable to the results for the training data, 
which argues for the validity of the model and suggests that the model does not over-fit to the 
data. This may indicate that the model is generally applicable. Table 3 shows the detection 
performance of the classification methods using different filtered datasets. The Sp is ranging 
between 71–75%, with an Se of 60%. The performances of the models in this study are lower 
compared to findings from the literature. This, however, was expected since we do not search for 
the best possible model, but rather seek to compare different filtering and classification methods 
more objectively. The specificity rate obtained with the classification seem rather similar. The 
error rates were high, ranging between 95–96%. Since there are many more days with a healthy 
stage than days of mastitis, it causes a greater likelihood for FP to arise, which has an impact on 
the error rate. The results of the filtering methods showed similar results. 

The different filtering methods do not vary a lot in Sp, FAR1000 and error rate. The number 
of CM episodes indicated with Random Forest suggest to be higher than for the Bayesian 
Network. The FAR1000, however, indicates that more alert are generated with Bayesian 
Network than for the Random Forest. Despite some differences, the results suggest that 
the performances of these two classification methods do not vary a lot. In the next step of 
this study we will look also at the relative more straightforward methods like a Shewart 
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Control chart. We hypothesise that the performances of such methods are less compared 
to the more advanced classification methods. Besides, we know that the Shewart Control 
works fine with continuous variables like EC, but utilizing the categorical variables (e.g. 
parity), this simple method will quickly become much more complicated to implement. 

The results of this study should be interpreted as a relative comparison. According to 
Hamann and Zecconi (1998), using EC in milk as a mastitis is a good indicator. However, the 
performances of the classification methods are expected to be improved when including 
other variables, like milk yield and SCC. Additionally, including historic data (from e.g. 
previous milkings) are also expected to improve the detection performances. The naïve 
approach we used in this study was necessary to enable a fair comparison between the 
performances of classification and filtering methods. 

Conclusions

This study aimed to evaluate performances of several data driven methods for the early 
detection of mastitis, using similar conditions (i.e. data input, data selection criteria, time-
window and gold standard). So far, there is an indication that our naive approach of data 
handling results in no clear distinction in performance between the different methods. 
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Abstract

The objective of this paper is to monitor the behaviour of fattening pigs with an ultra-
high frequency radio frequency identification system (UHF-RFID) and to detect lameness 
with this data. The RFID system can identify and register the pigs’ visits at the trough, 
the drinkers and a playing device at all times. With this system, it is possible to monitor a 
large part of the daily behaviour of pigs on group level but also individual level. Because 
a strong connection of behaviour to health issues is presumed, different approaches to 
detect illnesses, focusing on lameness, were tested. Along with the daily duration at the 
different hotspots, an approach to regard the first visiting time of a hotspot was examined. 
Results show changings in behaviour of some pigs with lameness detection, but also the 
difficulties due to the high intra- and inter-animal variability of the behaviour and the 
interaction of different parameters.

Keywords: UHF-RFID, behaviour, activity, fattening pigs, lameness detection

Introduction

Health monitoring on the level of the individual animal has become a growing challenge 
in modern pig husbandry due to increasing herd sizes. Additionally, the level of interest 
in animal welfare, product traceability and transparency of production methods on the 
consumer side is rising. Hence, systems for automatic health and activity monitoring 
of individual pigs are demanded and would support the farmer in management issues. 
An individual identification of the animals is the basis of all monitoring applications 
(Adrion et al., 2015). By using RFID (Radio Frequency Identification) for electronic animal 
identification, the pigs’ visits at different hotspots in the pen (e.g. at the trough) can be 
registered (Brown-Brandl et al., 2013; Maselyne et al., 2014; Maselyne et al., 2016a). With 
UHF-RFID technology (ultra-high frequency RFID) a simultaneous identification of several 
pigs is possible without separating the individual animals and with a relatively high 
reading range (Adrion et al., 2015; Barge et al., 2013). 

The recording of the duration and frequency of visits at a specific hotspot can be an 
indicator for the behaviour of animals. For example, a pig detected at the trough for 
a specific time was most likely feeding. Due to the strong connection of behaviour to 
different kinds of illnesses, analysing a pig’s behaviour may lead to conclusions on the 
animal’s health (Matthews et al., 2016; Weary et al., 2009).

The aim of this research is to develop a health and activity monitoring system based on 
UHF-RFID by analysing the visiting events of growing-finishing pigs at the trough, the 
drinkers and a playing device. In this article, different approaches to distinguish sick 
animals from healthy ones, focusing on lameness detection, are pointed out. The focus lies 
on the detection of lame pigs by analysing visit times and durations at different hotspots 
on an individual level.
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Material and methods

Research barn, animals and technical equipment

The study was carried out in a conventional fattening pig barn at the Agricultural 
Sciences Experimental Station of the University of Hohenheim, Germany, in four 
fattening periods over a time of about two years altogether (August 2016 to November 
2018). The experimental procedures were approved by the regional authorities in Baden-
Württemberg, Germany, and were carried out in accordance with EU Directive 2010/63/EU 
for animal experiments. Each pen was equipped with three nipple drinkers in every pen 
as well as a metal trough (1.50 m × 0.37 m) with a sensor-controlled liquid feeding system. 
The feeding was distributed over six feeding times, starting at 6 am and ending with the 
last feeding at 10 pm in the evening. In each fattening period, four mixed-gender groups 
of growing-finishing pigs (25 per pen, 100 in total) were tagged with UHF-RFID transponder 
ear tags. The ear tags were developed within a previous research project (Hammer, 2017; 
Adrion, 2018). The transponders were equipped with an Impinj Monza 4® chip and had 
a PIF antenna design (Planar Inverted f-Shaped Antenna; Adrion et al., 2015). They were 
grouted into a flexible plastic ear tag (Primaflex®, Caisley International GmbH, Bocholt, 
Germany). The pigs had an average weight of about 30 kg at the beginning of the trial and 
were fed to a total weight of about 120 kg.

The hotspots for feeding, drinking and playing in the pens were equipped with UHF 
antennas. Along the length of the trough, a cable antenna with an active length of 2 m was 
installed in a plastic pipe (Locfield®, Cavea Identification GmbH, Olching, Germany). Cable 
antennas in plastic pipes were also mounted vertically to the right of the nipple drinkers 
(Locfield® with 0.35 m active length, Cavea Identification GmbH). At the playing device 
(“Porky Play”, Zimmermann Stalltechnik GmbH, Oberessendorf, Germany), a mid-range 
antenna was located at the top (MIRA-100, Kathrein Sachsen GmbH, Stephanskirchen, 
Germany).

The readers used were functional models (deister electronic GmbH, agrident GmbH, 
Barsinghausen, Germany) with a multiplexer for four antennae, a maximum output 
power of 29 dBm and an operating frequency of 865.7 MHz. The communication between 
reader and transponder followed EPC class 1, generation 2, specifications defined by 
ISO 18000 6C. Each antenna was switched on for 250 ms per second in the multiplexing 
process. The transponder ear tags could be read by the antennae approximately once 
per second. Simultaneous reading of multiple transponders was enabled by using anti-
collision procedures, which allow the reader to coordinate the points in time at which the 
transponders send their data.

The data collection within the four fattening periods lasted between 15–19 weeks. During 
this time, the temperature and humidity inside the compartments were continuously 
logged by data loggers every 10 minutes (testo 175H1, Testo AG Lenzkirch, Germany). 
Twice a week, the health status of the individual pigs was observed including lameness, 
skin lesions (number of scratches) and soiling (scale from 0–3), tail lesions (scale from 
0–2), diarrhoea (binary scale), coughing (number of coughing bouts per pig) and sneezing 
(number per pen). Additionally, the individual weights of the pigs were measured every 
four weeks. Lameness was of particular interest for this analysis. The severity of lameness 
was determined by a 0–3 scale, the Locomotion Score (LS) (ZINPRO Feet First®). A score of 
0 was assigned to pigs without any sings of lameness. A locomotion score of 1 is described 
by visible signs of lameness, which does not affect the pigs to any great extent. The pig can 
still move around easily and the lameness would normally not be detected or treated. A 
locomotion score of two was assigned to pigs that show lameness in one or more limbs as 
well as compensatory behaviours such as dipping the head or arching the back, whereas 
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a score of three was assigned to pigs with a strong reluctance to walk and bear weight 
on one or more legs. Due to a preceding validation phase in fattening Period 1, the health 
observation started about 10 days later than in the other fattening periods, which results 
in a maximum of 30 health observation days for Period 1, 34 days for Period 2, 36 for Period 
3 and a maximum of 37 health observation days in Period 4. Not all pigs stayed in the 
barn over the complete trial time. Due to differences in growing, some pigs had a shorter 
period of fattening than others. Furthermore, 19 out of 400 pigs needed to be removed 
into another barn because of severe health conditions (e.g. severe lameness, tail biting). 
This results in a total number of 2,505 health observations (health observation days × pigs 
inside the test barn) in fattening Period 1; 2,845 health observations in Period 2; 3,073 in 
fattening Period 3 and 3,255 health observations in fattening Period 4. On the days between 
the observation days, the pigs with health issues were observed by the animal caretakers. 
These data are not included in the current analysis for reasons of comparability.

Data analysis

The UHF-RFID system consisting of UHF ear tags, UHF antennae, readers and a monitoring 
software (Phenobyte GmbH, Ludwigsburg, Germany), which recorded occurring RFID 
registrations, collected data constantly throughout the fattening periods. The software 
aggregated the RFID registrations using a minimum duration and a bout criterion to create 
visits out of the raw data. These visits were used for calculating the daily visiting time 
of each pig at a hotspot to monitor the general behaviour of the pigs and to determine 
whether there were differences between the three fattening periods. To specify the most 
appropriate aggregation for each hotspot, various combinations of minimum durations 
(0 s, 1 s, 3 s, 5 s) and bout criteria (20 s, 30 s, 40 s, 50 s, 60 s) were tested and compared to 
the results of video observation in terms of sensitivity and precision (positive predictive 
value) according to common definitions (e.g. Maselyne et al., 2016b; Adrion et al., 2018). The 
video observation was carried out with ten focal pigs on two days with at least 11.5 hours 
of observation time per hotspot and day, resulting in a total observation time between 
23.5–28 hours per hotspot. For the drinkers and the playing device, the events when pigs 
were lying inside the hotspot area without drinking or playing were excluded from the 
analysis. The selected combination was a minimum duration of 1 s and a bout criterion 
of 60 s at the trough, 0 s and 50 s at the drinkers and a minimum duration of 3 s with a 40 
s bout criterion at the playing device. The sensitivity at the trough was approx. 85%, the 
precision approx. 64%. At the drinkers, the sensitivity and the precision were both approx. 
60% and at the playing device, the sensitivity was approx. 81%, the precision approx. 54%.

For the calculation of the daily durations at the different hotspots, the aggregated events 
(with individual minimum duration and bout criterion for each hotspot) were used.

For the calculation of the first visit at the trough, the RFIDreadings at this hotspot were 
examined after the first feeding time at 6 am. Readings were counted as a visit, only if the 
minimum duration was at least 60 s with a bout criterion of 30 s. 

Results and discussion

During the trial period, signs of lameness were the most frequently observed health issue. 
Other issues like coughing or diarrhoea were only detected between three and 20 times 
within a fattening period and were not consistent. Thus, the number of these events was 
not sufficient for creation of a prediction model and they were considered negligible. 
Furthermore, severe health problems like pneumonia did not occur during any of the 
three fattening periods. For this reason, the analysis in this study focuses only on lameness 
issues. Pigs with a severe lameness and a strong reluctance to walk (LS 3) were often 
treated or even removed from the pen, and thus from the trial. Sometimes a treatment 
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was considered as not expedient by the caretakers because of unclear symptoms; instead 
the pigs were observed intensely.

In fattening Period 1, there were only 10 pigs that showed a locomotion score of two or 
higher on at least 15% of the health observation days they were in the trial barn. In fattening 
Period 2, there were 32 and in fattening Period 3 there were 30 pigs with this condition, 
out of which one was in the barn for only 11 health observation days. In fattening Period 
4 there were 52 pigs in total that showed a locomotion score of two or higher on at least 
15% of the health observation days. The reason for this is unknown, but the prevalence for 
lameness in this barn is relatively high. This might be indicated by the short trough which 
results in low animal:feeding place ratio and by the fully slatted flooring. An optimisation 
of the research barn is aimed at for future studies. There were 26 pigs in fattening Period 1 
that showed no sign of lameness during the complete period. In fattening Period 2 and 3, 
there were only five such pigs each, out of which one pig in the fattening Period 2 was only 
in the barn for four health observation days. In fattening Period 4 there was not a single 
pig that showed no sign of lameness throughout the complete fattening period and only 
five pigs with a maximum lameness score of 1. This means, 95 out of 100 pigs in fattening 
Period 4 had a lameness score of two or higher on at least one of the 37 health observation 
days.

Daily mean values

The overall mean of the visiting time of all pigs at the trough throughout all days over 
all three fattening periods was 54.9 ± 31.6 minutes (mean value ± standard deviation). 
The mean visiting duration at the drinkers was 9.1 ± 11.2 min and at the playing device 
38.2 ± 29.0 min. In Table 1, the average daily mean values are grouped by fattening period. 
The mean values showed no noticeable difference between the different trial periods at 
the trough and the drinkers. Only the visiting time at the playing device was a little shorter 
in the third fattening period. The standard deviations were relatively high compared to the 
mean values themselves, which indicates a high variance in the dataset. Table 2 shows the 
pigs with the lowest and the highest average daily visiting time at the different hotspots 
grouped by fattening period. The minimum and maximum of the average time a pig spent 
at a hotspot also shows the high variability between the pigs as individuals. Because of this 
high variability, regarding mean values only is insufficient for any kind of illness detection 
and far more detailed analyses are necessary.

Table 1. Mean value (mv) and standard deviation (sd) of daily visiting time of all 400 pigs at the 
hotspots over the four different fattening periods

Trough

mv ± sd [min]

Drinkers

mv ± sd [min]

Playing device

mv ± sd [min]

Fattening period 1 55.3 ± 27.6 8.4 ± 9.2 41.0 ± 30.3

Fattening period 2 60.1 ± 35.3 5.9 ± 5.3 42.7 ± 32.0

Fattening period 3 51.9 ± 28.8 9.4 ± 12.0 30.5 ± 23.1

Fattening period 4 52.6 ± 32.6 12.6 ± 14.4 38.9 ± 28.6



Precision Livestock Farming ’19      637

Table 2. Pigs with the lowest and the highest average daily visiting time at the trough, the drinkers 
and the playing device

Trough Drinkers Playing device

Duration

[min]

Pig

No.

Duration

[min]

Pig

No.

Duration

[min]

Pig

No.

Fattening 
period 1

Min. 28.9 53 2.6 42 7.7 42

Max. 123.2 94 21.2 86 97.4 54

Fattening 
period 2

Min. 20.9 171 2.3 110 14.3 109

Max. 164.5 118 18.3 176 103.8 142

Fattening 
period 3

Min. 20.9 267 2.1 211 13.9 296

Max. 141.7 218 38.4 268 76.0 295

Fattening 
period 4

Min. 17.5 371 3.4 314 8.8 357

Max. 131.3 308 37.6 369 75.2 395

Development of daily visiting time at the hotspots

Alterations of the daily visiting time or changings in the time of the first visit of a specific 
hotspot over the whole period of the trial could indicate health issues. Figure 1 shows 
the average visiting time at the hotspots trough, drinkers and playing device over all four 
fattening periods, divided by three fattening stages (Day 1 - 30, Day 31 - 60 and Day 61 
- 90). The x-axis starts with 6 am because the values before that time are much lower 
(maximum about 30 min). At the trough, the feeding times during the day are clearly 
visible in the data, but there are also visits between those times. Those can be explained 
by leftovers in the trough and foraging behaviour of the pigs. The drinkers are mostly 
frequented during the afternoon times. The visiting time at the drinkers is generally low, 
which can be explained by the liquid feeding system and thus the low need for additional 
water intake. The three different fattening stages have differences in the visiting times 
at the trough and the playing device. While the pigs in the early fattening stage (1 - 30 
days) stay longer at the trough than those in the later stages, the visiting time at the 
playing device is increasing with the age of the pigs. This could mean that the pigs are 
more interested in the playing device the older they get, which is similar to the findings of 
Stubbe (2000) on the same device.
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Figure 1. Average visiting time at hotspots during the hours of a day, divided into three fattening 
stages over all four fattening periods – the arrows indicate the six feeding times throughout the day 

A closer look can be made at the individual daily visiting time of each pig which is important 
because of the high variation as shown earlier. Figure 2 shows the daily duration at the 
trough of one pig during the fattening period. The visiting time varies between 30 minutes 
and up to more than 2.5 hours even on ‘normal’ days. At the end of the fattening period 
(around fattening day 73), this pig was indicated with a lameness score of two. A few days 
before that, on fattening day 69, a drop in the visiting time at the trough is visible in the 
data. For most of the pigs, the development of the daily visiting time at the trough couldn’t 
indicate a lameness strongly enough, because the visiting times didn’t change more on 
days with lameness detection than on ‘normal’ days. This could be because feeding plays 
a fundamental role in the life of a pig and is thus the last activity that a pig would forego.

Unfortunately, the data analysis with the daily visiting time at the playing device shows a 
similar result. The variety between the days is very high, even on an individual pig level, 
and because of this it is difficult to nearly impossible to detect lameness occurrences by 
regarding changes in the visiting time at the playing device only.

Another concept of analysis was to look for the time a pig visits a hotspot for the first 
time at one day. This could indicate changes in the well-being of this pig und thus, it can 
be a possible way to detect health impacts. Figure 3 shows the time of one pig’s first visit 
per day at the trough after the first feeding time at 6 am in the morning. This pig is very 
consistent in its morning feeding time, which is almost every day at around 6 am and is 
not delayed by more than 3 h. At the end of the fattening period, this pig was indicated 
with a severe lameness on the day, but even then, its behaviour didn’t change. Other pigs 
show a high variation regarding this criterion, making it difficult to detect alterations in 
the behaviour on days with health issues like lameness.
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Figure 2. Daily visiting time at the trough of pig 149 (x-axis shows the fattening day, left y-axis the 
duration time and right y-axis the locomotion score on health observation days, displayed by triangles)

Figure 3. First visit at the trough per day of pig 79 after 6 am during the fattening period (x-axis 
shows the fattening day, left y-axis the time of day and right y-axis the locomotion score on health 
observation days, displayed by triangles)
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Conclusions

With a UHF-RFID system observing different hotspots in a pen, certain parts of the 
behaviour of pigs can be monitored continuously. The results of this study show that the 
analysis of the pigs’ behaviour has a promising potential for monitoring of the health status 
or automatic detection of possible health issues. However, because of the high intra- and 
inter-animal variability of the behaviour this remains a difficult task, especially regarding 
changings of behaviour that occur for reasons of health issues. The approaches shown 
in this article are one-dimensional and insufficient to detect health issues. For detection 
of health issues, a method that combines different approaches should be pursued. With 
the UHF-RFID system presented, it is possible to outline the daily events, rhythms and 
dynamics in the behaviour of pigs within the day continuously.
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Abstract

The aim of this paper is to introduce the results of a first approach for early disease 
detection at individual level for weaned piglets. The model built is based upon two batches 
of 102 piglets within the IFIP’s experimental pig barn. For each animal we have recorded 
the individual health status by visual observation three times per week. In the meantime 
a connected drinker, two connected feeders and a weighing scale recorded individual 
feeding and drinking behaviour. The dataset has been used to find an algorithm based 
upon classification able to early detect locomotor, respiratory or digestive disorders with 
a global accuracy of 88%. 

Keywords: early disease detection, real-time analysis, drinking behaviour, feeding behaviour

Introduction 

Reduced antibiotic use is one of the main concerns of meat consumers (Grunert et al., 
2018), but also one of the recommendations of World Health Organisation for public 
health (World Health Organisation, 2017). One way to reduce the needs for medication 
is early disease detection at individual level (Matthews et al., 2016) making the farmer/
breeder able to isolate or treat only the sick animal and thus, decrease the risks of disease 
spreading within the whole room. Subclinical symptoms such as changes in animal 
behaviour can have a diagnostic value (Andersen et al., 2014; Marcon et Rousselière, 2017; 
Marcon et al., 2018) and even before showing clinical symptoms the water consumption at 
pen level is decreasing. Modification in feeding and drinking behaviour or in activity can 
be seen as signs of subclinical disease symptom.

Today, technology offers the possibility of automatic monitoring. It has been shown that 
pathologic cough can automatically be detected at group level through real-time sounds 
recording and analysing (Hemeryck et al., 2015). Radio Frequency Identification (RFID) 
enables the recording of behavioural data at individual level. When it comes to changing 
the scale of the analysis, from group to individual level, the existing knowledge about 
changes in behaviour to early detect health disorders has to be rethought. Previous work 
teaches us that the variability of individual water consumption with healthy piglets 
(Rousselière et al., 2016) is close to 35% which is very often higher than the changes 
observed as a subclinical symptom when an animal gets sick. Therefore, the idea of setting 
a threshold on water consumption is not enough to perform early disease detection. The 
use of machine learning can be a good way to build a model capable of automatic detection 
of sub changes in animal behaviour before observing diarrhoea or lameness issues. 

The aims of this paper are (i) to present how the early disease detection model has been 
developed, (ii) the results and (iii) the further developments needed to make the model 
more specific and accurate. 

Material and methods

Housing conditions and animals

The data collection was made at the IFIP experimental farm in Romillé (Brittany, France). 
After weaning, two batches of 102 piglets from 28–63 days old were allocated in six pens 
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of 17 animals each. For each batch, piglets were manually weighted, then sorted into three 
groups of weight (heavy: A & A’, medium: B & B’ and light: C & C’) and finally the RFID ear 
tag was applied. As shown in Figure1, we used two pens per group.

 
Figure 1. Housing conditions of piglets sorted by weight

Each pen was equipped with two automatic feeders, one connected to bowl drinkers and 
one connected to a scale. Within each pen there were eight female and seven castrated 
male pigs coming from a maximum of four different sows. 

The first batch started in November 2017, and the second batch began in March 2018. The 
piglets were raised up to five weeks. For both trials, the room temperature was maintained, 
with six infer-red heaters, from 28°C to 24°C with a daily drop in the temperature set point. 
This temperature set point is similar to what is usually done in French commercial pig 
barns. 

The average weight for both trials were group AA’: 9.80 kg ± 0.40, group BB’ 8.80 kg ± 0.36 
and group CC’ 7.69 kg ± 0.36 (Table 1 and 2). During the first batch piglets were, on average, 
lighter than the second one. 

During the first 14 days, the animals received a starter feed. From the 15th day, piglets were 
fed with a second feed until the end of the test. There was no food transition. The food 
dispensed to each pen was manually weighed every day. As well as the food consumption, 
the individual weight of the piglets was manually recorded each week without a fasting 
period. To check the accuracy of the feed distribution, five doses of food were weighed 
weekly. However, validation of automata is not part of the scope of this study. 

Before the start of the test, the six drinkers are set to obtain a water flow of one litre per 
minute and all the water pipes are purged. Throughout the test, all the water meters above 
the drinkers are read once a day. 

Table 1. Average weight of the first batch in kilograms of the 17 piglets for each pen and the 
standard deviation

Pen Average body weight 28 days old (kg) Standard deviation

A 9.52 0.37

A’ 9.53 0.41

B 8.37 0.48

B’ 8.34 0.40

C 6.94 0.60

C’ 6.95 0.44
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Table 2. Average weight of the second batch in kilograms of the 17 piglets for each pen and the 
standard deviation

Group Average body weight 28 days old (kg) Standard deviation

A 10.10 0.40

A’ 10.05 0.45

B 9.22 0.34

B’ 8.34 0.40

C 8.43 0.25

C’ 8.43 0.17

Animal’s health status

For both batches, animals were observed by the station’s staff to assess their health status. 
A specific focus was made on the most frequently observed diseases in pig barns: digestive, 
locomotor and respiratory disorders. In addition, individual observations on the general 
health status of piglets were undertaken by a skilled operator every day (five days per 
week) during the five weeks of trials one and two. The operator observed, over a 20 minute 
period, each pen and forced all the piglets to defecate three times per week, Monday, 
Wednesday and Friday. For each of the three main disorders, a score was given related to 
the severity: 0 is linked to a healthy piglet, 1 the animal begins to show symptom and 2 
the symptom is clearly identified. This evaluation was based on a rating grid inspired by 
the Welfare Quality approach. In addition, all remarks relating to veterinary interventions 
were recorded as well as all the treatments given to the piglets. 

Data and modelling 

All the data generated automatically were daily stored within an Acess® database. The 
sanitary observations were integrated into this database at the end of each batch. The 
first batch generated 262,137 events with 54 data per event and from the second one 
333,792 events were stored. When a piglet was detected in a feeder or a connected drinker 
it generated an event. Among the 595,965 events, 11% were related to a positive health 
notation. 

All the data were processed with R version 3.3.1 in order to find the best model able 
to perform early disease detection. Four steps were used: (i) data preparation, (iii) data 
featuring, (iii) model building and (iv) model testing. 

Data preparing: The first step was to prepare the raw database. With 54 variables per 
event we needed to select which variables were the most important in order to perform 
early disease detection: we kept 18 of them. Table 3 presents the remaining variables used 
to perform the next step. The selection was mainly based on zootechnical expertise and 
depending on which variables were delivered by the automated monitoring to make the 
early disease detection tools working for commercial farms. For example, we decided not 
to use the batch ID and the operator ID, which are data dependent on our experimental 
plan. We kept all the data related to feeding behaviour, such as the time spent in the 
feeder, the amount of feed consumed per passage, the pig eating time. We did the same 
with the drinking behaviour and weight. 
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Table 3. List of variables used to perform machine learning

Pen ID Animal ID Sex Date Feed 
consumption 

Nb of extra 
feed doses

Nb of 
missed 

feed doses

Time in 
feeder

Water 
consumption

Time in 
drinker

Hour of 
event

Weight Fan rate Room T°

Faecal 
score

Lameness 
score

Cough score Total score

Data featuring: Before trying to use machine learning, after having selected the variables, 
some data processing was done. All the data were aggregated per six hours for each day. 
At this step, there were 14,280 rows of 20 variables per batch (35 days × 102 pigs × 4 hour 
intervals per day).  

In order to smooth the variability in feed and water consumption data and the time 
spent eating and drinking we added the cumulative value as a new variable and the 12 (4 
periods  × 6 hour × 3 days) last periods of six hours moving average for each of those four 
variables. 

The way machine learning processing works is that the data are classified row by row 
without taking into account historical data which can be useful to detect a change in a 
pattern. As a solution a “lag” function in R was used to add the four last periods of water 
and feed consumption. On each row of the database we finally have the water and feed 
consumption of the period p, p-1, p-2, p-3 and p-4. 

Because machine learning considers each variable as an independent one, we created 
new variables by dividing some existing ones by the daily weight of the pig. In fact, the 
literature shows that water and feed consumption are dependent on the weight of the 
animal. Therefore, we expressed feed and water consumption per kg live weight. At the end 
of the data featuring step the remaining data base contained 28,560 rows of 31 variables. 

Model building: To select the best machine learning model to detect diseases early, we 
tested nine different methods: Gradient boosting, Bagging CART, CART, Naïve Bayes, 
k-nearest neighbour (knn) with k equal to three, five and eight, logistic regression and 
random forest. For the prediction, the gold standard used was the symptom scoring by 
operators and we based the learning process to detect the total score. The total score was 
defined as the sum of faecal, cough and lameness score. For each of these there were three 
levels: zero – no symptoms observed, one - the animal presents a slight disturbance and 
two – the animal presents a confirmed disturbance. We reduced the total score as a factor 
equal to 0 if the sum of faecal, cough and lameness score was lower or equal to two or one 
if the sum was equal or higher than three. The way the tipping point has been chosen was 
to ensure at least 5% of the data set will have a health score equal to 1. 7% of the final data 
base was linked to a positive total health score (THS). 

Model testing: for each of the nine machine learning methods used to perform early disease 
detection, we did 10 iterations. In other words, 10 models by machine learning method 
were made. The number of iterations was chosen, first, in relation to the computing time 
needed to run the R script. Then, the very low variation observed for each iteration per 
method brought us to conclude that 10 iterations were sufficient. The models were built 
each time on a different sample of data from the featured database. Because there was 
only 7% of THS, the random dataset has been adjusted to have a proportion of at least 
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30% of THS. Within each iteration, we randomly select 24% of the data among the 93% of 
the dataset with a THS equal to 0. Without this sub sampling, machine learning methods 
would no longer apply.

70% of each dataset was used to train the model and 30% was kept to validate the model. 
The nine models have been evaluated by analysing the predicted state and the observed 
one. We used the binary classification test with sensitivity and specificity calculation

Table 4. Confusion matrix

True condition (given by human observation)

Predicted Sick Healthy

Sick True positive = TP False positive = FP

Healthy False negative = FN True negative = TN

Sensitivity is the true positive rate which measures the proportion of positives correctly 
identified (Table 4). The specificity, or true negative rate, measures the proportion of 
negatives that are correctly identified. 

Sensitivity = 
TP 

(TP + FN)                   Specificity = 
TN 

(TN + FP)   

Finally, the accuracy measures the global exactitude, the sum of the true positive and the 
true negative prediction divided by the total number of predictions made. 

Accuracy =  
(TP + TN) 

(TP + TN + FP + FN)   

Results 

The mean sensitivity and specificity obtained for all the models tested were 59% and 85%. 
This implies that the early disease detection system is working well to predict when a 
piglet is not sick. In our case, we are looking for a very high sensitivity without decreasing 
too much the specificity level. Depending on the method used, we removed CART, Gradient 
boosted, Logistic regression, Naïve Bayes and Random forest with respectively 19%, 14%, 
29%, 61% and 69% of sensitivity (Table 5).

The two methods left are knn and Bagging. The knn is a method of classification to 
estimate the output associated with a new input by taking into account the k training 
samples whose input is closest to the new input, according to a defined distance. The 
bagging method is well adapted to small dataset. Bagging perform several iterative sub 
samples with replacement. For each sub sample a decision tree is built and all the trees 
are combined to a single model through vote. We can see that for knn, sensitivity and 
specificity decrease with an increased number of parameters. The best sensitivity results 
are obtained with knn3

 (88%), but the specificity is lower than the bagging with 81% and 
92%, respectively. Thus, the Bagging method seems to be a good compromise with a 
sensitivity of 83% and a really good specificity. With Bagging, the global accuracy reaches 
an average of 89%. As shown on Figure 2, the maximum accuracy was 90% in the third 
iteration and the best sensitivity (85%) during the fifth iteration. The minimum value of 
accuracy, sensibility and specificity are 88%, 82% and 91%. 
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Figure 2. Accuracy, sensitivity and specificity of the bagging methods after ten iterations

Table 5. Average sensitivity and specificity and their standard deviation for the nine tested methods 
with ten sampling for each

Method used Sensitivity SD Specificity SD

Bagging 0.83 0.01 0.92 0.01

Classification and regression trees 
(CART)

0.19 0.06 0.97 0.03

Gradient boosted machine 0.14 0.02 0.99 0.01

k-Nearest neighbours 3 0.88 0.01 0.81 0.00

k-Nearest neighbours 5 0.86 0.01 0.80 0.01

k-Nearest neighbours 8 0.83 0.01 0.78 0.01

Logistic regression 0.29 0.01 0.85 0.01

Naive bayes 0.61 0.04 0.56 0.03

Random forest 0.69 0.01 0.93 0.01

Discussion

The good results obtained with the Bagging method are only the first step to reach a 
decision support tool for commercial farms. Indeed, with a specificity of 83% the algorithm 
still emits too many false alarms, which is a risk for breeders to be deterred from using 
the decision support tool (Berckmans 2014, Hogeveen 2010). As the construction of the 
model is being based on animals raised under the same conditions, set temperature, 
genetics, same room, etc., it may not be very robust for different conditions, i.e. it might 
be context specific. Moreover, data are the information flow that allow Machine Learning 
to understand and learn. The more data a Machine Learning system receives, the more it 
learns and the more accurate the results could be. Even when two batches of 102 piglets 
with daily health status scoring seems to be a big data set for zootechnicians, it is too 
small a dataset for Machine Learning. That is why we had to correct the database by 
taking a guided sampling in order to build the algorithm. The main risk is to have an 
overfitting of the dataset (Dominiak, 2017). 
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A good way to reduce overfitting risks and to improve machine learning model results 
could be to have more datasets from different situations. An early disease detection model 
could also include other traits. Recently Matthews (2016) presented a list of different 
behavioural categories related to clinical symptoms, such as posture and locomotion. 
These kind of data were not part of the dataset used in building the bagging model. As an 
example, pigs infected by salmonella can be more active than others (Rostagno et al., 2011). 
With the accelerometer fixed on the pig, it is possible to catch its activity and Ahmed 
(2016) showed that differences in the accelerograms can be observed between a piglet 
infected by Salmonella enteritidis and a healthy one. 

Adding new traits could work, but in order to develop a version that is suitable for on-farm 
use, the cost of the technology must be considered. To make our model run, individual 
drinking and feeding behaviour have to be automatically recorded which leads to already 
too costly automation. Having more and more sensors is maybe not the path we have to 
follow. 

Conclusion

The global accuracy of the Bagging model to perform early disease detection appears to be 
good enough to build a first decision support tool. The results showed that the sensitivity 
of the model was higher than 83% and the specificity higher than 92%. However, it is 
difficult to determine whether the model would be robust in another context, with another 
breed of piglets or within another farm. Further validation of the model is ongoing. New 
trials with new batches of piglets are being undertaken to see the accuracy of the decision 
support tool with new piglets (different from the one used to build the model). Further 
investigations are planned within the Healthy-Livestock project, such as trying to add new 
traits to find the best predictor of disease or trying to make the model able to determine 
which kind of disorder the piglets are suffering from. 
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Abstract

The primary goal of Precision Livestock Farming (PLF) is to make intensive livestock 
farming more economically, socially and environmentally sustainable and this can be 
obtained through the observation, interpretation of behaviours and, if possible, individual 
management of animals. Furthermore, adopting PLF to support management strategies 
may lead to the reduction of the environmental impact of farms. To date, the environmental 
impact of livestock farming can be mitigated by the adoption of several practices, such as 
technical improvements (manure treatments, intensification, management strategies) and/
or dietary changes. Although PLF is not yet designed to directly reduce the environmental 
impact of livestock farming, several authors claim that it is possible. The great potential 
of PLF relies on early warnings, that give the farmer the possibility to take action as soon 
as the first signals of impaired welfare or health appear. As an example, the use of real 
time technology (sensors, microphone and preventive diagnostic tools) has the potential 
to improve animal welfare, increase the performance, and minimise the environmental 
footprint. Indeed, improving animal health and reducing animal morbidity and mortality 
have the potential to increase the saleable output, and dilute non-CO2 emissions per unit 
product, and could represent an effective strategy to limit the use of antibiotics. Good 
productive performance that relies on animal health and welfare achieved through 
PLF can mitigate the environmental impact of livestock. More studies are necessary to 
extend the actual potential of PLF as a mitigation strategy. Undeniably, if this potential is 
confirmed, PLF could enter among the BATs.

Keywords: Precision livestock farming, environmental impact, mitigation strategy, 
livestock farming

Introduction

Industrial-scale livestock production is the most common and widespread means of 
livestock production and occurs within facilities known as concentrated, or confined, 
animal feeding operations (CAFOs) (Mallin et al., 2015) that can generate large quantities of 
manure (Ebner, 2017) far from areas of intensive crop farming where the excreta could be 
used as fertiliser (Li et al., 2016). The livestock sector is an important user of natural resources 
and has significant influence on air quality, global climate, soil quality, biodiversity and 
water quality, by altering the biogeochemical cycles of nitrogen, phosphorus and carbon, 
giving rise to environmental concerns (Leip et al., 2015). Therefore, livestock farming 
should be oriented towards more sustainable systems, applying management strategies 
and technologies to reach this goal. According to Berckmans (2014), the application of 
Precision Livestock Farming (PLF) could be a good approach to reach the environmental 
sustainability of livestock farming, since it allows control of animal health and welfare 
and the microclimate of the barn. PLF is defined as: “the application of process engineering 
principles and techniques to livestock farming to automatically monitor, model and 
manage animal production” and converting bio response into relevant information that 
can easily be applied to different management aspects focusing on the animal and on the 
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environment (Emanuela Tullo et al., 2017). The primary goal of PLF is to make livestock 
farming more economically, socially and environmentally sustainable (Vranken & 
Berckmans, 2017). PLF can be applied to monitor animal growth and behaviour, product 
yield, endemic disease and the physical environment of livestock buildings including the 
microenvironment and the emission of gaseous pollutants (Fournel et al., 2017). 

To-date, PLF technologies have been developed and applied to improve health and 
consequently the welfare of animals (Neethirajan et al., 2017) to improve traceability (Lima 
et al., 2018; Monteiro et al., 2017; Vranken & Berckmans, 2017), and to create added value 
to the farmer (Halachmi et al., 2015; Kamphuis et al., 2015; Lopes et al., 2016). With PLF, 
farmers can ensure good health and welfare of his animals, reaching good productive 
and reproductive performance, and lower the environmental impact per unit of animal 
product. Ensuring animal health and welfare is necessary to obtain good productive and 
reproductive performance, lowering the environmental impact per unit of animal product. 

PLF as a mitigation strategy

To-date, the environmental impact of livestock farming can be mitigated by the adoption 
of several practices, such as technical improvements (manure treatments, intensification, 
management strategies) and/or dietary changes. Although PLF is not designed to directly 
reduce the environmental impact of livestock farming, several authors claim that it is 
possible (Berckmans, 2017; Llonch et al., 2017). Indeed, adopting PLF to support management 
strategies can lead to the reduction of a farms environmental impact. According to Zhang 
et al. (2013) emissions of NH3 can be reduced by 60-65% through the application of a PLF 
system for the management of the ventilation. 

Figure 1. Summary of the potential mitigation effects derived from the application of PLF technologies

Animal welfare 

The great potential of PLF relies on early warnings, that give the farmer the possibility of 
taking action as soon as first signals of impaired welfare or health appear (Dominiak & 
Kristensen, 2017). As an example, the use of real time technology (sensors, microphone 
and preventive diagnostic tools) has the potential to improve animal welfare, increase the 
technical results, and minimise the environmental footprint (Van Hertem et al., 2017). This 
potential was validated by several authors with a Life Cycle Assessment approach (Chen 
et al., 2016; Todde et al., 2017). Behind PLF is an accurate development of prediction models, 
that are able to send alert messages to farmers based on animal and environmental input 
information (health, welfare, behaviour, micro-climate), and may help in identifying any 
deviation from the normal pattern. 
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To this purpose, several PLF devices have been demonstrated to be effective in the control 
of dairy cows feeding behaviour and rumination in intensive and extensive conditions 
(Pereira et al., 2018; Reiter et al., 2018; Werner et al., 2018). Rumination and feeding behaviour 
depend on the quality of forage and on the level of feed intake and are related to the 
emission of methane, depending on the quality of the silage, and it is possible to obtain a 
reduction of CH4 emission of up to 11% (Blaise et al., 2017; Warner et al., 2017). Therefore, 
managing and continuously controlling these parameters can be the correct strategy to 
reduce environmental impact. 

Animal health 

As stated by Llonch et al. (2017) environmental impact can be reduced by limiting unwanted 
emissions that can occur when animals face health and stress problems, so, numerous 
PLF tools have been applied to dairy cattle to detect lameness, subacute rumen acidosis 
and impaired rumen functionality and mastitis.

Regarding lameness, depending on the severity of the pathology, it may cause environmental 
impact increases of more than 7–9% for global warming, acidification, eutrophication 
and fossil fuel depletion (Chen et al., 2016). According to their results, it is clear that the 
implementation of real time management systems has the potential to make a positive 
meaningful contribution on the environmental impact and economic aspect of dairy 
farming. Considering mastitis, Hospido & Sonesson (2005) predicted a reduction of 2.5% 
(GWP) to 5.8% (depletion of abiotic resources) as a consequence of the decrease in clinical 
(from 25–18%) and sub-clinical mastitis rates (from 33–15%), making important and 
relevant the prevention of this pathology.

Among indirect mitigation strategies aiming to reduce the environmental impact of 
livestock farming there is also the correct management of fertility. It has been estimated 
that if fertility is maintained at the maximum rates, it is possible to reduce GHG emissions 
by more than 20% per herd (Wilkinson & Garnsworthy, 2017). Bell et al. (2014) showed 
that improved efficiencies of production associated with health and fertility, as well as 
feed efficiency in dairy farms, could reduce GHG emissions by 0.9% per unit of product. 
According to several studies, PLF tools can be useful in herd fertility management 
because the correct moment for insemination in cows and sheep can be detected through 
devices, algorithms, and sensors, increasing conception rates and therefore the success 
of mitigation strategies. According to Gerber et al. (2013), improving animal health and 
reducing animal morbidity and mortality has the potential to reduce both CH4 and N2O 
from enteric fermentation and animal manure, providing benefits to the livestock producer. 
Undeniably, reduced mortality and morbidity lead to greater saleable output, diluting 
non-CO2 emissions per unit product. Preserving animal health has another environmental 
benefit; reducing antibiotic use is an effective strategy to limit the antibiotic resistance 
phenomena (Thanner et al., 2016).

Diagnostic tools based on PLF principles (autonomous, continuous, real-time monitoring 
and control of all aspects of livestock management) can provide a valuable support to 
accurately manage and monitor animal health (Neethirajan et al., 2017). Behavioural 
changes that precede or accompany subclinical and clinical diseases may have diagnostic 
value (Matthews et al., 2016). Technological advances and validation of ideas and 
prototypes lead to the development of PLF diagnostic tools able to identify problems in 
the farm without handling or stressing animals and give the possibility to recognize a 
disease outbreak days before the farmer (King, 2017). Several PLF diagnostic tools have 
been developed so far, to identify respiratory diseases in pigs and calves through sound 
analysis, to control helminth infection of ruminants with image analysis and to detect 
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coccidiosis in poultry farms through the analysis of volatile organic compounds emitted 
by infected birds (Carpentier et al., 2018; Grilli et al., 2018; Tullo et al., 2017; Vandermeulen 
et al., 2016; Vercruysse et al., 2018).

All the above-mentioned systems allow the early detection of pathologies as soon as the 
first symptoms appear; in this way it is possible to treat a restricted number of animals 
(no mass treatment) or to use principles other than antimicrobials (Grilli et al., 2018). This 
could be a real, environmental friendly, and effective solution to try to solve the problem 
of antibiotic pollution, that, at the moment, represents a serious problem for human and 
animal health (Laxminarayan et al., 2016).

Housing

Regarding housing management, only few studies focused on the relationship between PLF 
and environmental impact. The more relevant papers focused on ventilation to improve 
indoor air quality in pig houses (Zhang et al., 2013), measuring procedures for ammonia 
emission (Vranken et al., 2013), monitoring dust in poultry houses (Demmers et al., 2015; 
Peña Fernández et al., 2017) and on the application of PLF to obtain environmentally 
friendly poultry production (Bartzanas et al., 2015). All these technical solutions appeared 
to be effective in reducing the environmental impact of pig and poultry farming.

Energy saving

PLF technologies could also be applied to reduce carbon footprint. As reported by Todde et 
al. (2017) a real time milk analysis and separation system could allow a sensible reduction 
of energetic costs for cheese production. This system allows the re-organisation of milk 
logistic according to the milks coagulation property, in order to deliver milk with high 
casein content directly to the cheese factory, saving about 44% of energy and reducing the 
emissions of CO2 by 69%. 

Economic aspects 

Fountas et al. (2015) focussed on profitability of the system, since cost for investment often 
represents the main obstacle to adopt PLF systems (Hartung et al., 2017). They highlighted 
the benefits for the farmers such as the improved decision making, the attraction of young 
farmers and the positive influence in resolving the analytical shortcomings of the end 
user (farmer) by transforming raw data into useful information, through analysis and 
expert interpretation.

Non-tangible aspects

The EU-PLF project was running PLF technology cases upon the use of cameras, 
microphones and sensors on broilers, fattening pigs and milking cows on 20 farms in 
Europe. On each species, 60 production cycles were measured and a lot of information 
was collected. Regarding the return on investment it is clear the farmer needs to be 
familiar with the system to use it in his management. The farmers participated in several 
workshops during the project where the researchers discussed with them the benefits and 
the good and bad experiences with the PLF technology. It is clear that farmers search for a 
tangible return on investment, but they also clearly stated that there are important non-
tangible advantages such as lifestyle, being able to bring the kids to school or to participate 
in community events, peace of mind, etc. These non-tangible advantages might become 
increasingly important to attract young farmers into the sector since we want farmers to 
be able to live their life like all other professions. Knowing that PLF systems guard their 
animals day and night might be of high importance.
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Conclusions

PLF is designed to monitor continuously and in real time animal health and welfare, while 
environmental impact and climate change mitigation strategies are, so far, not primary 
goals. As reported by many authors, livestock environmental impact mitigation can be 
obtained through enhancing productivity levels, reproduction traits, and maintaining good 
health. Regarding antibiotic pollution, the overall banning of antibiotic use in livestock 
farming is impractical but the use can be more efficient. Therefore, there is the necessity 
to develop and apply methods and technologies to improve the efficacy of treatments 
and to decrease the incidence of infections by improving the conditions under which 
animals are raised. PLF constant monitoring allows the farmer to intervene as soon as 
animals show the first signs of impaired welfare or illness. Rapid intervention, in the case 
of disease, or modification of the management strategy, in the case of stress, can actually 
and effectively improve the animal status. Thus, good productive performance that relies 
on animal health and welfare achieved through PLF can mitigate the environmental 
impact of livestock, and reduce the emergence and dissemination of resistant bacteria in 
the environment. Comparing PLF to already verified mitigation strategies appears to be 
a valid tool to improve animal health and welfare, overall income and the environment. 
Surely, the introduction of new technologies and management techniques poses several 
issues related to the ethics of food animal production, human workforce, animal-human 
relationship, and environmental burden relative to the production and operating PLF 
device on farms. There is a social consensus that agriculture should not be industrialised, 
but the introduction of simple technologies such as Bluetooth, GPS or RFID in farms offers 
the opportunity to modify the duration of work, the content and the nature of the tasks 
carried out by farmers, their mental workload, and the relationship between farmers 
and their animals (Wathes et al., 2008). Currently, few studies reported PLF efficacy in 
the reduction of the environmental impact, and indeed more studies are necessary to 
extend the actual potential of PLF as a mitigation strategy. Undeniably, if this potential is 
confirmed, PLF techniques could enter among the BATs, according to BREF prescriptions.
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Abstract

Working time is considered to be one of the main resources in agriculture. Data create the 
basis for strategic planning of work processes and for optimising production. This paper 
focuses on analysing working time requirement of different work processes to compare 
conventional feeding systems (CFS) and automatic feeding systems (AFS). Time data for 
various operations and working equipment were measured using video-based technology 
and time recording software. The evaluated data set provided the basis for data modelling 
and integration into a modularly structured calculation system. The modelling was 
focused on different assumptions regarding working time elements, technical details, 
feeding strategies and structural parameters. Four herd sizes of 60, 120, 180 and 240 cows 
were selected. The daily working time requirement was markedly influenced by herd size 
and feeding system. Feeding 60 cows using a CFS had a working time requirement of 43.6 
manpower minutes (MPmin) day-1 whereas the AFS accounted for a time requirement of 
12.9 MPmin day-1. The daily time needed for feeding enhanced with increasing herd size 
and decreased using AFS (120 cows: 71.6 MPmin (CFS) versus 16.0 MPmin (AFS), 180 cows: 
97.7 MPmin versus 22.3 MPmin, 240 cows: 123.8 MPmin versus 28.5 MPmin). 

In conclusion, knowledge of working time requirement provides valuable calculation 
information and supports decision making at specific stages of the production and work 
process. Time scarcity can be managed by intelligently applying innovative technology. 

Keywords: working time requirement, work analysis, calculation model, automated 
systems

Introduction 

Precison Livestock Farming is defined as the use of automated systems to measure various 
animal- and production-related indicators (Reith & Hoy, 2018). As working time becomes a 
criterion of scarcity due to the increase in average herd size; there is also a trend towards 
the automation of work processes, thus encouraging the adoption of precision systems 
in dairy farms (Gargiulo et al., 2018). Other aspects influencing the adoption of innovative 
technologies are cost reduction and facilitating factors (Pierpaoli et al., 2013). Working time 
data including all relevant elements of the work system can be used for model calculations 
reflecting the agricultural practice (Gindele, 1972). They are a prerequisite for medium- 
and long-term planning processes. The decision to implement new systems represents 
a significant investment for a dairy farmer, who often faces the challenge of choosing a 
technology that will serve the needs for several years (Boehlje & Schiek, 1998). Additionally, 
data on working time requirements are indispensable for developing strategies and showing 
alternative solutions in agriculture (Auernhammer, 1976). Various systems with different 
degrees of automation are available on the market and are gaining in importance. Growing 
dairy farms demand a simplification of the labour economy by increasing the efficiency 
of labour management (and lifestyle). This also applies to questions relating to feeding 
technologies and strategies (Schingoethe, 2017). The aim is to optimise the work system by 
analysing systematically and designing the technical, organisational and social conditions 
of work processes. To fulfil a work task, a working person as the active and most important 
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element in the work system interacts with other elements. Not only the interrelationships 
between persons and technology are relevant, but also work organisation. The individuals‘ 
work situation and function as a part of the work system form the focus of consideration 
(Auernhammer, 1976). To find the most efficient use of working time the aim of this paper 
is to determine the working time requirements of different work processes necessary for 
feeding cows. The time studies and the following model calculations were designed to 
analyse and to compare the effects of conventional and automated feeding systems on 
working time requirement in dairy farms. 

Material and methods

Data acquisition

The work process was broken down into easily identifiable and clearly described work 
elements, the smallest practicable units that can be timed with a stop-watch or a special 
time recording system (Kanawaty, 1992). Data were obtained at the work element level for 
the four herd sizes of 60, 120, 180 and 240 cows selected. They were measured by tablet, 
pocket PC and time recording software (ORTIM-system (dmc-group), MEZA (Drigus)). The 
software provides the possibility to insert video files and statistical analyses. Further 
calculations were made using Microsoft Excel 2016. A detailed description of the work 
system and a precise definition of the start and end time of sections are essential for 
representative study findings being applicable to different agricultural production 
systems. Data were integrated into a time database as the basis for the calculation system. 
The influencing factors were compiled into a list of variables and auxiliary variables and 
linked to the work elements using mathematical formulae. The working time requirement 
was modelled and calculated for feeding cows a total mixed ration (TMR) diet (Table 1) 
by a conventional feeding system (CFS) using a feed mixer wagon and for feeding cows 
by an automatic feeding system (AFS). Information on automatic feeding techniques is 
described by Da Borso et al. (2017). 

Table 1. Composition of the total mixed ration (TMR)

Components
Feed intake, 

kg FM (cow 
and day)-1

Feed intake, 

kg DM (cow 
and day)-1

Ration 
composition, %

Density, 

Mg (m3)-1

Grass silage 14 5.0 32.6 0.65

Corn silage 20 6.6 46.6 0.70

Hay 2 1.8 4.6 0.01

Rapeseed meal 1 0.9 2.3 0.54

Barley 2 1.8 4.6 0.60

Concentrate 4 3.5 9.3 0.60

Total 43.4 19.6 100 -
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Definition of the models

The CFS-model was based on the following assumptions:

•	 Loading and distribution of the TMR are performed once a day

•	 Group size: 60 lactating cows

•	 Volume of the feed mixer wagon: 10 m3

The assumptions of the AFS-model can be listed as follows:

•	 The AFS consists of a self-loading device with six feed storage tanks (the silages are 
temporarily stored in blocks)

•	 The distribution is automatically performed several times a day

•	 The feeding technology is controlled twice a day

•	 Volume of the feed storage tank: 10 m3

•	 Volume of the wagon distributing the ration: 3 m3

For both models, removal and transport of the fodder components are done by a silage 
cutter (volume: 1.2 m3) and a tractor shovel (volume: 0.75 m3). Mechanisation, distances 
and TMR composition are identical. 

Construction of the workflow

Before modelling, the workflow was divided into different sections (Figures 1 and 2). 
Each phase consists of specific work elements and factors affecting the working time 
requirement. Depending on the required frequency (e.g. number of components, number 
of loadings in dependence of the mechanisation, number of lactation groups), individual 
sub-processes are repeated so that different cycles can be defined; or decisions have to 
be made. Using the time classification described by Reith et al. (2017), the individual work 
processes can be assigned to the corresponding times.

Figure 1. Flowchart for feeding cows by a conventional feeding system (CFS) using a feed mixer wagon
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Figure 2. Flowchart for feeding cows by an automatic feeding system (AFS)

Results and discussion

For both models, the working time requirement depending on a wide range of influencing 
factors was calculated for four variants (60, 120, 180, 240 cows). The modelling showed that 
daily working time was influenced by size of dairy herds and feeding technology. Šístkova et 
al. (2015) emphasised the importance of the accuracy of dosing the individual components 
into the ration. When loading, the most relevant factors are the used technique (loaders, 
hoppers, chopping, devices, silage cutters), physical properties of the individual fodder 
components (size, shape and density), the loaded weight of components as well as human 
factors (expertise and responsibility). 

The feeding system with a mixer wagon was chosen as CFS-model, because feeding mixed 
rations has evolved for improved management during the last 50 years. With regard to 
labour economy, this technology allows the feeding of larger herds faster than feeding 
components separately (Schingoethe, 2017). 
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The time required to feed 60 cows by a CFS was 43.6 manpower minutes (MPmin) day-1 
(Figure 3). The daily feeding working time requirement increased with increasing herd size 
(120 cows: 71.6 MPmin, 180 cows: 97.7 MPmin, 240 cows: 123.8 MPmin). The calculation 
included the times for job preparation and job closing at the starting and ending point 
of the work process (machines set-up time and the corresponding shut-down time), the 
times for job preparation and job closing at work site (opening and closing the silage 
protection cover), the loading time and the time for distributing the TMR. After mixing the 
components, the TMR was characterised by a volume of 8.70 m3. Thus, a feed mixer wagon 
with the assumed 10 m3 mixing volume was sufficient to feed 60 cows. 

According to the AFS-model, automation reduces the daily time necessary to feed dairy 
herds. AFS enabled automatic mixing and delivery of rations without the presence of a 
working person. In this modelling, the working time requirement consisted of the loading 
time, the preparation/closing time and the time for controlling the feeding distribution. 
The working time needed for feeding a herd size of 60 cows amounted to 12.9 MPmin day-1, 
reducing working time by half an hour compared with the CFS. The time for feeding 120 
cows was 16.0 MPmin day-1. For 180 and 240 cows the working time requirement consisted 
of 22.3 and 28.5 MPmin day-1, respectively (Figure 3). 

Pezzuolo et al. (2016) calculated the working time requirement of the operation time 
(working time requirement without consideration of preparation and transit time) also 
reported a significant reduction from 2.5 h day-1 (CFS) to 1.02 h day-1 (AFS). Their study 
included 90 cows receiving a diet based on four components. Additionally, they investigated 
economic correlations and found decrease in the costs for preparing and distributing the 
ration. They calculated daily costs of 1.44 EUR (m3)-1 TMR and 0.16 EUR cow-1 for the CFS 
and costs of 0.91 EUR (m3)-1 TMR and 0.10 EUR cow-1 for the AFS. 

Finally, according to our assumptions, a nearly 70% decrease in daily feeding time could 
be expected by using an AFS compared with a CFS. 
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Figure 3. Daily working time requirement for feeding cows by a conventional (CFS) or by an automatic 
feeding system (AFS) 

Figure 4 shows the daily working time requirement per cow being negatively correlated with 
herd size. In the present modelling, the daily and cow-related working time requirement 
for feeding cows by a CFS ranged between 0.73 MPmin (60 cows) and 0.52 MPmin (240 
cows). The AFS-model indicated also reduced values in dependence on the cow number. 
With 0.22 MPmin (cow and day)-1, the greatest effect could be observed in the herd of 60 
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cows. Because the factors influencing working time were equal in the modelled variants, 
the effects were comparatively low in larger herds, with values between 0.13 MPmin (cow 
and day)-1 and 0.12 MPmin (cow and day)-1. Herd size, in particular, is an important factor 
determining feeding technology (Gargiulo et al., 2018). Increasing the capacity of the feed 
mixer wagon would be beneficial to save time and reduce workload. Nevertheless, the 
calculation system is able to provide information being tailored to the needs of its users.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

60 cows 120 cows 180 cows 240 cows

W
or

ki
ng

 ti
m

e r
eq

ui
re

m
en

t 
(M

pm
in

 (c
ow

 
an

d 
da

y)
-1

CFS AFS

Figure 4. Daily working time requirement per cow for feeding cows by a conventional (CFS) or by an 
automatic feeding system (AFS)

Conclusions

Models consisting of specific influencing factors and working conditions were developed 
to calculate the working time requirement. Results of the present modelling indicated 
that AFS as an example of automation in dairy farms led to a lower working time 
requirement compared with CFS. Thus, automatic systems provide opportunities, not only 
for improvements of individual animal management, but also for saving working time and 
increasing flexibility. The calculation system is useful to combine single work processes 
as well as to analyse complex systems. It can be worthwhile to calculate and to compare 
working methods, to evaluate future developments and to optimise work processes and 
conditions.
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Abstract

Behavioural information relevant to calving is extracted and exploited successfully for 
automatic calving prediction from videos. Calving prediction is key for preventing fatal 
accidents such as stillbirth and dystocia. Such a prediction has been performed using 
contact sensors to capture a cow’s typical movements before calving. However, directly 
attaching sensors to a cow’s body is not desirable from the viewpoint of animal welfare, 
economic load, and safety for livestock farmers. This paper presents a camera-based, 
noncontact calving prediction system that captures typical precalving movements such as 
rotations, turns and step-backs. The information on the frequency of such behaviours and 
that on the frequency of changes in the behaviours are extracted every few minutes using 
deep neural networks and used as inputs to a calving predictor based on support vector 
machines. Experimental comparisons conducted using the videos of four Japanese black 
beef cows of normal and precalving statuses demonstrated that the system developed 
with five cows’ videos achieved a precision rate of 97% and a recall rate of 82% for a cow 
that was active before calving.

Keywords: deep neural network, calving prediction, behavioural features, precision 
livestock farming

Introduction

Calving prediction is critical for enabling cattle farmers to prevent fatal accidents during 
calving, such as stillbirth and dystocia. It is widely known that specific “precalving” signals 
are observed from clinical signs and behavioural changes of cows. It is important to 
precisely capture the signals before calving occurs such that cattle farmers can assist the 
cows on site to avoid accidents.

Most of the existing calving prediction systems are based on information obtained from 
contact sensors. For example, Gyuonkei (Sakatani et al., 2018) is a temperature sensor that 
monitors a cow’s vaginal temperature that starts to decrease before calving. Agrimonitor 
(Barrier et al., 2012) is an abdominal harness that detects the contractions of a cow’s 
uterine and abdomen as another precalving event. Alert’VEL (Krieger et al., 2018) uses 
an accelerometer to detect the frequency increase in cattle tailing that typically occurs 
before calving. Finally, RumiWatch (Zenher et al., 2018) is a noseband sensor-based calving 
prediction system that detects a decrease in the frequency of rumination and feeding. 

Although contact-sensor-based calving prediction systems are currently utilised by 
many cattle farmers, they present some practical problems: (i) high monetary cost for 
installation, and (ii) high labour cost for farmers when equipping cows with sensor devices. 
Meanwhile, noncontact-sensor-based approaches such as using cameras can overcome 
these problems; however, few studies have yet proposed approaches for calving prediction 
using only camera images (Cangar et al., 2008; Sumi et al., 2017). Although Canger et al. and 
Sumi et al. have classified cows’ behavioural states such as ‘standing or lying’ and ‘moving 
or not’, these states are not always relevant to calving signs. In addition, some previous 
works indicated that walking motions increased at the precalving status (Jensen, 2012; 
Saint-Dizier et al., 2015).
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The present study therefore introduces precalving behaviours with focus on walking 
motions that are observable from videos (e.g. standing, sitting, rotation, turn, step-forward 
and step-backward), and exploits such behavioural information to develop a calving 
prediction system. Here, the frequency of behaviours and changes in behaviours are 
examined.

The proposed calving prediction system is composed of two stages: a behavioural feature 
extractor built with a deep neural network (DNN) that classifies a cow’s behaviours 
observable in videos, and a calving sign detector that determines whether the cow’s status 
is precalving or normal. Accurate features extracted in the preceding stage can contribute 
to reliable prediction even when the latter calving detector is trained with fewer data. In 
addition, the outputs of the first-stage behaviour classifier can help farmers judge whether 
the prediction results are correct.

To demonstrate the effectiveness of the proposed system, experimental comparisons 
were conducted using video datasets collected from a camera installed in a farm. The 
knowledge obtained from the present study may be useful in designing features that are 
suitable for calving sign detection from videos.

Material and methods

Cow’s behaviours related to calving signs

A cow’s walking time generally increases in a calving day (Saint-Dizier et al., 2015). Hence, 
the present study focuses on a cow’s walking behaviours as the calving signs. From 
monitoring five cows, it is found that the cows’ behaviours are composed of the following:

Standing: a cow is standing on a spot;

Sitting: a cow is sitting or lying down;

Rotation: a cow is rotating with a front leg as a pivot;

Turn: a cow is walking forward while changing directions;

Step-forward: a cow is walking forward without changing directions; 

Step-back: a cow is walking backward.

For the five cows, the appearance frequency of the aforementioned behaviours was 
investigated every hour from six hours before to immediately before calving. Figure 1 
shows the result for one cow. This result indicates that characteristic behaviours can be 
observed from four hours before calving, and their frequencies increase, especially from 
three hours before calving. In the present study, therefore, a precalving status is defined 
as the period from three hours before to immediately before calving.

Calving prediction system

The developed calving prediction system is composed of two stages: a behavioural feature 
extractor and a calving sign detector. In the first stage, the DNN extracts the information 
of the cows’ behaviours related to the calving signs. Subsequently, a support vector 
machine (SVMs; Hearst et al., 1998) at the latter stage determines whether the cow’s status 
is precalving or normal using the behavioural features extracted in the preceding stage. 
As the behavioural features the statistics on the appearance frequency of characteristic 
behaviours and change frequency in these behaviours are accumulated for a few minutes.
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Figure 1. Frequencies of cows’ behaviours (calving time: 11:34 AM on 4 June 2017)

DNN-based behaviour classifier used for feature extraction

As a behavioural feature extractor, a behaviour classifier is constructed using a five-
layered fully connected DNN that classifies three classes of behaviours, i.e. standing, 
sitting, and walking. The ‘walking’ class includes behaviours such as rotation, turn, step-
forward and step-back. A cow’s region is detected from video frames by YOLOv3 (Redmon 
et al., 2018). Figure 2 shows an example of detecting a cow using YOLOv3. The target cow 
can be tracked using the intersection over union of a cow’s regions across video frames.

Figure 2. Example of cow detection using YOLOv3

Figure 3 shows an overview of the behavioural feature extractor. Here, the width and 
height of the bounding box yielded by YOLOv3 and the movement of the centre of the 
bounding box (four dimensions in total) were concatenated over 21 video frames, yielding 
an 84-dimensional vector that was used as an input to the five-layered DNN. This 
84-dimensional vector was extracted every five seconds. The numbers of three hidden-
layer units in the DNN are 600, 256, and 150. The number of units in the output layer is 
three.
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Figure 3. Network architecture of cow’s behaviour classifier. Four-dimensional cow’s region features 
are concatenated over 21 frames and used as inputs to DNN

Behavioural features

The present study examines two behavioural features: the appearance frequency of 
behavioural components and the change frequency of the behaviours. These features can 
be obtained from the aforementioned DNN.

Frequency of behavioural components

Cows tend to walk around in a chamber as calving approaches. In this case, the frequency 
of standing and sitting is expected to be high in a normal status. In contrast, the frequency 
of walking should be high in a precalving status. Under this assumption, the appearance 
frequency of the characteristic behaviours may be effective in determining whether the 
cow’s status is precalving or normal. The hidden layer outputs (HLOs) in the first-stage DNN 
are assumed to represent a type of behavioural component information, and its statistics 
accumulated for a period can represent the appearance frequency of such behavioural 
components. In the present study, third-layer HLOs are exploited as the behavioural 
features and used as inputs to the subsequent SVM-based calving sign detector. Here, the 
HLOs were averaged over 20 samples. As the HLOs are obtained every five seconds, the 
resulting feature vector contained two-minute information.

Frequency of behavioural changes

Walking in a calving chamber indicates changes in a cow’s behaviours. The M-measure 
(Hermansky et al., 2013; Ogawa et al., 2016) was introduced to capture the amount of such 
behavioural changes during a period. The M-measure accumulates the divergence of 
behaviour probabilities spaced over several time spans. It is defined as

                                                   M(Δt) = 
1 

T-Δt
  ∑t=Δt

T       D(pt-Δt,,pt ) ,                                              (1)

where Δt denotes the time interval between behaviour posterior probabilities at t-Δt and t, and 
D(p,q) denotes a symmetric Kullback-Leiber (KL) divergence between behaviour posteriors

D(p,q)    =   ∑k=0
K  p(k)   log p(k) 

q(k)
     +     ∑k=0

K   q(k)   log q(k) 
p(k)

                               (2)

where p(k) is the k-th element of the posterior probability vector p∈RK. Because the cows 
move less in a normal status, the posterior probability of standing or sitting is primarily 
high. This implies that M(Δt) remains low regardless of Δt. In contrast, because the cows 
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move around before calving, the cows’ behaviours change frequently. This indicates that 
M(Δt) tends to be high, and that the M-measure is effective in determining whether the 
cow is in a normal or precalving status. Figure 4 shows the average and standard deviation 
of the M-measure values calculated from the video of a cow, as a function of Δt. Figure 4 
shows that the M-measure patterns are distinctive between the normal and precalving 
statuses. The following M-measure pattern, therefore, is exploited as a behavioural feature.

M=[M(1),M(2),…,M(20)]         (3)

Figure 4. M-measure values as a function of . A cow walked during precalving in this example

Video materials and experimental setting

Videos of ten Japanese black beef cows were recorded in a calving chamber in a ranch in 
Kagoshima, Japan, from May to December in 2017. This video was sampled at one frame 
per second. Based on preliminary investigations, the period from 27–24 h before calving is 
defined as the normal status, and that from three hours to immediately before calving is 
defined as the precalving status. Tables 1 and 2 list the details of the training data for the 
SVM-based calving sign detector and testing data, respectively. Note that the cows included 
in the training data are different from those included in the testing data. The cow detector 
and DNN-based behavioural feature extractor were trained on other training datasets.

Table 1. Periods of collecting training data. All data were collected in 2017

Cow index Normal status Precalving status

Train-1 05/27 22:00 - 05/28 00:59 05/28 23:00 - 05/29 00:59

Train-2 06/02 06:00 - 08:59 06/03 06:00 - 08:59

Train-3 06/24 02:00 - 04:59 06/25 02:00 - 04:59

Train-4 07/12 23:00 - 07/13 01:59 07/13 23:00 - 07/14 01:59

Train-5 11/07 11:00 - 13:59 11/08 11:00 - 13:59
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Table 2. Periods of collecting testing data. Numbers in parenthesis are number of feature vectors 
extracted during corresponding period. All data were collected in 2017

Cow index Normal status Precalving status

Test-1 06/14 05:30 - 08:29 (56) 06/15 05:30 - 08:29 (96)

Test-2 08/30 12:00 - 14:59 (39) 08/31 12:00 - 14:59 (38)

Test-3 09/29 21:00 - 23:59 (83) 09/30 21:00 - 23:59 (73)

Test-4 10/23 02:00 - 04:59 (83) 10/24 02:00 - 04:59 (80)

Test-5 11/23 07:00 - 09:59 (46) 11/24 07:00 - 09:59 (43)

Results and discussion

Experimental comparisons were conducted to demonstrate the effectiveness of the 
developed system. This system inputs a video clip of 21 s (21 video frames as: t-10,⋯,t,⋯,t+10) 
to yield a behavioural feature vector. In this experiment, the performance of detecting 
calving signs was evaluated for behavioural features extracted every five seconds. 
Specifically, regarding the third cow for testing (Test-3) listed in Table 2, 83 normal status 
feature vectors and 73 precalving status feature vectors were used as inputs to the calving 
predictor, and those inputs were evaluated to verify if they were correctly identified. The 
difference in the number of extracted feature vectors among the cows for testing was due 
to cow detection errors.

Table 3 lists the precision, recall, and f-measure for the precalving status for each individual 
cow of the testing data. The two features of HLO and M-measure patterns were evaluated. 
The second cow (Test-2) was excluded from the testing because the typical behaviours did 
not appear at precalving, i.e. it did not move even before calving. It was observed that the 
third cow walked around for more than two hours in the precalving status, thus yielding 
a high calving detection performance. In contrast, other cows tended to repeat walking 
and rest for a long period. If the duration of rest is long during the precalving period, such 
a period can be identified as a normal status. In this case, behavioural features do not 
contribute to calving sign detection.

Table 3. Evaluation result for testing data. All values are for precalving status. Numbers in 
parenthesis express number of samples (each extracted from a video clip of 21 s) evaluated

Cow index (# samples) Feature Precision Recall f-measure

Test-1 (152)
HLO ave 0.83 0.41 0.55

m-measure 0.73 0.40 0.52

Test-3 (156)
HLO ave 0.95 0.81 0.87

m-measure 0.97 0.82 0.89

Test-4 (163)
HLO ave 0.54 0.28 0.36

m-measure 0.74 0.36 0.49

Test-5 (89)
HLO ave 0.64 0.86 0.73

m-measure 0.57 0.91 0.70
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Conclusions

Calving sign detection systems using behavioural features relevant to calving signs were 
developed in this study. Two behavioural features were examined: one represented the 
frequency of behavioural components and the other represented the behavioural changes. 
The former was obtained as the hidden layer output in the DNN and the latter was 
obtained as the M-measure pattern. Experimental comparisons using the videos of four 
Japanese black beef cows demonstrated that the developed system trained on five-cow 
videos yielded a precision rate of 97% and a recall rate of 82% for a cow that was active 
before calving. For future studies, both the feature extractor and calving detector will be 
improved to explicitly cope with time-series information.
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Abstract

A two-stage calving sign detection system is proposed to effectively use state information 
on the calving behavior of Japanese black beef cows (e.g. standing or sitting, tail raising). 
Automatic calving sign detection from cameras can help livestock farmers prevent fatal 
accidents to calves during calving. The following requirements were identified for such 
camera-based detection systems: 1) ability to work with a small volume of data (because 
calving events are not very frequent), 2) robustness to changing environments, and 3) 
ability to explain the reasons for the prediction results. However, these requirements 
are not realistic for end-to-end approaches such as the predictions using a single deep 
neural network (DNN). This study presents a two-stage calving prediction system, in 
which calving-relevant information obtained using a DNN-based feature extractor is used 
as the input for another DNN-based calving sign detector. The first-stage DNN extracts 
discriminative features of typical pre-calving behaviour in cows, such as increased lying 
time and tail raising. The former DNN is expected to achieve accurate feature extraction 
and to enable training of the latter DNN using small-scale data. Furthermore, the states 
observable from the video frames, which are outputs of the former DNN, can make use 
of the crowdsourcing for sustainable growth; moreover, these states can also provide the 
basis for the accurate prediction of calving. Experimental comparisons conducted using 
video scenes of five cows during the normal and pre-calving states demonstrated that the 
proposed system achieved a calving precision rate of 81% and a calving recall rate of 91%.

Keywords: deep neural network, image recognition, beef cows, calving prediction

Introduction

Livestock farmers generally provide childbirth assistance to cows in order to prevent 
fatal accidents to calves during calving. To enable such assistance, many devices that 
automatically detect the pre-calving behaviours of cows and alert the farmers have been 
examined (Rutten et al., 2015; Marchesi et al., 2013; Sakatani et al., 2018; Krieger et al., 
2018). These devices are mainly contact sensors that detect characteristic changes in cows 
before calving. For example, a fall in the vaginal temperature is detected by a temperature 
sensor (e.g. Gyuonkei, http://www.gyuonkei.jp), uterine and abdominal contractions are 
detected using an abdominal harness (e.g. AGRIMONITOR, http://www.agrimonitor.be), 
and the increase in the number of times the tail rises can be detected by an accelerometer 
(e.g. Alert’VEL, http://www.albinnovation.com/alertvel). However, such contact sensors 
are generally expensive and sometimes dangerous to both cows and farmers when 
being mounted. Therefore, it is desirable to predict calving using images obtained from 
cameras, which are non-contact sensors, for human- as well as cow-friendly monitoring 
of the process; yet few studies have reported the detection of calving signs using a camera 
(Cootes et al., 1995; Sumi et al., 2017).

The following requirements have been identified for a system deploying such camera-
based detection: 1) ability to work with a small volume of data (because calving events 
are not very frequent), 2) robustness to changing environments, and 3) ability to explain 
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the reasons for its prediction results. The first point is important for anomaly detection 
in general, where events occur rarely and look significantly different from the majority of 
the data. The calving prediction system therefore needs be designed taking into account 
that calving is not a frequent event. The second point can be considered as a special 
precaution while using images. Since the background information on the cows’ images is 
different at each farm, it is necessary to design a system that is robust against changes 
in the surrounding environment. These two points are important to introduce a pattern 
recognition technology to support the livestock industry without large-scale open datasets. 
The third point is important for helping the farmers understand the reasons for the alert. 
This can be considered as the advantage of using image information because it is easy to 
confirm the basis of the judgement made by the system.

An end-to-end approach with a single deep neural network (DNN) has attracted global 
attention as a necessary technique in various applications because it can significantly 
simplify complicated pattern recognition systems. However, the end-to-end approach 
cannot satisfy all the above-mentioned requirements, since learning both the feature 
extraction and the detection functions through a single network generally requires a large 
volume of data. Judging the calving signs from the images can be done only by experts 
including livestock farmers, spending a considerable amount of time to accumulate the 
labelled data necessary for system deployment (a barrier to requirement (1)). Furthermore, 
this approach is also not capable of adaptively improving the system to cope with the 
changing environments (a barrier to requirement (2)); and, since the system becomes a 
black box in an end-to-end approach, it is difficult to provide the basis for its predictions 
(a barrier to requirement (3)).

In the present study, a two-stage calving prediction system has been designed to satisfy 
all the above requirements. In the proposed system, information related to the calving 
signs of cows is extracted from images using convolutional neural networks (CNNs), and 
a fully connected neural network subsequently predicts an imminent calving by using the 
extracted features (as shown in Figure 1). Note that the design of the feature extractor (i.e. 
first-stage neural network) becomes a key to satisfying the abovementioned requirements. 
In the feature extractor, calving-relevant information based on the observable states of 
the cows such as tail rising (Jensen, 2012; Bueno et al., 1981) is extracted in the form of 
intermediate outputs from the CNNs. Thus, by explicitly extracting the features related 
to the calving signs, a highly reliable detector can be built even with a small volume of 
calving data (requirement (1)). Since the observable states can be judged by non-experts, 
crowdsourced annotation is possible. This leads to the possibility of an early and efficient 
operation of the system, even if the installation environment of the camera changes 
(requirement (2)). In addition, since the feature extractor outputs posterior probability 
of the cows’ state to the input image, the proposed system can explain the basis for its 
prediction results based on the frequency of the cows’ states (requirement (3)).

To demonstrate the effectiveness of the developed system, experimental comparisons 
were conducted using video scenes of five Japanese black beef cows collected from a 
camera installed in a farm. The knowledge obtained from the present experiments may 
be useful in developing calving sign detection systems from videos.
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Figure 1. Schematic diagram of two-stage calving prediction. Information on pre-calving is extracted 
from image sequence and used as input for calving sign detector

Material and methods

Cows’ states related to calving signs

The present study focuses on the following two states observable from the images:

•	 Switching between standing and sitting postures

 » Increase in the number of posture changes, e.g. switching between standing and 
sitting posture, around two to six hours before calving (Saint-Dizier & Chastant-
Maillard, 2015; Jensen, 2012) and the increase in sitting time two hours before 
calving (Jensen, 2012).

•	 Tail raising

 » Increase in the number of the tail rising around four to six hours before calving 
(Jensen, 2012), and elevation in the position of the tail before calving (Bueno et al., 
1981).

Examples of these two states are shown in Figure 2. There have been several investigations 
on the changes in clinical and behavioural states of pre-calving cows in livestock science, 
and these were also observed in the videos collected for the purpose of this study. Note 
that these characteristic states can be captured by cameras and judged even by non-
experts in animal husbandry and breeding.

Calving prediction system

The developed system is composed of two stages: a feature extractor and a calving sign 
detector. In the first stage, the CNNs extract the information of the states of cows related to 
calving signs (e.g. standing or sitting, tail raising). Then, a fully connected neural network 
at the latter stage determines whether it is a pre-calving state or a normal state by using 
the information extracted from the CNNs of the preceding stage. In this case, the CNNs 
function as a feature extractor and are constructed to identify the states of cows that are 
strongly related to calving signs.

(a) Sitting (a) Tail raising
Figure 2. Pre-calving behaviour of cows targeted in this study
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Figure 3. Network structure of feature extractor. Intermediate outputs can be expected to contain 
information relevant to calving signs

Stage 1. Feature extractor

The feature extractor comprises CNNs that classify the given images of the cows into the 
following four classes: (1) standing cow with a raised tail, (2) standing cow without a raised 
tail, (3) sitting cow, and (4) garbage (others). The garbage class includes images in which 
the calving state of the cows cannot be judged (e.g. no cows, calf, and noisy images). The 
convolution layer has the same structure as ResNet 50 (He et al., 2016), followed by 256 
units of a fully connected layer, and the output layer yields the posterior probabilities of 
the aforementioned four classes. The network structure of the feature extractor is shown 
in Figure 3.

As a preliminary experiment, the performance of the cows’ state classification was 
investigated. The evaluation data were manually annotated by the authors, and large-
scale training data were annotated through crowdsourcing. Then, the labels of the training 
data were checked and corrected by the authors. Amazon Mechanical Turk (https://www.
mturk.com) was used as the crowdsourcing platform and the classification accuracy 
was found to be 69.6%. The intermediate layer output of this CNN is expected to contain 
information that is effective for a classification of the relevant state of the cows. In this 
case, the statistics of the intermediate layer outputs that are accumulated for a period are 
considered to represent the frequency information of the element that determines the 
state of the cows; this frequency information is considered to be suitable as a pre-calving 
feature because the identified state is related to the calving signs. In the present study, 
the output of the fully connected layer with 256 units is used as an input to a subsequent 
calving sign detector.

Figure 4. Extraction of features relevant to calving and structure of calving sign detector
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Stage 2. Calving sign detector

The schematic diagram of the calving-relevant feature extraction and calving sign 
detection is illustrated in Figure 4. The latter system is constructed using a fully connected 
neural network that identifies pre-calving signs. Here, max-pooling across temporal 
frames is applied to the extracted calving-relevant features. It should be noted that the 
max-pooling in the proposed system selects a maximum value for each dimension of the 
256-dimensional feature vectors extracted from image sequences of ten-minute videos. 
This calving sign detector consists of 1,000 units of two fully connected layers and uses 
ReLU (Nair & Hinton, 2010) as the activation function. In the proposed and developed 
system, pre-calving signs are detected from the image sequences of a certain length of 
time. In this case, the max-pooling of the intermediate layer outputs is conducted every 
five minutes for the input image sequences of ten minutes (at most 600 images).

Experimental data

Japanese black beef cows close to calving were constantly monitored via a camera mounted 
on a chamber. Figure 5 shows an image of two cows in the chamber observed obliquely 
from above. The data used for the calving prediction experiments include ten different 
calving scenes collected from a farm in Kagoshima, Japan, from May to December in 2017. 
Here, the video scenes with a cow that has calved were sampled every one second. The 
detail of the training data for the calving prediction system is listed in Table 1 and that 
of the evaluation data is listed in Table 2. The training and evaluation data include five 
calving scenes, respectively. In this experiment, the normal state is defined as the state 
27–24 hours before calving, and the pre-calving state is defined as the state three to zero 
hours before calving. Note that there are no overlaps between this data and the data used 
for the training of the feature extractor. 

Figure 5. Example of recorded image. Two Japanese beef cows are in chamber

Experimental setup

The precision, recall, and area under the curve (AUC) of the calving status were calculated. 
The cows’ regions were detected by YOLOv3 (Redmon & Farhadi, 2018), resized to 224 × 224, 
and used as the input to the feature extractor. During training of the neural networks for 
the feature extractor and subsequent calving sign detector, a stochastic gradient descent 
method was carried out with a learning rate of 0.01. A minibatch size was 20. 
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Table 1. Periods of collecting training data. All data were collected in 2017

Index Normal state Pre-calving state

1 05/27 22:00 - 05/28 00:59 05/28 23:00 - 05/29 00:59

2 06/02 06:00 - 08:59 06/03 06:00 - 08:59

3 06/25 02:00 - 04:59 06/26 02:00 - 04:59

4 07/12 23:00 - 07/13 01:59 07/13 23:00 - 07/14 01:59

5 11/07 11:00 - 13:59 11/08 11:00 - 13:59

Table 2. Periods of collecting evaluation data. Number of samples taken as input to calving sign 
detector is shown in parentheses. All data were collected in 2017

Index Normal state Pre-calving state

1 06/14 05:30 - 08:29 (25) 06/15 05:30 - 08:29 (34)

2 08/30 12:00 - 14:59 (34) 08/31 12:00 - 14:59 (28)

3 09/29 21:00 - 23:59 (36) 09/30 21:00 - 23:59 (36)

4 10/23 02:00 - 04:59 (36) 10/24 02:00 - 04:59 (36)

5 11/23 07:00 - 09:59 (33) 11/24 07:00 - 09:59 (30)

Results and discussion

The precision, recall, and AUC values for each individual cow and total value for all the 
five cows in the evaluation data are presented in Table 3. The results show that an AUC of 
0.85 or more was obtained for each individual cow and all the five cows in the evaluation 
data, indicating that the discrimination between a pre-calving status and a normal status 
by the proposed system performed well with smaller data. In addition, Figure 6 shows the 
average posterior probabilities of the outputs of the feature extractor over ten minutes 
when predicting a pre-calving status and a normal status correctly. The average posterior 
probability of tail raising before calving is 12% higher than usual. Thus, the feature extractor 
captures the increase in the number of tail rising instances before calving. This is expected 
to explain the basis for the prediction to the farmers by presenting the cows’ state and the 
frequency of each state while detecting pre-calving signs based on this posterior probability.

Table 3. Precision, recall, AUC values calculated using pre-calving as positive case for each 
individual cow and all five cows in evaluation data

Index Precision Recall AUC

1 0.72 1.00 0.85

2 0.81 0.75 0.82

3 1.00 0.97 1.00

4 0.79 0.86 0.90

5 0.78 0.93 0.95

All 0.81 0.91 0.91
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(a) Sitting (a) Tail raising

Figure 6. Posterior probabilities of feature extractor outputs averaged over ten minutes for correctly 
predicted samples in evaluation data

Conclusions

Three requirements for designing a calving prediction system using videos from a camera 
was defined and satisfied to develop such system. The proposed two-stage calving 
prediction system, in which calving-relevant information obtained from a CNN-based 
feature extractor is used as the input for another fully connected neural network-based 
calving sign detector, achieved a calving precision of 0.81 and a calving recall of 0.91. In this 
system, the time-series information is lost by simply max-pooling the intermediate layer 
outputs obtained from the image sequences. For our future investigations, the system will 
be extended to handle time-series information regarding the cows’ pre-calving behavior.
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Abstract

The popularity of precision livestock farming is largely driven by a desire to optimise 
productivity, profitability and comfort. At the same time, there are growing societal 
concerns about animal welfare and animal health in relation to food safety and human 
health. These concerns can be addressed by academic and applied research into animal 
welfare and health indicators and increasingly by the utilisation of welfare and health 
metrics in operational farm management systems. TrackLab 2 is the latest tool for the 
measurement of livestock welfare and health indicators. It is designed to integrate and 
process multi-modal data for the capture of welfare and health indicators such as social 
behaviour, place-preference, activity, feeding and physiology. It was beta tested on four sites 
in the dairy cattle, poultry and pig farming domain. These first explorative tests revealed 
that TrackLab metrics are useful for both scientific, applied and commercial livestock 
research. TrackLab hardware is working well for large animals (cows, calves, pigs, sheep, 
poultry) but needs to be optimised for use on young birds and piglets. TrackLab 2 is also 
the first version to be applied in the operational farming context. The utilisation of welfare 
and health metrics in the operational context, to a level that exceeds the productivity 
focus, can prove a valuable asset in addressing societal concerns and enhancing livestock 
farming sustainability.

Keywords: TrackLab, livestock, welfare, health, monitoring, multi-modal

Introduction

With the trend towards larger group housing systems in farm animals, it becomes 
increasingly important to be able to monitor the behaviour, performance and welfare of 
individual animals housed in groups. Traditional methods, such as live and video-based 
observation and behavioural scoring, are difficult and time-consuming. Automated 
observation using video tracking is a powerful and versatile technique for detailed 
analysis of movement and behaviour of single animals, dyadic interactions or small 
groups. However, video tracking falls short when the number of animals to be monitored 
is large, and it does not work in large scale and outdoor environments. For large indoor 
spaces, ultra-wideband (UWB) radio tracking offers a robust and accurate alternative to 
video tracking: it offers real-time individual tracking of large numbers of animals (e.g. 
100 animals or more), at a high spatial accuracy (up to 15 cm), in large areas (e.g. 60 × 
40 m), with a high sampling rate (e.g. 1 Hz). In the field, GPS tracking is the technique of 
choice, with the latest chip sets offering positioning accuracies of around 2 m, and local 
networks, enabling long-range data communication in areas where there are no cellular 
networks. However, the sensors alone do not make a solution for the livestock researcher 
or the livestock industry. That requires a suitable software package for experiment design, 
data acquisition, storage, visualization and analysis. Together with the sensors and data 
processing hardware, it should provide a seamlessly integrated end-to-end solution for 
livestock research and R&D in the livestock industry.
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Here we present TrackLab 2, a new software package and integrated system for the 
acquisition and analysis of location, activity and social behaviour of group-housed 
animals. It is the successor of TrackLab 1, which has been on the market since 2013 and 
which has been used in a wide variety of livestock research projects on cattle, pigs, poultry 
and sheep (Frondelius et al., 2014, Van Mil et al., 2015, Stadig et al., 2016, Rodenburg et al., 
2017, De Haas et al., 2017). 

Solution description

TrackLab is designed to support livestock research in academic institutes (health, welfare 
and environment focus), breeding and genetics, veterinary research (in biocontainment 
facilities) as well as livestock research for the development of animal nutrition and 
pharma. It is important to identify the differences in objectives and workflow in these 
application fields if you want to establish a versatile and broadly deployable solution. 
TrackLab 2 offers several functional and technical innovations relative to its predecessor:

System architecture and tracking technology

TrackLab 2 has a distributed and scalable client-server architecture, supporting multiple 
concurrent users and measurements at multiple locations. The TrackLab solution is 
designed for three types of livestock monitoring environments: Indoor tracking in barn 
environments, indoor tracking in biocontainment labs and outdoor tracking in feedlots 
and pastures. The indoor tracking solution uses both Angle-of-Arrival (AoA) and Time-
Difference-of-Arrival (TDoA) techniques through wall-mounted sensors that use ultra 
wideband (UWB) radio communication to determine the location of the animals. The 
accuracy achieved with UWB-based localization (up to 15cm) allows for analysis of 
behaviour classes (e.g. social behaviour, accurate place-preference and activity statistics) 
that cannot be achieved with other positioning techniques (e.g. RFID, WiFi). The system 
hardware is suitable for use in BSL-3 with the sensors (IP65) and tags (IP69k) suitable to 
withstand commonly used sterilization methods.

The outdoor tracking system is based on GPS localization and, depending on the conditions 
(weather, blocking objects), can achieve an accuracy of around 2 m. The tag contains a 
solar panel to make it self-contained if applied in sunny regions, and with possibilities 
of applying a bigger battery in cloudy regions. The tag stores data locally and sends it in 
batches through a local LoRa data communication network. One antenna can receive data 
from within a radius of 2 - 10 km depending the geographical features.

Hardware: animal solutions

The TrackLab tracking hardware is compatible with the most common livestock animals. 
The indoor tracking solution comes with tag solutions for cows and horses (collar-based), 
sheep and goats (harness-based), poultry (backpack-based) and pigs (eartag-based). The 
outdoor tracking solution supports application on cows and horses (collar-based) as well 
as small ruminants (sheep and goats - harness-based). Each tag solution is designed and 
tested to be robust enough to endure high impact stress (e.g. cattle barns) and hostile 
environments where sterilization procedures are applied (e.g. biocontainment labs) 
or where low temperatures and high humidity occur (outdoor environments). The tag 
solutions for poultry and pigs are designed and tested to be light enough and to have a 
good ergonomical fit to prevent animal discomfort.

Analysis: raw data playback & export

The TrackLab software is based on a ‘white box’ concept: transparency is given on the 
logic and algorithms, and both raw data (coordinates) and derived measures can be 
exported for further analysis in other applications. Track data and aligned raw behavioral 
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measurement data can be played back (at different speeds) to enhance behavioral insights 
and to inspect contextual circumstances that may explain data outliers (Figure 1).

Figure 1. The data replay window (l) and statistics results per user-selectable timebin

Analysis: activity

Animal activity can be used as an indicator of animal health (e.g. as lameness indicator) 
or estrous behaviour (Roelofs & van Erp-van der Kooij, 2015). TrackLab has three different 
types of activity measurements available: distance moved, velocity and velocity-based 
movement categories, based on user-defined velocity thresholds. 

Analysis: place-preference (+ indirect feeding, drinking)

Place-preference analysis is valuable for gathering various welfare-related insights (e.g. 
bedding preference investigations), insights into the efficiency of barn infrastructure 
layouts but can also be used as an indirect cue for eating and drinking behaviour 
(frequencies and time spend at the drinking trough or feed alley). It has also been used 
to measure the response and attention to new objects, such as new feed types or play 
objects, or it can be used to analyse the location-dependency of certain behaviours.

Figure 2. Qualitative heatmap (top left), areas of interest heatmap (top right), timetable heatmap 
(bottom left) and area visit statistics
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Analysis: social behaviour

Social behaviour in cattle is receiving increasing interest from the research community. 
Insights in social behaviour can inform us about the effect of the hierarchy of a herd 
on overt aggression within the group. As sharing resources may be facilitated by social 
stability, aggression may have a negative effect on feeding of submissive cows and thus the 
productivity of the herd as a whole. Also, normal social development is assumed to have a 
positive effect on animal welfare. TrackLab 2 offers two types of social behaviour analysis: 
basic proximity analysis (Figure 3), which calculates the frequencies and time spent in 
proximity to any other animal, and social network analysis, which provides insight into 
the pair relations within the group.

Figure 3. Social behaviour – proximity statistics (l) and pair relations (r)

Analysis: feeding behaviour

Besides the previously described indirect measurement of feeding and drinking based on 
animal presence in a feeding alley or near a drinking trough, accelerometer-based sensor 
technologies provide a means to measure these behaviours directly on the animal. The 
aim is to quantify durations and frequencies of eating versus rumination.

Analysis: posture and gait

Basic activity indicators such as standing and walking and movement states can be reliably 
detected with tracking technologies. Lying can theoretically also be detected with UWB 
localization techniques, however, it requires adjusting and extending the UWB sensor 
configuration. Accelerometry provides a more cost-effective and proven application for 
the measurement of lying, standing and walking (Munksgaard et al., 2006; Trénel et al., 
2009). Moreover, todays accelerometers are often combined with other sensors such as 
magnetometers, gyroscope and/or altimeter. Combining the output of these sensors with 
machine learning techniques allows us to detect a broader range of behaviour nuances 
(e.g. lameness, head butts and mounting in cattle, pecking or jumping in poultry or 
aggression in pigs), with higher reliability.

Analysis: welfare metrics

In prototyping efforts, special interest goes out to welfare indicators such as related to 
agonistic behaviour (e.g. head butts, displacement, chasing or fighting), as described in the 
Welfare Quality® assessment protocol for cattle (Welfare Quality®, 2009), established by 
the Welfare Quality® Consortium. As opposed to the previously described social behaviour 
indicators proximity and pair relations, the challenge here is to identify the aggressor 
from the submissive animal; a received head-butt shows only a subtly different pattern in 
accelerometer data compared with an applied head butt. 
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First experiences in practice (beta tests)

Application in the dairy cattle domain

TrackLab 2 was installed on two dairy cattle sites: the Dairy Campus in Leeuwarden and 
Aeres Farms in Dronten, both in The Netherlands. At Aeres Farms, TrackLab 2 was installed 
in a high-tech dairy cattle unit. Over 55 dairy cows have been equipped with UWB tags 
and data are being collected for several months during the winter period. The cows in 
this high tech unit are being monitored with a variety of different sensors to study their 
production, health and welfare continuously. Aeres Farms is a practical farm connected 
to the Aeres University of Applied Sciences in which students, under the supervision of 
researchers, learn how to optimally manage dairy cattle. An important aspect is not only 
how to interpret the outcome of automated monitoring systems already available on the 
market but also what is behind the warning or alert of these systems. Students learn by 
doing observational studies how these systems work, what validity and reliability mean 
and what makes a system both sensitive and specific. The TrackLab 2 system at Aeres 
Farms has contributed to both a better understanding of how sensors can be applied in 
practice by the future generation farmers, and has given insights into how the cows use 
the facilities. Aeres Farms and the research unit are especially interested in individual 
differences between cows regarding the distance travelled daily and how it relates to cow 
factors (stage of lactation), health and welfare; which places in the facilities are preferred 
and which are avoided; and if there is a variation between cows for time spent at the 
feeding path, the water units and the lying areas. For all these questions it is assumed that 
there is large variation between animals, but sound scientific evidence is lacking. The next 
step is to relate these outcomes to productivity, health and welfare measures in order to 
optimise herd management.

Application in the poultry domain

UWB tracking and TrackLab have been applied in the PhenoLab project at Wageningen 
University, funded by Breed4Food. The aim of the project was to provide a proof of principle 
for automatic tracking of location, activity and proximity of individual laying hens when 
housed in a group. A test room at Wageningen University was equipped with the TrackLab 
system, as well as with the EthoVision XT video tracking system. In the first phase of the 
project, activity measurements measured with both systems was compared. Individual 
hens were equipped with the UWB tag in a backpack and placed in the PhenoLab. The 
recorded distance moved was very similar between both systems (Rodenburg et al., 2017). 
In the second phase, we investigated if we could reproduce known line differences in 
activity using the PhenoLab. To meet this aim, we compared birds from a highly active 
line selected for high feather pecking (HFP) with birds from a low feather pecking line 
(LFP) or an unselected control line. As expected, HFP birds showed much higher activity 
levels in the PhenoLab than birds from the other two lines. Interestingly, within the HFP 
line, birds that had actually been observed to perform high levels of feather pecking in 
the home pen were much more active than victims of feather pecking from the same line 
(Rodenburg et al., 2017). De Haas et al. (2017) also showed that feather peckers spent less 
time in close proximity compared with controls. One challenge with UWB in poultry is the 
relatively high weight of the tags (approximately 30 g). This means that the method cannot 
be used to track birds lighter than approximately 500 g. We are currently investigating the 
combination of UWB tracking with passive RFID tracking. For passive RFID tracking, the 
tags can be much lighter as they do not contain a battery. To conclude, for adult poultry, 
the UWB system offers perspective for application in research and allows automatic 
recording of activity and location. For younger birds, passive RFID tracking systems may 
be more suitable.
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Application in the pig farming domain

An example of how TrackLab is applied not only in research but also in farming practice, is 
The Family Pig project (“Het Familievarken”). An innovative pig farm was built, designed to 
keep pigs in a natural environment (social context and enriched), thus avoiding stress and 
illness. TrackLab is used to measure animal proximities in support of an individualized 
feeding system, to measure the presence of pigs in a ‘pig toilet’ (in support of toilet flushing, 
thereby separating urine from faeces and reducing emission of methane and nitrous oxide 
as a result). This is a good example of TrackLab, by origin a research tool, can be utilised for 
improvement of animal welfare, health and the environment (antibiotics and emissions 
reduction), in an operational farming context. 

Relevance of livestock research to the farming practice

Several research initiatives focus on so-called Precision Livestock Farming (PLF), which is 
driven by the increasing application of sensor technologies on-farm. Remarkably, projects 
on Precision Livestock Research are scarce and this is particularly true for the fields of 
animal welfare and animal behaviour. The majority of studies focusing on farm animal 
welfare still rely on visual observation for data collection, and therefore the frequency 
and duration of assessments and the number of animals observed are restricted. Because 
of the lack of practical tools to monitor behaviour, most farmers are not aware of the 
relevance of behaviour for their everyday decisions and due to the lack of demand and 
complexity of behaviour, suppliers of farm automation hardly develop tools in this area. 
Tools for automated monitoring of behaviour, if available, would enable much more 
accurate estimation of effects of treatments (e.g. housing conditions, feeding regimes) in 
scientific studies and thus contribute to our understanding of the impact of such factors 
on animal behaviour. Moreover, effects of interventions, whenever abnormal values of 
behavioural parameters are detected, can be investigated with automated monitoring 
tools. If such interventions show clear benefits, it is likely that farmers will be interested to 
implement such tools in their farm management. As with most other sensor applications, 
the combination of tracking data with other sensor data, e.g. from accelerometers, will 
improve the interpretation of abnormal values and application of appropriate measures.

Conclusions

The TrackLab 2 solution was successfully probed in explorative tests in the dairy cattle, 
poultry and pig behaviour domain. First experiences with version 2 reveal that it can be 
useful not only for scientific research but also for the applied livestock sciences. Moreover, 
for the first time, TrackLab was utilised in an operational (pig) farming context where 
its behaviour analysis output (e.g. subject proximities, area visits) was used as input for 
individualized feeding and toilet systems, designed to improve animal welfare, productivity 
and emissions reduction. On the tracking hardware side, we can conclude that the system 
is compatible with farm conditions (e.g. humidity, low temperature) and that it works 
well on larger animals (cows, cattle, pigs, adult chicken, sheep) but that it needs to be 
optimised (lighter, smaller) to be suitable for young birds and piglets as well.

Discussion

We hope that TrackLab 2 will contribute to livestock research (behavioural phenotyping, 
testing different diets, welfare and health monitoring) and increasingly to precision 
livestock farming as well (monitoring individual animal health and welfare and enhancing 
housing and management systems). Societal concern over food safety, the health and 
welfare of livestock animals and the environment may pose an existential risk to the 
livestock farming industry. Metrics for animal health and welfare do not only give valuable 
insight for livestock researchers; there is great potential in utilising these metrics in the 
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operational farming context. This combination can prove a valuable asset that can help 
the livestock industry to remain sustainable towards the future. 
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Abstract

In this paper, we are trying to give a detailed overview of the results of the research on the 
behaviour and production parameters of pigs kept outdoors, as well as the Information 
Technology (IT) monitoring methods used so far in commercial, intensive, largescale 
pig farms. A more detailed overview of the literature on the research of traditional 
meat products is also part of our work. This literature review is the basis to examine 
the adaptability of monitoring systems to free-range conditions, providing a basis for 
developing a tracking system for Mangalica and Iberian pigs. In our planned project 
we intend to adapt IT-methods and procedures to free-range pigs for offering an easy 
to handle, cost-efficient, useful IT-devices for monitor Mangalica and Iberian pigs, a 
possibility for gathering behavioural information about their pig herds and indirect data 
on the health status and production parameters of pigs. Changing the daily rhythm, 
detecting the deviation immediately makes it possible to detect and treat the sick, possibly 
infectious animals. By evaluating the data collected by the sensors, the farmer can get 
a comprehensive picture of the pigs kept outdoors without disturbing the animals. The 
data can be inserted into the production process of traditional products, so the premium 
quality associated with free-range pigs can be verified. With this adapted technology, it 
is possible to achieve precision pig keeping under free-range conditions. Traceability and 
transparency of free range pig production system would be realised and ‘labelled product’ 
would be controlled from farm to fork relations.

Keywords: Mangalica, iberian pigs, blockchain, RFID, outdoor, tracebility, traditional meat 
products

Objectives

We present a project idea submitted to an H2020 call which is under review. We present 
the results of the literature that were relevant to the project idea, as well as our objectives 
and expected results. In conventional indoor pig housing IT solutions have already been 
developed to successfully evaluate animal behaviour and/or production parameters. We 
intend to adapt these methods and procedures to free-range pigs to provide easy to handle, 
cost-efficient and useful IT-devices for monitoring pigs. This will give farmers the possibility 
to gather behavioural information about their pig herds, as well as other indirect data on 
the health status and production parameters. This will be achieved using passive and 
active RFID chips and wireless stations to detect the pigs by locating individual members 
of pasture stock and observing their daily rhythm. Changes to the daily rhythm of an 
animal will be immediately detected as a deviation from the average behaviour of this 
individual and also from the average behaviour of other individuals, making the detection 
and treating of sick, possibly infectious, animals faster. The time spent at the feeder gives 
the farmer information on food consumption, and changes in drinking water consumption 
can be symptom of a disease. By evaluating the data collected by the sensors, the farmer 
can get a comprehensive picture of the pigs kept outdoors without disturbing the animals. 
The data can be inserted into the production process of pork products, so the premium 
quality associated with free-range pigs can be verified. In the framework of the project, the 
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aim is to monitor Mangalica and Iberian pigs. We make personalized recommendations 
for the design of the IT system for different sizes of farms. With individual identification 
and tracking of pigs, traceability and transparency of the production system would be 
realised and ‘labelled products’ would be controlled from farm to fork relations.

Material and methods

In the conception of our project, we have defined four sub-goals. After a thorough 
literature survey, it is clear that the use of relevant IT technologies is extensively applied 
in recent research, however, the literature is concerned mostly with indoor pig farming 
and very few literature sources were found concerning IT solutions applied in the case of 
free range pigs. The most probable reason is that deploying technologies is much easier 
in a smaller and better controllable space than in a larger, outdoor area, as the outdoor IT 
devices are exposed to weather conditions wich may cause degradation in performance. 
The justification of our project is proved by this fact. There are lots of applications of IT 
in the case of other farm animals kept on pasture such as cattle, sheep and goats. The IT 
solutions applied for these animals can only be used in a small part in the case of pigs. The 
main reason is their different behavioural habits. Pigs use grassland primarily as a living 
space, not as a feed source. In the case of pigs, behaviours that determine animal welfare 
are not observed in these types of farm animals (rooting, wallowing). In addition, pigs live 
in a serious social relationship, and their breeding and social habits differ significantly 
from other animals. A further challenge is the individual marking of pigs, so that they can 
be permanently and remotely identified. Pigs are not as comfortable with wearing gadgets 
or widgets, e.g. a collar, that are easily applicable for cows, goats or sheep. Our project is 
also looking for solutions to track the health condition of the pigs. During the project we 
will develop a platform for free range and mainly for organic pig farmers, for gathering 
behavioural and production data from their organic pig system, with adapting already 
existing IT solutions applied in indoor keeping systems. This IT system gathers real-time 
data from RFID devices (mostly passive and several active) about the location of pigs 
without their unnecessary disturbance. With individual identification of pigs, traceability 
and transparency of outdoor production system would be realised and ‘labelled product’-
life would be controlled from farm to fork relations.

Literature review

Behavioural aspects

In outdoor systems, at a reduced level of supplementary feed, a higher frequency of 
rooting occurs. These results suggest that it is possible, through management measures 
like allocation of new land, feeding strategy and movement of housing and feeding 
facilities, to have a stratified cultivation of and nutrient load on the land. Andresen et al. 
(2001) demonstrated that rooting could replace a mechanical treatment and even result in 
a higher yield of the following crop. Laister and Kondrad (2005) investigated the following 
behavioural categories in intensive breeds of growing-finishing pigs in an outdoor system: 
feeding, drinking, exploring, resting, comfort behaviour, locomotion, playing, agonistic and 
eliminative behaviour. On warm days, feral pigs rest in sunny places and clearings of a 
pine tree forest, whereas on hot days the pigs search for cool and shadowy places in a high 
forest (Meynhardt, 1988). Pigs are exploratory animals that spend a considerable amount 
of time moving between parts of the enclosure and examining distant and close habitats 
(Stolba & Wood-Gush, 1989). According to Ingold & Kunz (1997), moist and wet places 
stimulate rooting. The most important patterns of comfort behaviour in pigs are rubbing 
and wallowing, the latter fulfilling two purposes: firstly, the mud bath shall free the pigs 
from ectoparasites and itches and, secondly, it contributes to the animals’ thermoregulation 
(Zerboni & Grauvogl, 1984). In Johnson et al. (2001), investigating behaviour found that 
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outdoor sows were more active. Johnson et al. (2003) found that outdoor reared pigs spent 
more time walking and playing compared to indoor reared pigs.

Production performance aspects

Reproductive performance: The genetic background for pigs in organic production in 
Sweden is the same as in conventional pig production (Wallenbeck et al., 2008). In the 
organic herds, the total number of piglets born per litter and the number of piglets 
stillborn per litter were higher than in the conventional herds. Crushing of the piglets 
by the sow during the first days of life has been reported to be a more common cause of 
death in organic herds (Wallenbeck, 2009). Longer nursing period in the organic system 
means longer recovery period. It has to be shown to be beneficial for the reproductive 
performance. This might reflect larger variations among the organic herds in housing 
and management (Lindgren et al., 2013). Number of litter per sow was lowest in the 
organic system, partly because of a longer weaning period and partly because of poorer 
reproduction results. Larsen & Jorgensen (2002) found that poor production results are 
not related to the fact that sows are kept outside but, probably, are related to the longer 
lactation period. Lindgren et al. (2013) related the lower number of weaned piglets per 
litter to the opportunity for movement of the sows that result in inadequate nursing and 
weakening of the piglets as well as crushing by the sow.

Growth performance: According to Danielsen et al. (2000), organic feeding and access to 
an outdoor run led to a higher proportion of ham muscles in the carcass. These results 
are much in line with those of Miller et al. (2003) who found that organic farming led to a 
higher muscle and back fat thickness. In the summer period, a feed conversion comparable 
to indoor conditions was obtained in some investigations (Sather et al., 1997), whereas in 
other periods of the year or in other investigations, a higher feed consumption per kg gain 
has been reported (Stern et al., 2002; Sather et al.; 1997). Hermansen (2005) found that 
restricted intake in outdoor systems kept pigs under 80 kg live weight followed by ad lib 
indoor. It resulted in a feed conversion rate comparable to indoor feeding and overall daily 
gain was only reduced by 10 - 15% compared to ad lib feed indoor. Laister & Kondrad (2005) 
investigated behaviour, performance and carcass quality of growing-finishing pigs from 
three intensive breeds in outdoor circumstances. Weissmann et al. (2005) investigated 
performance, carcass and meat quality of different pig genotypes in an extensive outdoor 
fattening system on grass clover in organic farming. They calculated feed conversion 
ratio over all fattening pigs as the total amount of feed in relation to the total amount of 
body weight gain. Farke & Sundrum (2005) investigated growth performance and carcass 
yield in outdoor fattening system offering grazing possibilities. Their results show that it 
is possible to obtain acceptable daily live-weight gains and carcass yields in organic pig 
production under free range conditions. In their opinion, further studies are needed to 
estimate the amount of ’herbage on demand’ and feed intake of crops by pigs in outdoor 
conditions. Growth performance of pigs in outdoor production system can be affected by 
climatic conditions. Honeyman & Harmon (2003) found that during the winter, outdoor pigs 
require higher energy to keep warm than during the summer, resulting in a slower growth 
rate. Rodríguez-Estévez et al. (2011) investigated average daily gain of Iberian fattening 
pigs when grazing natural resources. The traditional finishing system of the Iberian pig is 
linked to the ’dehesa’ (Quercus sp. open woodlands), in order to use the abundance of food 
provided by acorn ripening (called montanera), when pigs only eat grass and fallen acorns 
(Rodríguez-Estévez et al., 2009a).

Social aspects

Rural areas in the EU member states are more dependent on agriculture as a source of 
income and employment, with opportunities for gainful employment in the non-farm 
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rural economy relatively scarce (Davidova et al., 2013). To boost competitiveness and 
profitability, the EU seeks to stimulate enhanced value-added production, drawing on its 
reputation for quality goods (European Parliament and The Council of European Union, 
2012). One potencial type of quality goods are Traditional Food Products (TFPs). A traditional 
food may be classified as: ’a product… made accurately in a specific way according to the 
gastronomic heritage, … and known because of its sensory properties and associated with 
certain local area, region or country’ (Guerrero et al., 2009). These goods generally possess 
positive images due to superior taste, nostalgia and/or ethnocentrism (Almli et al., 2011; 
Vanhonacker et al., 2010). Balogh et al. (2016) addresses this central question, building 
on recent advances in Willingness to Pay (WTP) methodologies, which are applied to an 
exemplary case of a TFP, namely, the Hungarian Mangalica salami. Mangalica salami is an 
ideal product for exploring Willingness To Pay for Traditional Food Products as the main 
motivation for its purchase in Hungary is its indigenous origin and heritage. The Mangalica 
breed does not possess any protected status at European level but there is coordination 
at the domestic level via the National Association of Mangalica Breeders (NAMB). The 
NAMB certifies Mangalica pigs, officially guaranteeing the origin of genuine Mangalica 
products (Balogh et al., 2016). Certification is important for increasing the customer base as 
inexperienced consumers and those who have relatively weaker preferences for the good 
place with greater emphasis on quality certification. Unfortunately, many quality labels 
possess inadequate regulatory systems (European Court of Auditors, 2011), resulting from 
inexperience and limited resources. Thus, here is a consequent need to share experiences 
between successful TFPs, commanding substantial premiums and possessing robust 
regulatory systems, and those less well developed. In the case of Iberian pigs breeders, 
Iberian Acorn meat (especially ham) is a very demanded and well considered TFP, and it is 
subject to very strict regulations to get quality certifications and category labels.

Internet of Things (IoT) monitoring system at field

To achieve high efficiency, productivity, and performance of a precision farm business, 
the IT infrastructure and IT services have to be robust and reliable. The state of the 
art key issues along the complete data workflow, i.e. data collection, data storage, data 
analysis, and data visualization, can be found in Wolfert et al. (2017). At present, most of 
the systems of Ordoñez-García (2017), Bhargava (2016), Dholu (2018) are conceptionaly 
designed into three layers: data collection, data analysis and processing, and presentation. 
As described in Dholu (2018), sensors send data through a gateway to the cloud where it 
is processed and visualized for smartphones in order to access the agricultural parameter 
from everywhere. Through the powerful gateway/edge devices more and more data 
is processed on premise. Edge Mining not only optimises memory usage of the sensor 
device, but also builds a foundation for future real-time responsiveness of the prototype 
system in Bhargava (2016). Our project idea approach goal is to effectively design robust 
IoT applications that require a tradeoff between cloud- and local edge-based computing, 
depending on dynamic application requirements. Data fusion, as described in Rui (2012), 
is one of the most basic approaches that performs data reduction, e.g. by merging the 
redundant data that emerges from the neighbouring sensor nodes. Light-weight data 
mining algorithms are developed to optimise sensor readings, optimise RFID zone detection 
and enable real-time detection of important events. There are a number of specialized pig 
farm management systems, like nedap, CLAAS, Cloudfarms or SwineManagement.com, 
but all of them do not monitor the welfare of an individual pig.

Certified pig-pork supply chain for the customer

The integration of chain partners in innovation process enhances the capacity to innovate 
and reduces the risks involved in implementing innovation (Earle, 1997; Gellynck & Kühne, 
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2008; Pittaway et al., 2004). The agri-business sector is characterised by a large number 
of micro, small and medium sized enterprises (SMEs) and as a low-tech industry. This 
applies for the traditional food sector in particular. Only few studies are published that 
focus particularly on innovations in TFPs (Jordana, 2000). Feasible applications relate to 
improving the production process in order to assure quality and traceability (Gellynck & 
Kühne, 2008). For the successful introduction of innovations in TFPs, it is also important to 
have a good understanding of customers’ perceptions, expectations and attitudes towards 
traditional food products and of consumers’ attitudes towards innovations in TFPs 
(Linnemann, Benner, Ververk & van Boekel, 2006). Current progress towards automated 
detection of health and welfare compromises indicates the three categories of approaches 
to automation are emerging. The first category reports only on detecting behaviours using 
sensors (with RFID, video or other sensors). The next category applies the detection method 
over time, records behavioural data and presents these to staff for monitoring of potential 
problems, typically in graph form (e.g. on mobile phone). This enables identification of 
behavioural changes, but requires farm staff to identify the change. The third category 
automatically analyses the recorded behaviour over time to detect behavioural changes 
and automatically sends alerts to staff advising them of behavioural changes and potential 
identification of the compromise and rectification (Matthews et al., 2016). For the third 
category, the data analysis methods were capable of automatically detecting behavioural 
changes in drinking behaviour from water flow sensors before diarrhoea (Madsen & 
Kristensen, 2005), in feeding visits and consumption with RFID feeding stations before tail 
biting (Wallenbeck & Keeling, 2013) and movement activity from video before clinical signs 
of swine fever (Martinez-Avlés et al., 2015). According to Berckmans (2014) and Tullo et al. 
(2017), precision livestock farming is defined as: the application of process engineering 
principles and techniques to livestock farming to automatically monitor, model and 
manage animal production (Tullo et al., 2017). Demands for transparency of traceability 
of the products and the treatment practices of pigs are increasing from customers who 
want to be informed about the complete lifecycle of the foot product displayed in a 
supermarket. In the past, in Europe, this problem was tackled by welfare labelling schemes 
(e.g. Denmark: DANISH; Netherland: Beter Leven; UK: Red Tractor; Germany: Tierwohl; etc.) 
define regulatory at each country. These labels stand for compliant farming processes, 
animal husbandry, meat quality, etc. All of these labels guarantee the compliance of all 
labelled products but lack the information about the product along the supply chain to 
the piglet. The EU strategy and many surveys, like Autio et al. (2017), are oriented towards 
considering the development of an instrument to better inform consumers and companies 
on animal welfare friendly products that could be used by both producers and retailers, 
ensuring a transparency to consumers without overflowing them with information on the 
label. The blockchain technology is a promising approach to give transparency, like who 
was the breeder, how was the pig kept, where was the slaughterhouse, etc. It protocols the 
pig-pork supply chain. All the important information is put into a blockchain to provide 
the information to everybody, anytime. A blockchain is a distributed, decentralized data 
structure that stores transactions transparently, chronologically, and unchangeably in a 
network. The key players in blockchain market include: IBM, Microsoft, SAP-SE, Ambrosus 
(Switzerland), Arc-net (UK), OriginTrail, Ripe.io (US), VeChain (China), Provenance (UK), 
ChainVine (UK), AgriDigital and AgriChain (Australia). The French retailer Carrefour 
launched a traceability project for its premium farm products in June 2018. Subway and 
Tyson are testing the FoodLogiQ’s (https://www.foodlogiq.com/) blockchain traceability 
project. Similar to FoodLogiQ is TE-FOOD (https://www.tefoodint.com/), providing a farm 
to table fresh food traceability ecosystem on blockchain.
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Conclusion

Our main goal was to offer and plan an IT system for outdoor pig breeders to help them 
meet their existing and new challenges like the changing consumption habits require 
controlled and proven quality. Outdoor pig farming needs more space and results in 
slower growth but also results in better quality: gives better fat to meat ratio, less diseases, 
‘happier pigs’, etc. On the other hand, some species which are less industrialized (like 
Mangalica) need other housing conditions. Our proposed idea is to track the animals and to 
collect and analyse data using IoT technologies in order to inform the farmer and later the 
consumer as well and to monitor the welfare of the individual pigs. Based on our research 
and interviews we made with breeders, we decided to use RFID tags and temperature 
sensors. RFID is a cheap, medium range communication technology, can be used without 
batteries (passive) to identify the measured pig, and is small enough to integrate into the 
ear tags. RFID is the optimal solution for tracking pigs (location and movements). Body 
temperatures and hearth rate of the animals can be used to predict illnesses. Pigs do 
not like wearable technologies, so we decided to test implantable sensors and automated 
infrared (non-contact) thermometers / temperature guns as well. Collecting data can 
help us and the breeders to understand, learn, decide and after collecting enough data 
to predict events using Machine Learning algorithms. The collected data is stored in a 
Blockchain database which helps to prove and to certify all the events which occurred 
during the lifetime of the pigs.
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Abstract
Agent-Based Models (ABMs) are especially useful to represent complex systems, such 
as intake dynamics in grazing animals. The aim of this work was to develop an ABM 
to simulate the observed daily intake dynamic in grazing cows at the Universidad de 
Antioquia dairy farm in North-Antioquia, Colombia. Our ABM represents interactions 
between two agents: grass area and cows. In model developing, the grass dry matter (gDM) 
available (g of gDM/m2) and its distribution in grass area, and the grass intake rate in 
housed cows were determined. In model verification, indirect observations (i.e. monitoring 
with electronic devices) of intake dynamic in 25 grazing Holstein cows were made. The 
grass availability observed, per square meter, at the Universidad de Antioquia dairy farm 
was classified into three groups: High, Medium and Low supply (338.5, 195.6 and 109.9 
g of gDM/m2, respectively). The Medium grass group had the highest prevalence (60%). 
The grass intake rate and the grass intake time observed in indoor cows was 26.8 ± 5.6 
g of gDM/min and 469 ± 73 min/day, respectively. Indirect observation of cows’ grazing 
behaviour at the Universidad de Antioquia dairy farm showed high grass intake after 
each milking, and very low grass intake overnight. Our ABM was coded and simulated in 
Unity3D development platform. Model verification showed that the intake dynamic in our 
ABM was very similar to the intake dynamic observed in real cows. The results indicate 
the enormous potential of ABM to simulate complex farm processes, especially in grass-
based systems.

Keywords: Agent-based models, intake dynamic, grazing systems, Unity3D

Introduction

In grazing ruminants, intake is influenced by several factors including yield potential, live 
weight, age, reproductive stage, individual grazing behaviour, grass availability and quality, 
and prairie botanical composition (Decruyenaere et al., 2009). Because of that, consistent 
and accurate intake predictions in grazing animals are difficult to achieve. However, 
moderately successful intake models could be a useful tool for decision-making in grass 
management and to improve livestock systems productivity. As proposed by Ruelle et al. 
(2015), to develop an intake model it is important to consider that grass intake is highly 
dependent on animal characteristics, grass availability and quality, and interactions 
between animals, and between animals and pasture during defoliation process.

Although there are several models to simulate grass intake, to include all grazing system 
components in these models is complex. For example, GrazeIn (Delagarde et al., 2011) is 
a static herd grazing model where animal characteristics, grass supply, grazing duration, 
and grass height are taken into account. But as GrazeIn model’s authors mentioned 
(Delagarde et al., 2011), this model does not simulate grass height changes over time, 
which means that simulate forage supply impact on grazing activity is not represented. 
A similar limitation has been detected in the model developed by Baudracco et al. (2010), 
given that this model does not take into account grass height and defoliation (Ruelle et 
al., 2015). DairyWise (Schils et al., 2007) is a complete dairy farm model which describes 
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technical, environmental and financial processes. Although paddocks are independently 
represented in this model, the grazing process is not accurately simulated (Ruelle et al., 
2015).

Model limitations indicated above could be corrected by using Agents-Based Models 
(ABMs), where the most relevant grazing system components can be explicitly represented 
and where the system behaviour emerges as a consequence of components interactions. 
Jablonski et al. (2018) declared to be the first developers of an ABM to simulate grazing 
in cattle. These authors constructed a spatially explicit model of cattle behaviour in a 
meadow with Delphinium geyeri, a toxic plant. This model demonstrates the great potential 
of ABMs to simulate grazing dynamics, by including fundamental aspects of livestock 
performance into heterogeneity ecological. The aim of the present work was to develop 
an ABM to simulate Holstein cows’ intake dynamic in a dairy farm from North-Antioquia, 
Colombia.

Materials and methods 

Our ABM description follows the “Overview, Design Concepts and Details (ODD)” protocol 
(Grimm et al., 2010).

Generalities

Purpose. Simulate the intake dynamic in Holstein cows from Universidad de Antioquia 
dairy farm. This farm is a grass-based dairy system located in a low mountain rain forest 
habitat in North-Antioquia, Colombia, with a height above sea level between 2,471–
2,499 m, an average temperature of 16 ºC and coordinates N 6°27’094, W 75°32’678.

Agents. Our ABM has two agents: Grass area and Cows. The grass area is a set of fixed 
agents with a constant area (1 m2 per agent). These agents constitute a virtual grass field 
(2,500 m2). Cows represent Holstein cows with 5.4 ± 1.4 years of age, 588.5 ± 88.1 kg of body 
weight, 3 ± 1 calving, 148 ± 141 days in milk, and 25.6 ± 9.0 liters of milk per day per cow.

Variables. Each square metre in the grass area has four variables: grass Dry Matter 
(gDM), damage score which represents the grass degradation due to cows contact and 
contamination, colour and height (cm). Each cow has variables related to its movement 
(i.e. individual speed, separation, alignment and cohesion inside the group), and dry 
matter intake (i.e. accumulative intake (gr), intake time (min) and grass intake rate (g of 
gDM/min)).

Scales. The model is temporal and spatially explicit, it simulates cows’ intake dynamics 
during 24 hours in a grass area of   2,500 m2. All state variables are updated in each 
simulation cycle. Each cycle is done in one real second which corresponds to one minute 
of simulation. It is possible to accelerate the simulation speed.

General process description. Cows’ intake dynamic is simulated as follows: the milking 
routine starts at 05:00 h. Milking time (min/cow) and grain intake (g/cow) during milking 
are calculated using the individual milk yield. Animals can access the grazing area when 
all cows have been milked. Total grazing area is divided into two. The first-half area is 
available after morning milking, and the whole area is available after afternoon milking 
(14:00 h). During grazing, the animals are divided into subgroups to perform random grass 
searches, each subgroup prioritises sites with high grass supply and low grass damage to 
eat. The grazing probability depends on grass supply and time of day. Therefore, grazing 
activity increases after each milking. After 18:00 h, cows reduce their activity, and grazing 
probability is very low all night long.
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Design concepts

Fundamental principles. Our ABM guiding principle is group grazing behaviour in dairy 
cows. The behavioural approach leads to a complex network of decisions, where animal 
responses to stimuli tend to be more multifaceted (McLane et al., 2011). The coding process 
was carried out using concepts reported in literature and milking routines, and animal 
behaviours observed in the Universidad de Antioquia dairy farm. The cows’ intake events 
coded were: group behaviour, milking schedules, interaction between animals, interaction 
between animals and grass area, nocturnal animal behaviour and grass defoliation, 
deterioration and contamination. During model development, it was checked graphically 
that virtual cows acted similarly to real cows, through a visual cleansing constant process 
(Augusiak et al., 2014).

Adaptation and objectives. During simulation, each cow adapts its grass intake rate and 
grass search pattern according to grass offer and time of day. The random grass search is 
carried out in areas with greater and better forage offer. Therefore, cows’ objective is to 
maximise grass intake, while following typical behaviour observed in gregarious animals.

Perception and interaction. Each cow perceives its neighbours to determine the distance and 
orientation of animals around them. This information is used to update its position in each 
simulation cycle. To find areas with greater and better forage offer, each animal subgroup 
has access to the DM and damage score in the grass square metres around them.

Stochasticity. Interactions between cows, and between cows and grass area are moderately 
stochastic, given that the grazing decision and the grass intake rate are defined using 
pseudo-random numbers generated by each cow in each simulation cycle. These numbers 
are generated within ranges reported in literature or observed at the Universidad de 
Antioquia dairy farm. 

Details

Initialization. The simulation area is 2,500 m2. To execute our ABM, users must define the 
grass distribution percentages in the prairie (% High, Medium and Low grass supply) and 
the mean forage supply in each grass level (g of gDM/m2). Users must also enter cows’ 
characteristics (i.e. the minimum and maximum milk yield and the number of cows). 
These values are used to generate and distribute square metres with high, medium or low 
grass supply into the grazing area, and to calculate grain intake and milking time per cow. 
Also, the minimum and maximum grass intake rate (g of gDM/min) must be entered by 
users. All square meters are initialised with zero damage score, and its height and colour 
depend on its grass offer.

Although each user can initialise our ABM according to their needs, some reference values 
are proposed for minimum and maximum grass intake rate (g of gDM/min). To obtain 
these reference values, the grass intake rate was determined as follows.

In the Universidad de Antioquia dairy farm, the grass intake rate (g of gDM/min) was 
determined in five cows, which were housed eight weeks in cubicles and fed ad libitum 
with fresh Kikuyo grass (Pennisetum clandestinum) and grain, according to individual 
requirements. The grass was offered twice a day, at 07:00 and 15:00 h. The grain was 
offered during milking (06:00 and 14:00 h). The grass intake rate was calculated, during 
two consecutive days, by simply dividing the daily grass intake by the daily grass intake 
time. To do this, the daily grass intake (g of gDM/day) was measured taking into account 
the grass offered and rejected. The daily grass intake time (min/day) was recorded using 
the accelerometer methodology proposed by Andriamandroso et al. (2017). For this, each 
cow was equipped with a mobile phone attached to the back of its head. In each device, 
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an Android application was installed to record the values of X, Y and Z axes from the 
accelerometer contained in each unit. This methodology is based on the assumption 
that animal’s head position is an intake indicator and that this position can be clearly 
determined using acceleration changes recorded by an accelerometer placed on the 
animals’ head or neck. As indicated by Andriamandroso et al. (2017), previous observations 
were made to identify which acceleration values indicate that the cow bowed its head 
to eat. The acceleration value changes were analysed in Excel software to determine the 
daily intake time in each animal (min/day).

Sub-Models:

Milking time: Each cow’s milking time is calculated according to the milking routine 
observed at the Universidad de Antioquia dairy farm. The milking speed is determined 
individually as minutes per litre of milk per cow.

Grain intake: The amount of grain eaten by each cow is calculated following the observed 
management at the Universidad de Antioquia dairy farm. In this farm, the cows eat one 
kilogram of grain for every four litres of milk produced. The milk yield of each cow is 
randomly generated between the minimum and maximum milk yield proposed by the 
model’s users.

Herd movement: The way in which the animals move on the grass area was simulated 
following the concepts proposed by Reynolds (1987) and the libraries developed by 
Srinavin Nair (2015). Reynolds (1987) developed a computerised model of coordinated 
animal movement, similar to a flock of birds or shoals of fish. This model basically consists 
of three very simple behaviours that describe how an individual manoeuvres depending 
on the positions and speeds of his closest neighbors, as well: a) Separation: move to 
avoid crowding of individuals at one point in the group, b) Alignment: turn to the average 
direction of nearby neighbours and c) Cohesion: locate in the average position of nearby 
neighbours. 

Grass search. During simulation, each subgroup of animals searches a grass area with a 
high grass supply. Every time that the subgroup of animals finds a better area to graze, all 
animals into the group moves towards this new area to perform random grass search and 
to start defoliation.

Defoliation. The grass intake rate (g of gDM/min) is not constant. This rate depends on grass 
supply (g of gDM/m2) in the square metre selected by each cow to graze. The grass intake 
rate is an interpolation between the minimum and maximum grass intake rates proposed 
by the model’s user. 

Model verification. To verify that intake dynamic simulated by our ABM corresponds to 
real grazing cows’ behaviour, indirect observations of grazing cows were made at the 
Universidad de Antioquia dairy farm. The daily grazing dynamic of 24 cows was determined 
using the accelerometer methodology proposed by Andriamandroso et al. (2017), described 
previously.

Results and discussion

Milking time and grain intake. Observations made at the Universidad de Antioquia dairy 
farm allowed to determine that milking time per cow is 0.89 ± 0.2 minutes by litre of milk 
produced. The 61.5 ± 3.7% of daily milk yield per cow is obtained in the morning milking. 
The ratio between milk yield and grain intake (L/kg) is four. 
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Table 1. Grass dry matter intake in indoor cows

Variable N Median Standard 
deviation Min Max

Intake time (min/day) 10 383.1 74.8 300 501

Grass dry matter intake (kg of gDM/day) 10 9.9 1.3 7.5 11.4

Grass intake rate (g of gDM/min) 10 26.8 5.6 20 36.2

Grass intake rate in indoor cows. Table 1 shows median, minimum and maximum grass 
intake rate and grass intake time observed in indoor cows at the Universidad de Antioquia 
dairy farm. The grass intake rate and the grass intake time observed in indoor cows was 
26.8 ± 5.6 g of gDM/min and 469 ± 73 min/day, respectively.

Model verification. Figure 1 presents a graphical comparison of the mean intake dynamic 
recorded using accelerometers in grazing cows, and the mean intake dynamic simulated 
by our ABM. It is observed that our ABM describes appropriately the cows’ intake behaviour 
observed in grazing cows, where cows have a high grass intake after each milking and very 
low grass intake during the night.
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Figure 1. Intake dynamic (min/h) observed in grazing cows and simulated

Figure 2. Model graphical user interface

The ABM developed in this work includes the effect of grass supply on grass intake rate and 
grass rejection that animals can have when grass is contaminated with faeces or trampled. 
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In addition, our ABM mimics the effect of time of day on grass intake dynamic observed in 
grazing cows. The analysis of grazing dynamic at the Universidad de Antioquia dairy farm 
demonstrated that there is a clear relationship between sunset time and grazing cessation in 
grazing cows, with a very few cows grazing at night. In addition, as observed by some authors 
(DeVries et al., 2003), our ABM simulates two large grazing peaks which occur immediately 
after milking (Figure 1). During model development, it was considered as fundamental that 
Colombian dairy cows are grazing animals, which have a clearly defined intake pattern. 

The grass intake time observed in grazing cows at the Universidad de Antioquia dairy farm 
(469 min/day) and the simulated grazing time in our ABM (463 min/day) are similar to 
those reported by Pérez-Prieto & Delagarde (481 min/day, 2012). Some authors (Gregorini, 
2012) explain the intake dynamic based in diurnal fluctuations in intensity of light which 
stimulates a circadian release of neuropeptides and hormones, providing a signal to start 
or stop grazing. The grass intake estimated by our ABM (15.6 ± 2.3 kg gDM/day) is similar to 
those observed by other authors in Colombia. Diaz et al. (2017) found that grass intake in 
dairy cows was 13 ± 2.9 kg/cow/day. Several authors (Mojica et al., 2009; Marín, 2013; Rojo, 
2015) report similar values   of grass intake in Colombian dairy cows. 

Regarding grass intake rate, in a meta-analysis that included 66 articles, Pérez-Prieto & 
Delagarde (2012) found a minimum and maximum grass intake rate of 16.2 and 44.8 g of 
gDM/min in dairy cows, respectively; with average values   between 26.3–29.7 g of gDM/min. 
Ruiz-Albarrán et al. (2012) found an average grass intake rate between 20.6–30.5 g of gDM/
min; which is a value range similar to observed values in indoor cows at the Universidad 
de Antioquia dairy farm (26.8 ± 5.6 g of gDM/min). These results could indicate that 
grass intake rate is not substantially affected by grass supply; since the amount of grass 
ingested in each bite apparently is very similar when cows consume cut grass, and when 
cows must cut the grass by itself during grazing.

Conclusions

This paper proposed an Agent-Based Model to simulate intake dynamic in grazing cows. 
The results indicate the enormous potential of this model to simulate complex farm 
processes, especially in grass-based systems.
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Abstract

As post-weaning piglets have a weak immune system, this study is focused on weaned 
piglets. The main goal is to develop automata to collect several individual data on the 
behaviour and technical performances of piglets. We set up on IFIP’s (French pig and pork 
institute) experimental farm in Romillé (France), six pens of 17 piglets with three types 
of automata: a connected feeder, a connected drinker and an automatic weighing station 
located in front of the drinker. Each automat uses radiofrequency identification to detect 
the individual ear tag of the piglets. For the weighing station, we compared the average of 
the individual data from the automatic device to manual individual weighing to assess the 
accuracy. The average difference was less than 1.5% and non-significant when compared 
within a given weight range (light/medium/heavy). Previous studies illustrate the 
importance of weight in correctly understanding piglets’ feeding and drinking behaviour. 
On average, individual water consumption was 10.5% (± 5.2) and for feed was 4.6% (± 1.7) 
of body weight. For both feeding and drinking there was a large inter and intra individual 
variability: approximately 30-40% for water and 20-30% for feed. After development, 
optimisation and tests of these automata, all the data were collected in one database. 
Further research, in progress, is needed to utilise these data collection techniques in the 
development of an individual early diseases detection for piglets.

Keywords: weaned piglet, individual data, drinking behaviour, feeding behaviour, weighing 
station

Introduction 

In pig production, as in poultry, rabbit, or calf production, antibiotic treatments are mainly 
administered orally. Treatments via the food, largely predominant a few years ago, are 
decreasing in pig farms (66.9% of treatments in 1999, 47.2% in 2009 and 35.8% in 2013), 
while treatments via drinking water are increasing: 21.9% of treatments in powder form 
and oral solutions in 1999, 40.3% in 2009 and 51% in 2013 (ANMV, 2014). In this context, 
respect of the dosage for treatments depends on the quantity of water and feed consumed 
by animals. In general, calculation of antibiotics doses given to a piglet is based on defined 
constants for a healthy animal: feed consumption around 4 – 5% of body weight/day and 
water consumption close to 10% of body weight /day. However, many parameters can 
modify these levels of consumption and therefore create variation in antibiotic dosage to 
be sure that each animal has good treatment: level of social competition, type of drinker 
or trough (Li et al., 2005; Turner et al., 1999), emergence of pathologies like hyperthermia, 
dehydration, apathy (Pijpers et al., 1991), inter and intra variability of each animal (healthy 
or not). In the literature, most of the studies work on it but for a group of animals (Brumm 
et al., 2000; Kashihaa et al., 2013; Villagra et al., 2007). One way to answer this issue is to 
work on the individual scale. 

To achieve it, the first goal of this study is to develop and validate automata to collect daily 
and individual body weight, drinking and feeding behaviour of piglets. As post-weaning 
piglets are sanitary weak, this study is focused on weaned piglets.

This type of automata can offer huge opportunity to manage animals’ health status. 
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Several authors showed the link between automatic detection changes of water uses and 
welfare monitoring tools (Madsen and Kristensen, 2005; Madsen et al., 2005) or emergence 
of pathologies (Brumm, 2006) at a batch level. Ahmed et al. (2015) also showed the relation 
between feed intake, water consumption and occurrence of stress or disease.

The second goal of this study is to build and normalise a database, in which it is possible 
to work on the link between the individual health status of animals and data extract from 
these automata.

Material and methods

Periods of trails

Trials were conducted on the experimental station of Ifip in Romillé (Brittany, France) with 
two steps: 

•	 Validation period: between 2016 and 2018, eight trials were implemented to develop 
automata: connected drinker, connected feeder and automatic weighing station. 
The first ones were used to fix electronic and mechanical issues on devices. The last 
ones were used to validate the good working condition of automata to be sure that 
they didn’t affect piglets’ performances (animals on automata VERSUS animals on 
traditional equipment) and to measure accuracy of the data collected. 

•	 Operational period: two trails were implemented from 28 July to 21 August 2018 (the last 
four weeks of the post-weaning period) and from 13 September to 23 October 2018 (on 
the entire post-weaning period).

The article is particularly focused on the operational period.

Automata to collect individual data on piglets

Automata have been developed with a French firm specialising in animal livestock 
housing (Asserva). The main goals were to isolate and identify pigs in front of each device, 
then to record their individual data on a computer. They used RFID (Radio Frequency 
IDentification) antenna to detect the electronic and individual ear tag of each pig. Each 
automat had a width calculated to have only one piglet inside at the same time.

•	 Automatic weighing station: It is connected to the drinkers in a single stall made 
from a stainless steel box hanging from two force sensors (precision ± 10 g). A side 
partition protects the weighing system and prevents disturbance by other animals. 
The connected drinker and the weighing system use the same radiofrequency 
identification antenna located behind the drinking bowl to check the ear tag of the 
animal in the stall. Every time the RFID antenna detects a piglet, a weight is recorded.

•	 Connected drinker, Aqualab, is composed of an antiwastage bowl drinker surrounded 
by shoulder partitions, a precision water meter (± 0.01 l for piglets). This automat 
can record water quantity used and the duration of each visit. The amount of water 
recorded includes real consumption of pig and water wastage. This last is considered 
to be like a part of the natural drinking behaviour of a pig. 

•	 Connected feeder, PigInsight, is composed of a conical trough with a specific sensor at 
the bottom to detect dry feed, shoulder partitions and a motor equipped with a feeding 
screw overcome by a feed hopper. The sensor inside the trough pilots the feeding 
distribution. When a piglet is detected by the RFID antenna, either the sensor detects 
feed in the trough thus the piglet should consume it before the next distribution or 
there is nothing in the trough and a feed dose of 10 g (± 2 g) is delivered.
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Figure 1. Connected drinker with an automatic weighing station, a pen of weaned piglets with 
automata, entrance of the connected feeder (from the left to the right)

Housing conditions 

After weaning, 102 piglets, 28 days old, were allocated in six pens of 17 animals. Three 
weight groups were created with two pens each (heavy, medium and light with respectively 
a mean weight around 11.1 kg, 9.1 kg and 7.0 kg). Each pen had one connected drinker 
(Aqualab) with an automatic weighing station and two connected feeder (PigInsight). 

The water flow was adjusted to one litre/minute and it was checked every 14 days and 
adjusted if necessary. The daily water consumption of the six pens was also recorded 
manually. Piglets were individually weighed every seven days with a mobile weighing 
station located in the room’s corridor to check accuracy of the automatic system. Once a 
week, one feeding dose of 10 g (± 2 g) was collected to each connected feeder and weighed 
on a precision scale. This operation was repeated five times per automate. If there was too 
much difference between the real weight and the theoretical dose of 10 g, the operator 
modified the feeding screw speed.

Pens were warmed at 28 °C at the beginning of post-weaning and temperature dropped 
progressively to obtain 24 °C at the end of the trial. The housing conditions were identical 
for these trails.

Animal’s health status

Each day, animals were observed by the station’s staff to assess their health status. There 
was a specific focus on the most frequently observed diseases in pig barns: digestive 
(especially diarrhoea), locomotive (especially gait and lameness) and respiratory (especially 
number of cough) disorders. In addition, individual observations on the general health 
status of piglets were done by an external operator twice a week. For each disorder, a note 
is given related to the severity: 0 is linked to a healthy piglet, 1) the animal begins to be 
sick (digestive: soft faeces; locomotive: change of gait; respiratory: less than three coughs 
during 20 min), 2) the animal is clearly sick (digestive: liquid faeces; locomotive: leg not 
resting on the ground; respiratory: more than three coughs during 20 min). This evaluation 
was based on a rating grid inspired by the Welfare Quality approach. In addition, all 
remarks relating to veterinary interventions were recorded.

Selection of healthy animals and creation of the data base

Thanks to individual observations of piglets, a daily sanitary score was calculated for each 
piglet: it is the addition of three notes (one for each type of disorder: digestive, locomotor 
and respiratory). For each period studied, individual daily scores were added per piglet 
which is called the health indicator. If the health indicator was below or equal to one, the 
piglet is considered as a healthy animal, otherwise, the animal is considered sick.
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On the post-weaning period of five weeks, three phases were analysed separately: Phase 
1, the two first weeks after weaning; Phase 2, the three last weeks of the post-weaning 
period; Phase 1 + 2, the entire period of post-weaning.

On each phase, a health indicator was calculated for each piglet and only healthy animals 
were kept for analyses.

Statistical analyses

The data analysis by descriptive statistics was carried out under R version 3.3.1. The 
comparison of water and feed consumption between pens according to their equipment 
(traditional drinker or trough VS connected system) was carried out using a non-
parametric test (Kruskal-Wallis). The accuracy of the automatic weighing station was 
done with Wilcoxon test.

Results and discussion

Data extracted from automatic weighing station

During the validation period, between 2016 and 2018, a specific trial has been done to test 
the accuracy of the automatic weighing station. Fifty one piglets were weighed with mobile 
weighing station, considered as a reference, and these weights were compared to 34 173 
weights (51 piglets * 35 days of trial * about 20 visits per day and per piglet on the automatic 
weighing station) obtained thanks to weighing stations in front of each connected drinker. 
The gap between automat and control weights was on average 1.5% (Table 1). At 56 days 
of age, the gap was close to 3% and approached the significance threshold. However, on 
average, the daily weighing data is an average of about fifteen values taken at different 
times of the day. Therefore, this value was considered as precise and exploitable. In this 
study, daily weights were used to express the water and feed consumption of piglets per 
kilogram of body weight.

Table 1. Weight of piglets (kg) with the automatic weighing station and with manual weighing 
station (reference)

Age of piglets Automat Control p-value

35 days 13.1 (± 1.8) 13.0 (± 1.9) 0.84

42 days 17.0 (± 2.8) 16.7 (± 3.1) 0.09

49 days 22.3 (± 2.7) 22.2 (± 3.0) 0.29

56 days 26.8 (± 2.4) 27.6 (± 3.3) 0.06

Data extracted from connected drinker

Between 2016 and 2018, the validation period, several trails compared water consumption 
of piglets according to their drinker: a traditional bowl drinker, a connected drinker with 
shoulder partitions and a connected drinker with an automatic weighing station. In pen of 
17 piglets, the average water consumption did not differ significantly according to drinking 
equipment. Therefore, shoulder partitions or weighing station did not seem to interfere 
with piglets’ access to drinker.

On operational trials, in July and September, results were close to the study of Rousselière 
et al. in 2017. On the entire period of post-weaning, water consumption of piglets was 
close to 10 % of body weight (10.5 in this study) but in fact, it was not constant. As shows 
in Table 2, at the beginning of the post-weaning period, Phase 1, it was close to 8% of 
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body weight and it increased to 11 % of body weight during the Phase 2. The number 
of visits to the drinker was constant during the trial and between 25–30. However, the 
water consumption per visit increased. During the Phase 1, 56.4 ml per visit was recorded; 
however during Phase 2, 115 ml was recorded. This difference is most likely due to two 
factors: 1) the piglets were larger during Phase 2; 2) Phase 1 piglets were most likely in a 
distressful situation (anorexia, thermal comfort, feeding transition…) and discovery of a 
new environment after weaning.

Table 2. Drinking behaviour of piglets during the post-weaning period

Parameters

N = Number of piglets with 
a heathy indicator ≤ 1

Nb D = Number of days

July 2018

Phase 2

N = 69

Nb D =22

Sept 2018

Phase 1

N = 85

Nb D =13

Sept 2018

Phase 2

N = 71

Nb D =24

Sept 2018

Phase 1+2

N = 61

Nb D =37

Daily 
consumption

Average l/kg of 
body weight (BW)

0.111 0.080 0.113 0.105

Standard 
deviation

0.061 0.053 0.046 0.052

Number of visits 
(with or without 
consumption)

Average 30 24 27 25

Standard 
deviation

8 7 8 6

Water consumed 
per visit

Average (ml) 110.0 56.4 122.8 106.8

Standard 
deviation

114.8 57.8 118.6 110.5

Table 3 shows great inter-individual variability since the coefficient of variation (CV) 
calculated from the average of the individual average values obtained per piglet was 
36.9% on the entire period of post-weaning. It was even higher during the Phase 1 with 
42.0% before to decreased in Phase 2 with 26 -28 %. On intra-individual scale, the daily 
consumption expressed per kilogram of BW was also very variable, the coefficient of 
variation of the individual measurements being on average 38.5% (± 11.7). Again, this 
variability was higher during Phase 1 than Phase 2 with respectively an average CV of 
45.8–27-28%.

Data extracted from connected feeder

Between 2016 and 2018, the validation period, several trails compared feed consumption 
of piglets according to their trough: a traditional collective trough and an individual 
connected feeder. In pen of 17 piglets, the average feed consumption did not differ 
significantly according to feeding equipment if there were two connected feeders per pen. 
With only one connected feeder per pen, piglets with a connected feeder had significantly 
poorer growth performance.
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Table 3. Variability of drinking behaviour of weaned piglets

Scale

Parameters

N = Number of 
piglets with a 
heathy indicator ≤ 1

Nb D = Number 
of days

July 2018

Phase 2

N = 69 
Nb D =22

Sept 2018

Phase 1

N = 85 
Nb D =13

Sept 2018

Phase 2

N = 71| 
Nb D =24

Sept 2018

Phase 1+2

N = 61 
Nb D =37

Inter - individual

Average1

l/kg of body 
weight (BW)

0.111 0.080 0.113 0.105

Standard 
deviation2 0.031 0.034 0.030 0.039

Coefficient of 
variation3 (CV) %

28.1 42.0 26.8 36.9

Intra - individual

Average CV4 % 28.3 45.8 27.4 38.5

Standard 
deviation of CV5 9.1 17.7 9.5 11.7

1= Average of the individual averages of each piglet; 2 = Average of the individual standard deviation of each piglet; 
3 = 2/1 each piglets; 4 = Average of individuals CV of each piglet; 5 = Standard deviation of individual CV of each 
piglet

Table 4. Feeding behavior of piglets during the post-weaning period

Parameters

N = Number of piglets with a heathy 
indicator ≤ 1

Nb D = Number of days

July 2018

Phase 2

N = 69 
Nb D =22

Sept 2018

Phase 1

N = 85 
Nb D =13

Sept 2018

Phase 2

N = 71| 
Nb D =24

Sept 2018

Phase 1+2

N = 61 
Nb D =37

Daily 
consumption

Average kg/kg of 
body weight (BW)

0.051 0.038 0.051 0.046

Standard 
deviation

0.012 0.020 0.014 0.017

Number of visits 
(with or without 
consumption)

Average 47 24 48 41

Standard 
deviation

17 8 16 13

Feed consumed 
per visit 

Average (g) 23.3 16.3 21.9 20.3

Standard 
deviation

26.7 13.6 25.0 22.2

Over the entire post-weaning period, piglets feed consumption was 4.6% of body weight. As 
shown in Table 4, the beginning of the post-weaning period, Phase 1, the feed consumption 
was slightly lower, 3.8% of body weight, than during Phase 2, 5.1% of body weight. The number 
of visits and the feed consumption per visit increased with the age of the animal changed as 
the piglets grew (Phase 1, piglets ate an average of 13.6 g per visit and had 24 feeder visits; 
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Phase 2, piglets ate an average of 25-26 g per visit and had 47-48 feeder visits per day).

Table 5 shows great inter-individual variability since the coefficient of variation (CV) 
calculated from the average of the individual average values obtained per piglet was 29.9% 
on the entire period of post-weaning. It was even higher during the Phase 1 with 38.5% 
before to decreased in Phase 2 with 18-20%. On intra-individual scale, the daily consumption 
expressed per kilogram of BW followed exactly the same trend, the coefficient of variation 
of the individual measurements being on average 30.6% (± 9.5) and it was higher during 
Phase 1 than Phase 2 with respectively an average CV of 40.7% and 18-20%.

Table 5. Variability of feeding behavior of weaned piglets

Scale

Parameters

N = Number of piglets with 
a heathy indicator ≤ 1

Nb D = Number of days

July 2018

Phase 2

N = 69

Nb D =22

Sept 2018

Phase 1

N = 85

Nb D =13

Sept 2018

Phase 2

N = 71

Nb D =24

Sept 2018

Phase 1+2

N = 61

Nb D =37

Inter – 
individual

Average1 kg/kg of body weight (BW) 0.051 0.038 0.051 0.046

Standard deviation2 0.010 0.014 0.009 0.014

Coefficient of variation (CV)3 % 20.0 38.5 18.2 29.9

Intra - 
individual

Average CV4 % 20.1 40.7 18.3 30.6

Standard deviation of CV5 3.7 14.6 7.1 9.5

1 = Average of the individual averages of each piglet; 2 = Average of the individual standard deviation of each 
piglet; 3= 2/1 each piglets; 4 = Average of individuals CV of each piglet; 5 = Standard deviation of individual CV of

Conclusions

After several months of development, the connected drinker equipped of a weighing station and 
the connected feeder offer huge opportunities to obtain individual data on the natural behaviour 
of weaned piglets. On average, results are really close to the bibliography with 4-5% and 10% 
of the body weight for the consumption of feed and water. However, it hides an important 
variability both to inter and intra individual scale and according to piglets’ age (Phase 1, Phase 2 
or the entire period of post-weaning). Even on healthy animals, this variability on feed and water 
consumption is regularly close to 30-35 %. It will be probably more important on sick animals 
which can modify their natural behaviour. The next step is to check whether early detection 
of diseases is possible by individual monitoring of weight gain, water and feed consumption of 
animals. At this moment, trials are in progress on the experimental farm of Romillé, to develop 
tools on this concept by using artificial intelligence like machine learning. Several benefits are 
expected : i) rapid management of sick animals would prevent spread of disease and reduce 
total number of treated animals; ii) with more reactive treatment, pathologies or infections 
could also be more easily eliminated, with smaller amounts of antibiotics; iii) a lower severity of 
health disorders increases welfare and performances of animals.
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Abstract

As dairy herd sizes continue to increase, the demand for digital solutions for monitoring 
the cows’ health and welfare grows. Health disorders result in a change of behaviour 
which can be detected automatically by various systems for health monitoring in dairy 
cows available on the global market. For animals kept indoors, those systems reach high 
levels of accuracy and precision in detecting health disorders. On the contrary, for grazing 
situations the systems’ performance is poor. In order to develop a system that detects 
the behaviour of grazing dairy cows and thereby identifies health disorders reliably, a 
large amount of behavioural data is needed and further factors influencing the behaviour 
of cows on pasture (e.g. temperature, precipitation, wind speed, available biomass, etc.) 
have to be measured. Therefore, grazing dairy cows were equipped with a sensor system 
attached to a collar, containing a three-dimensional accelerometer. The accelerometer 
recognised the cow’s head and neck movements which are typical for each behavior (e.g. 
lying, grazing, ruminating). To assign the actual behaviour to the sensor data, the animals 
were recorded with cameras at the same time. Furthermore, climate data as well as bio 
and performance data of the animals were collected to allow the generation of algorithms 
for an automated recognition of animal behaviour. First results showed that the chosen 
methods provide a sufficient amount of data for the successful development of algorithms. 
After the algorithms are finalised, an evaluation of the system’s accuracy and precision 
can be conducted.

Keywords: health monitoring, behaviour monitoring, dairy cows, pasture grazing

Introduction

In 2008, a German dairy farm had 42 milking cows on average, while in 2018 the average 
number of animals per farm was 65 (Statistisches Bundesamt, 2019). A similar development 
can be observed for dairy farms in Europe (Augère-Granier, 2018). With larger herd sizes, 
the demand for digital solutions for enhanced monitoring of the animals’ health and 
welfare increases (Tullo et al., 2016). Health disorders affect the behaviour of animals. By 
monitoring the behaviour continuously, the daily time spent on each behavioral pattern 
(e.g. grazing, lying, and ruminating) can be observed and changes can be detected. Changes 
in behaviour caused by health disorders often occur a few days before clinical symptoms 
appear (Stangaferro et al., 2016a, 2016b, 2016c). The continuous monitoring of the animals’ 
behaviour cannot be realised by manpower, therefore digital solutions, such as monitoring 
systems containing different sensors (e.g. accelerometer, magnetometer) are needed (Tullo 
et al., 2016). Because of the earlier detection of health disorders by monitoring systems, 
the animal’s health can be restored more quickly. Expenses for medication and veterinary 
treatment and the financial loss, e.g. caused by milk yield reduction can be minimized. In 
addition, the pain related to health disorders can be reduced or avoided, which increases 
animal welfare. Various systems for an automatised monitoring of animal behaviour are 
available on the global market. For their application on animals kept indoors, high levels of 
accuracy and precision in detecting changes in behaviour caused by health disorders have 
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been reported (Reiter et al., 2018; Rutten et al., 2013). For grazing situations, the systems’ 
performance in detecting the correlating behavior is poor (Elischer et al., 2013). The aim of 
the project is to develop a monitoring system that detects the animals’ behaviour, its changes 
and thereby health disorders reliably in cows kept indoors in winter and on pasture in 
summer. To develop such a system, a large amount of behavioural data for the development 
of appropriate algorithms is needed, especially for grazing as the main behaviour on pasture. 
In addition, the factors which influence the animals’ behaviour on pasture (e.g. temperature, 
humidity, precipitation, wind speed, available biomass, etc.) are more extreme and variable 
than in a barn and have to be measured simultaneously to the behaviour monitoring in order 
to select relevant variables for developing sufficiently reliable algorithms.

Material and methods 

In order to collect the required behavioural data, two sets of behaviour observations were 
conducted in the late grazing period 2018 (September and October). The observation took 
place on a farm in Upper Bavaria, Germany, with 44 Simmental dairy cows kept on pasture 
with free access to a loose barn. The cows were milked twice daily in a herringbone milking 
parlor. Six clinically healthy cows were selected, dependent on lactation number (median 
lactation number: 3; minimum: 2; maximum: 4) and equipped with the prototype of a 
monitoring system developed by Blaupunkt Telematics GmbH. The monitoring system 
contained a three-dimensional accelerometer recognising the cows’ head and neck 
movements with a frequency of 10 Hz. At the same time, the animals were recorded with 
cameras (GoPro Hero5) for six hours per day from 10 am to 4 pm. Besides those datasets 
consisting of sensor data generated by the monitoring system and the video recordings, 
different factors that possibly influenced the animal behaviour were recorded. A weather 
station measured air temperature, humidity, precipitation, wind speed and global 
radiation with 0.1 Hz throughout the observation period at a representative point on the 
pasture. Furthermore, information concerning the animals’ bio and performance data was 
recorded (Table 1).

Table 1. Bio and performance data of the observed cows 

Cow Age (a) Number of 
lactation (n)

Last calving 
(dd/mm/yy)

Calving 
interval (d)

Average milk 
yield (kg*a-1)

1 6 4 25/01/18 332 7,132

2 5 3 26/02/18 328 5,230

3 5 3 17/12/17 329 5,347

4 5 3 22/01/18 353 6,338

5 4 2 29/01/18 352 6,811

6 5 3 11/12/17 319 4,882

After the observations, video data were analysed. Based on an ethogram (Table 2), the 
behaviour of each observed animal was determined at every point of time. Those datasets 
are the base for the development of algorithms for an automatic detection of the animals’ 
behaviour in the ongoing project. In addition, behavioural data from videos allowed a first 
analysis of the cow’s behaviour.
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Table 2. Ethogram of a cow kept on pasture

Item Definition

Main activity

Grazing
The cow bites off, chews and swallows the grass and moves forward 
with bowed head.

Walking The cow is moving forward with head raised higher than the carpal joint 
and moving two or more steps in a direction.

Standing The cow’s body is supported by at least three limbs.

Lying
The cow’s body isn’t supported by any limb; sternum and/or abdomen 
are in contact with the ground.

Optional activity Performed in addition to main activity.

Chewing
The cow moves its jaw in grinding movements without having 
regurgitated before.

Ruminating The cow regurgitates chews and swallows the cud.

Comfort behaviour The cow scratches (claw, fence post…) or licks itself.

Social behaviour The cow interacts with another cow (nosing, rubbing, licking, fighting…).

Explorative behaviour The cow sniffs or licks an object.

Drinking The cow’s muzzle is in the trough.

Urinating The cow bends its back and eliminates urine.

Defecating The cow bends its back and eliminates faeces.

Idle time The cow is not visible on the video.

Results and discussion

An analysis of two observation days gave a first impression on the distribution of the 
different behavioural patterns throughout the observed time span and the influence of air 
temperature and humidity on the behaviour. On day 1 (September) the weather station 
measured an average temperature of 25.7°C (±2.2) and an average humidity of 39.2% (±9.0) 
during the observation time; on day 2 (October) average temperature was 13.9°C (±0.6) 
and average humidity 79.4% (±4.1), respectively. To evaluate the combined influence of 
air temperature and humidity the Temperature-Humidity-Index (THI) according to Thom 
(1959) was used. The average calculated THI was 57 (±1) on Day 2 which is categorised as 
no heat stress. On Day 1 the THI was 70 (±2) on average in the first three observation hours 
which is categorised as no heat stress as well, whereas the THI was 73 in observation hour 
five and six (Table 3) which is categorised as mild heat stress. The THI is a reliable method 
to evaluate the rectal temperature and thereby the heat stress in dairy cows, although, 
adding more parameters such as wind speed and solar radiation increases the correlation 
(Dikmen and Hansen, 2009). 
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Table 3. Average temperature, humidity, THI, wind speed and solar radiation on Day 1 per 
observation hour

Observation 
Hour

Temperature

(°C)

Humidity

(%)
THI Wind speed 

(m*s-1)
Solar radiation 

(W*m-2)

1 22.1 51.57 68 1.3 585.0

2 24.3 45.62 70 1.0 667.8

3 25.0 42.88 71 0.9 713.6

4 26.5 38.87 72 0.8 700.2

5 27.7 29.38 73 0.8 643.3

6 28.2 27.38 73 1.2 527.2

Table 4. Average temperature, humidity, THI, solar radiation and wind speed on Day 2 per 
observation hour

Observation 
Hour

Temperature

(°C)

Humidity

(%)
THI Wind speed 

(m*s-1)
Solar radiation 

( W*m-2)

1 12.9 85.6 55 2.4 176.1

2 13.6 83.0 57 2.2 265.1

3 14.0 79.8 57 2.4 210.8

4 14.2 77.1 58 2.6 274.5

5 14.2 76.9 58 2.6 212.6

6 14.7 74.8 58 1.8 328.6

Figure 1 shows the duration of the main activities (lying, grazing, walking, and standing) 
for each cow on both observation days. Assessing the main activities in general, all animals 
spent less time lying and more time grazing, walking and standing on Day 1 compared to 
Day 2. On average 0.74 h (± 0.57) were spent lying on Day 1 and 2.25 h (± 0.71) on Day 2. 
These findings correspond to results of other studies on the influence of climate on lying 
and standing time of dairy cows (Allen et al., 2015; Cook et al., 2007). Solar radiation is an 
important factor influencing the heat stress of dairy cows as body temperature is lower in 
cows that have access to shade; although reducing solar radiation by offering shade does 
not influence the time spent grazing, lying or standing significantly (Tucker et al., 2008). 
Even though average solar radiation per observation hour was much higher on Day 1 
(Table 3 and 4), according to research reports there should not be an influence on the time 
spent grazing, lying and standing.
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Figure 1. Duration of main activities on observation Day 1 and 2 (definition of activities according to 
Table 2)

Also the distribution of ruminating on the behavioural patterns lying, standing and 
walking differs between the two observation days. The total average time spent ruminating 
amounts to 1.00 h on Day 1 and to 2.10 h on Day 2. On Day 1, 57% of ruminating was done 
while lying, 40% while standing and 3% while walking, whereas on Day 2 the behavioural 
pattern of ruminating was shown in 87% while lying, in 12% while standing and in 1% 
while walking. Other studies support that general rumination time is reduced by heat 
stress (Tapkı & Şahin, 2006; Karimi et al., 2015). As cows spend more time standing and less 
time lying when they are stressed by heat, ruminating while standing increased whereas 
ruminating while lying decreased on days with higher THI. To assess the total time per day 
spent ruminating observations would have to be extended to nighttime.

Figure 2 shows the time spent ruminating for each cow and observation hour on the 
two observation days. A certain daily rhythm and herd synchrony is apparent but differs 
between cows. On Day 1 all cows have a similar rhythm with most of the ruminating 
taking place in observation hours two to five and no ruminating in observation hour one 
and six. For Cow 2 and 5 there are two peaks of rumination time, while there is only one 
peak for Cow 1, 3, 4 and 6. On Day 2, Cow 4 and 5 have similar rhythm with all of the 
ruminating happening in observation hours one, two and six, whereas Cow 1, 2 and 3 
also ruminated in observation hour five. Cow 6 only ruminated in observation hours four 
and five which results in a higher peak and a different rhythm. Herd synchronisation is a 
result of various environmental factors, e.g. weather conditions, management and social 
factors (Benham, 1982) which have to be considered to fully evaluate and understand herd 
synchrony (Stoye et al., 2012). 
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Figure 2. Rumination time per cow and observation hour on Day 1 and 2 (observation hour one 
started at 10:22 am and observation hours six ended at 4:22 pm)

Conclusions

For the development of algorithms for a monitoring system suitable for grazing situations, 
THI is a factor that has to be taken into account. On days with high temperatures the 
time spent lying reduces (Cook et al., 2007). To determine the extent of THI’s influence, 
more observations on days with different temperatures have to be performed. Also other 
climatic parameters (e.g. wind speed and solar radiation) have to be considered.

The variation between different animals seems to be important for developing reliable 
algorithms. Even among healthy cows there was a wide range between the duration of the 
different behavioural patterns. To identify changes in behaviour caused by health disorders 
or heat, the behaviour of each cow should be compared to its normal behaviour instead 
of comparing it to the average herd level, which is one way used by the industry (personal 
communication with smaXtec animal care GmbH, 2018, EuroTier Hannover). Therefore, 
the algorithms used in the monitoring system should be able to perform machine learning 
to adjust to each animal individually without having to record all factors influencing the 
individual behaviour (e.g. milk yield, age, social rank). 

Enough data sets, consisting of behaviour and sensor data, were generated by the chosen 
methods to develop suitable algorithms for the main behavioural patterns in healthy 
cows. Following this, the algorithms have to be validated by further observations and to 
detect changes in behaviour caused by health disorders, behaviour and sensor data from 
days surrounding a disorder in the animals’ health (e.g. lameness, mastitis) have to be 
collected.
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Abstract

Along with the advancement on livestock industry in South Korea, problems concerning 
the maintenance of micro-climate inside the facility arise. These problems were further 
intensified when airflow is taken into consideration. The airflow is the main mechanism of 
internal environmental distribution such as gas, temperature, humidity and dust. However, 
this parameter is invisible and difficult to predict and measure. Thus, many consultants 
as well as farmers have misunderstood and made wrong judgements on ventilation 
efficiency and internal airflow distribution. Therefore, it is essential to develop an 
educational material for the farmers to visually recognise micro-climate condition. In this 
study, aerodynamic approach was carried out using CFD (computational fluid dynamics) 
combined VR (virtual reality) technology. First, several research papers, reports, journals, 
and publications on livestock industry have been reviewed to identify major problems inside 
swine houses during hot and cold seasons. Then, open-source CFD was used for computing 
the selected problems and their solutions. These CFD computed results, such as airflow, 
temperature, humidity and gas, were applied to VR simulator for educating swine farmers. 
 
Keywords: virtual reality (VR), livestock, CFD, micro-climate

Introduction

Livestock facilities in South Korea have become larger and more automated to satisfy 
the demand of consumers. Enlargement of these facilities makes it difficult to keep the 
micro-climate uniform and suitable for growing pigs. Non-uniform micro-climate can 
result in poor environment causing stress to the livestock. These stresses could weaken 
immune systems of the animals and may result in death (Myer & Bucklin, 2007). Various 
field experiments have been conducted to determine the optimum micro-climate in swine 
(Myer & Bucklin, 2007; Wang, Zhang, Riskowski, & Ellis, 2002). Despite the effectivity of 
field experiments, there have been limitations such as: 1) time- and labour-consumption 
problems; 2) various environment condition changes and; 3) representation of measured 
values. Because of these limitations, obtaining results from field experiments is difficult. 
Recently, computational fluid dynamics (CFD) have been widely used for analysis of air flow, 
temperature, humidity, gas and dust concentration in various environmental conditions 
(Bartzanas, Kittas, Sapounas, & Nikita- Martzopoulou, 2007; Bjerg, Lee et al., 2002, 2004, 
2009; Seo, Lee, Kwon et al., 2009). However, despite its accurate and reliable output, 
livestock farmers and consultants cannot easily grasp the meaning of the computed 
results. Therefore, educational technology, which can effectively display the aerodynamic 
results, is necessary to help maintain optimum micro-climate in livestock facility.

Virtual reality (VR) technology that can offer virtual experience of invisible things has been 
developed and used in various fields. The VR industry gained its popularity in many fields 
of interest such as fire-fighting, entertainment and medicine. Through this technology, 
users can make better decisions since they can clearly understand and visualise the 
environment they are studying. 
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In this study, aerodynamic approach was carried out using CFD (computational fluid 
dynamics) combined with VR technology to create educational materials for target 
audience.

Material and methods

Experimental swine house

In South Korea, most mechanically ventilated nursery houses are constructed based on 
2009 Korean Standard of swine houses (Korea Pork Producers Association, 2009) whereas 
some of the fattening swine houses are naturally ventilated via winch curtain openings. 
Due to distinctive seasons in the country, maintaining the optimal environment is a 
laborious task for farmers. In this study, a standard nursery swine house was chosen as 
the experimental room for simulation. The size of the experimental room was 5.5 m wide, 
9.0 m long, and 2.4 m high, as shown in Figure 1.

Figure 1. Schematic diagram of the experimental nursery swine house

Computational fluid dynamics (CFD)

CFD is a numerical method for computing the behaviour of fluids by solving a nonlinear 
partial differential equation, such as the Navier-Stokes equation, based on the principles 
of mass conservation, Newton’s second law, and the first law of thermodynamics. CFD 
has been used as a powerful tool in the field of agriculture for micro-climatic analyses 
of livestock houses, as well as studies on the dispersion of livestock odour and aerosols 
(Launder and Spalding, 1974). CFD analysis is a technique that numerically solves 
equations based on the finite volume method (FVM), which consists of three design stages. 
In the pre-processing stage, the physical shape of the target area is designed, on which 
its grid mesh is generated. In the main processing stage, each governing equation for the 
physical phenomena is discretized and solved. A qualitative and quantitative analysis of 
computation results is conducted in the post-processing stage. Software discretizes and 
solves the Navier-Stokes equations for the conservation of mass, energy and momentum 
regarding the transport of fluid and energy.

Virtual Reality (VR)

Virtual reality (VR) refers to computer technologies that use virtual reality headsets to 
generate realistic images, sounds and other sensations that replicate a real environment or 
create an imaginary setting. At present, research using VR technology focuses on practical 
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application and industrialization based on ICT. The importance of realising micro-climate in 
livestock facilities is to maintain a suitable environment. Through this method, the invisible 
air and heat flow can be visualised. VR technology is a helpful tool to develop training 
materials for the farmers. An example of virtual reality headset is shown in Figure 2.

Figure 2. Equipment of virtual reality simulation (Usman, 2016) 

  
Development of CFD simulation model

Design-modeler software (Release 16.1, ANSYS Inc, U.S.A) was used to design the 3-D 
computational domain with meshes, including the specific configurations of the different 
components of the experimental swine house. The designed mesh domain, as shown 
in Figure 3, was exported to OpenFOAM (version 2.1.1), which is the main-solver for 
the numerical calculation which uses the CFD technique that solves the Navier-Stokes 
equations with Reynolds theory for all meshes in the computational domain. Based on 
previous study, validated model was used in this study (Seo et al., 2009; Kwon et al., 2016). 
Therefore, turbulence model was determined as RNG k-ε and grid size was determined as 
0.1 m based on grid independence tests. Presented in Table 1 is the statistical information 
of mesh model and the initial environment condition.

Table 1. Statistics data of mesh and environment condition

Contents Values

Model size 5.5 m width; 9.0 m length; 2.5 m height

Shapes of mesh Tetra, Multi-zone

Number of meshes 6,107,109

Orthogonal quality Min 0.219 > 0.01

Skewness Max 0.850 < 0.95

Outdoor temperature 264 K (cold season), 304 K (hot season)

Velocity outlet (total) 0.9 m/s (cold season), 15.5 m/s (hot season)

Pig surface temperature 313 K

 
Investigating main problems 

To investigate the main problems of swine houses, several research papers, reports, 
journals, and publications on livestock industry have been reviewed to identify major 
problems in swine houses during hot and cold seasons in South Korea. A total of 63 papers 
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and 14 journals were investigated and summarised to obtain the appropriate initial 
simulation environment conditions. The major problems of swine houses are divided 
into two categories. First, in cold season, there are cold stress, internal non-uniformity, 
insufficiency of ventilation rate, high gas and odour concentration, etc. Second, similarly 
during the hot season, major problems of swine houses include temperature stress, internal 
non-uniformity, excessive flow rate, rearing density, etc. Maintaining proper micro-climate, 
ventilation should be done properly according to the environment and seasonal changes. 
Since many farmers do not fully understand the air flow inside the livestock houses they 
fail to maintain the proper micro-climate during cold season causing the swine to lose 
their immunity. Similarly, in hot season, maximum ventilation is provided but excessive 
air flow can create a negative effect on swine. To solve these problems, aerodynamic 
approaches should be considered to control micro-climate in swine houses. 

Combination of CFD simulation and virtual reality

CFD calculation was performed based on the identified problem from the review. These 
results show air flow, gas concentration, and temperature distribution in the swine house. 
However, these CFD results may be difficult for farmers to understand. Therefore, it is 
necessary to create visualised educational materials based on the computed results. Since 
the exported data have a lot of grids, they could be overloaded on virtual reality simulation. 
A point has data like temperature, x-velocity, y-velocity, z-velocity, vector, humidity, NH3 
concentration in each grid. The points in the CFD domain are located at intervals of 10 cm. 
The position of points will be modified to use in virtual reality program. Each point will be 
streamlined to visualise the air flow. VR cold equipment shows satisfactory simulation of 
the micro-climate in the virtual reality simulation.

Results and discussion

CFD simulation results

One serious problem inside the nursery house during cold season is the direct inflow of 
cold air through side slot. Figure 3-(a) shows the temperature and direction of inflow air 
during this period. Difficulties on measuring the inside temperature at this stage may 
account to the non-uniformity of inside air temperature. The measure air temperature 
near the slots was about 274 K, while the average temperature of center was about 301 K. 
This temperature is far lower than the appropriate temperature for piglets. Also, as shown 
in Figure 3-(a), ammonia gas has accumulation increases as the distance from the side 
slots increases. This means that the fresh air could not reach any other part of the facility. 
These problems however can be solved by adjusting the air inlet angle. When the inlet 
angle is adjusted to 45 degrees at the side slot, the inflow air rises to the top and falls down 
to the piglet, as shown in Figure 3-(b). Since the risen air relatively mixes more with upper 
warm air, the difference between inflow air temperature and indoor temperature could be 
reduced to about 2-3 K. In cold season, however, the ventilation rate is low, so the inflow 
air does not stay long on top. The air temperature is still unsuitable and non-uniformity 
for nursery swine. Also, this modified structure cannot remove ammonia gas sufficiently. 
An alternative way would be to make a hole on the ceiling to avoid inflowing cold air and 
to improve internal uniformity (Figure 3-(b)). The cold air stays in the ceiling to warm up 
and it slowly flows out through small holes. In the hot season, the air temperature in the 
ceiling is lower than outside. It could help to prevent hot-air-inflow from outside directly. 
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Figure 3. Temperature (top row) and concentration of ammonia (bottom row) by using side slots (left 
column), modified side slots (middle column) and ceiling holes (right column) 

Design of simulator model

Representation of pig house equipment inside the building and the pig model should be 
properly made to accurately imitate the real-life scenarios. Realistic simulation depends 
on the number of polygon which is closely related with resolution of the model geometry. 
If the model has so many polygons, virtual reality equipment cannot drive the heavy 
simulation and may cause system lagging. In most cases, it can also cause dizziness to the 
user. On the other hand, low polygon model looks too simple and unrealistic. As shown in 
Figure 4, if 3D piglet model has a lot of polygon, the VR simulator requires more time to 
calculate. Thus, there is a need to modify the polygon data. Consequently, for VR simulator, 
middle poly model was chosen as a VR simulation model.

Figure 4. The comparative data of pig model quality (left) and the views of nursery house in virtual 
reality simulation (right)

Development of VR simulator

To combine CFD simulation data with VR simulator, it is necessary to determine same 
data point to display same contour or vector field in virtual reality simulation. In CFD 



Precision Livestock Farming ’19      719

simulation results, there are as many points as grid numbers. However, virtual reality 
hardware performance is not enough to fetch such huge data. If the data is too large, it 
will need a lot of frames for simulation. Eventually it causes motion sickness to the user. 
Therefore, the distance between points should be modified to reduce the total number of 
points. To find optimal distance, 0.05 m, 0.1 m, 0.15 m, and 0.2 m were used in the test. 
From this, it was found that 0.1 m was the best optimal distance. Each point has their own 
data like temperature, magnitude of velocity, direction, gas concentration, etc. In virtual 
reality, simulation, visualised air flow streamline, temperature, gas concentration was 
presented by contour and vector field.

In the next step, virtual reality simulator which provides micro-climate information for 
educating farmers, will be developed with various cases. In order to obtain sufficient data, 
various cases must be computed by CFD. Each case has a different structure, environment 
condition and ventilation system. Because each case takes considerable computation 
time, computation should proceed with the most typical problems.

 

Figure 5. Various examples of the application of virtual reality technology on fluid (Hynek et al., 2005; 
Kelly, 2016)

Conclusion

In this study, aerodynamic approach was carried out using CFD combined with 
VR technology to develop educational materials for general use. To investigate the 
representative problems inside the swine houses, related studies have been reviewed. 
Through the developed VR simulator, farmers and consultants can receive effective 
education in a three-dimensional VR space. This way they can experience the internal 
airflow and various environmental factors according to the ventilation type and 
operation. Users can also experience a variety of methods to improve the problems in 
VR simulator. Through the UI, considering the accessibility and convenience of the user, 
the VR simulator can be used variously such as farmers, consultants and students. 
For the future study, development of higher resolution simulator to the computer 
results must be prioritised with improved computer resources, higher quality model and 
structural configurations including the detail resolution could be considered. Also, more 
cases should be computed by CFD for various training situations. 
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Abstract

This paper introduces a portable rapid molecular diagnostics device concept based on 
unique and novel SAFTIR (Supercritical Angle Fluorescence and Total Internal Reflection) 
optical transducer technology. The device platform is compatible with numerous 
fluorescence assay chemistries for performing rapid tests on-site. The SAFTIR technology 
has been developed at VTT Technical Research Centre of Finland utilising our know-how in 
biosensors, integrated optics, electronics and biosensor prototyping. The uniqueness of the 
SAFTIR prototype device is based on the novel measurement principle involving integrated 
optical elements and waveguides on the disposable test strip and the specific reader device 
with proper interface optics. At concept level, SAFTIR has a lot of similarities with the 
Lateral Flow Assay (LFA) based rapid tests by consisting of an analyte specific disposable 
test strip and a special reader device. However, in technical details, there are significant 
differences and benefits, namely SAFTIR utilises surface-bound fluorescence detection 
principle ensuring high sensitivity with an excellent signal-to-noise ratio, fast response 
time and minimal sample matrix effects. In this paper, we present for the first time the 
integrated SAFTIR device concept, portable prototype and development aiming at smart 
farming applications. The initial application focus is on-site detection and quantitation 
of mycotoxins for both arable and livestock farming. The reference and starting point is 
a previously developed assay based on a recombinant anti-immunocomplex antibody for 
HT-2 mycotoxin detection. 

Keywords: molecular diagnostic, rapid test, fluorescence assay, mycotoxin, HT-2

Introduction

Typical successful adoption of sensors in agriculture relies on the robust, field-usable, 
connected and distributed devices, which should also provide high performance with low 
cost. The sensor data, and especially extracted information from the data to the farm 
management systems, should provide important value to farmers directly or through 
the companies providing services to them. The sensors and data sources for various 
biomarkers, contamination and pathogens are especially valuable in farm management 
by providing direct relation to actions and predictions to control animal health and food 
safety. This information often has high impact on farm productivity by reducing losses. 
However, from the field-usable sensor technology point of view, the molecular diagnostics 
area is especially demanding. The analyte species are often in very low concentrations 
and sample matrices are complex. Thus, specificity and sensitivity requirements are often 
difficult to meet without tedious sample treatment and analysis procedures that often 
requires special chemistry skills that are not typically available on farms. 

The digitalization trend and opportunities for precision farming supports designing the 
on-site novel sensor solutions with immediate digital data access, meaning practically 
utilizing IoT connected digital readers instead of only user observation based qualitative 
colour-indicator-type test strips. There are several digital rapid test solutions on the 
market that are purportedly useful in on-farm or on-site applications. The main stream 
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is Lateral Flow Assay (LFA) tests employing camera-based optical readers as data access, 
such as mycotoxin rapid test kits and readers offered by companies like R-Biopharm and 
Rohmer Labs.

This paper presents the SAFTIR rapid test technology concept and early-stage prototype 
development, which is aimed at agritech applications by offering a robust and convenient 
to use interface, having fast response times and focusing only on digitalised data access. 
We have identified several practical point-of-need diagnostics needs for on-farm use. In 
this paper, we focus on mycotoxins. Consumption of mycotoxin-contaminated food or 
feed can cause acute or chronic toxicity in human and animals. Some mycotoxins are 
lethal (e.g. HT-2) even in low concentrations. Mycotoxins are the secondary metabolites 
produced by certain filamentous fungi (molds). They can enter our food chain either 
directly from plant-based food components contaminated with mycotoxins or by indirect 
contamination from the growth of toxigenic fungi on food. They are naturally occurring 
and practically unavoidable. Therefore, it is justified that truly field-usable and reliable 
on-site detection and identification of mycotoxins helps to mitigate risks and prevent 
losses in both arable and livestock farming (Bryden, 2012). 

For the starting point of the novel sensor technology evaluation, we selected HT-2 
mycotoxin as an analyte. HT-2 toxin is a secondary metabolite of Fusarium spp. fungi and 
has very high toxicity and thus a need for high sensitivity of detection. Furthermore, the 
HT-2 recombinant antibody has been developed in our earlier projects and, therefore, 
offers a good benchmark and reference know-how to evaluate the new sensor technology 
(Arola et al., 2016).

SAFTIR transducer principle and background

The SAFTIR optical transducer system utilises simultaneously both the total internal 
reflection (TIR) excitation and supercritical angle fluorescence (SAF) detection principles 
and has been demonstrated earlier for narcotics analysis with different set-ups by Välimäki 
and Tappura (2009) and Välimäki et al. (2010). The combination of these two detection 
principles enables high sensitivity and selectivity through surface-bound fluorescence 
phenomena, an excellent signal-to-noise ratio and fast measurements with effective 
background suppression. 

The proposed portable system integrates the fluidic elements for the liquid sample transport 
and the optical sensing elements (incl. waveguides and e.g. diffractive lenses or other 
light directing/guiding structures) in/on a single test strip (Figure 1). The measurement 
principle is illustrated in Figure 2. Integrated waveguides are applied to transmit light to 
the targets (to the points of measurement), while the excitation of the fluorescence labels 
is performed by the evanescence field of the total internal reflections extending into the 
sample only to the very vicinity of the slide-sample interface where the target molecules 
are attached. The fluorescence emitted into the half-space of the slide (to the medium of 
the higher refractive index) at or above the critical angle of the total internal reflection – 
i.e. the fluorescence stemming only from the very vicinity of the interface – is collected by 
applying diffractive optical elements (lenses) or other integrated structures facilitating the 
collection of light emitted to the desired angles. 
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Figure 1. SAFTIR test strip design principle

Figure 2. SAFTIR transducer principle in the opto-fluidic system (cross sectional view from the end 
of the waveguide)

Material and methods

Reader and test strip design

For the portable SAFTIR device implementation, several optical modelling tools were 
employed. The readout device was designed using the Optics Studio non-sequential design 
tool for excitation laser 633 nm, emission/filter 670/40 nm. Simulated angular distributions 
in various test strip materials were modelled as a pointwise defined radial source. The 
SAF emission distributions were calculated and optimised for a randomly oriented dipole 
located at different distances from the solid-liquid interface at the bottom of the fluidic 
channel following the presentation of Enderlein et al. (1999).

Assay chemistry testbed

Assay chemistry development was carried out with plasma treated 96-well Polystyrene 
plate (Thermo 269620), scanned with TECAN LS400 confocal laser scanner (ex laser 
633 nm, em filter 670/40 nm) where HT-2 standards were added in 50 µl of Assay buffer 
[Alexa Fluor 647-labelled anti-HT2 immunocomplex antibody; in PBS]. Capture antibody 
was spotted in 8 replicate spots (antibody density 6.25 ng/mm2). The testbed system is 
illustrated in Figure 3.
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Figure 3. Schematic illustration of assay chemistry development testbed for HT-2 toxin analyte

Results and discussion

SAFTIR device optical and mechanical design outcomes

The developed prototype concept design is illustrated in Figure 4. In order to protect the 
emission reader optics from ambient light, a light blocking cover is used on top of the test 
strip. Liquid sample is dispensed via hole in the cover to the precisely aligned fluidic inlet 
of the test strip (Figure 5). 

Figure 4. Developed reader device utilizing SAFTIR measurement principle

At this stage, the prototype design was aiming at maximising the optics sensitivity. The 
readout optics simulations showed that the SAF angles higher than 57.5 degrees can be 
measured with the integrated measurement platform and that the overall SAF collection 
efficiency would be about 30%. The relatively wide excitation channel used in the current 
design together with the restricted strip thickness limit the collection efficiency.
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SAFTIR test strip

The base of the test strip is made by injection molding compatible and mass-producible 
material, which have transparency for the selected excitation and emission wavelengths. 
Based on the modelling and assessment, we selected polystyrene as it meets the 
requirements optimally. The test strip design is illustrated in Figure 5. The core parts also 
involve two layers of patterned tapes (lid and fluidic layers). The fluidic layer defines the 
dimensions of the fluidic channel. At this design those are: width 1 mm, length: 65 mm 
and height: 90 µm. The optical base strip consist of four measurement points on the top of 
individual emission reader optics. The assay chemistry shall be employed to the base strip 
before final assembly of the tape layers. The four measurement points allow variabilities 
such as multianalyte tests, reference test points, concentration range enhancement or 
self-diagnostics approaches.

Figure 5. SAFTIR test strip layout and dimensions

HT-2 assay chemistry 

Before employing the assay on the test strip, several assay development steps need to be 
carried out in the laboratory testbed. Assay performance depends on various factors, such 
as type of assay (in this study it is immunocomplex assay for HT-2, Figure 3), selected 
fluorescence labels, surface chemistry tailoring methods, binding agents, wetting agents, 
measurement spot size and amount of antibody. Present testbed system is useful for 
optimisation as it provides efficiently data from various parameters and their precision. 
Figure 6 illustrates testbed response data where the parameter is surface density of the 
antibody. 

As shown in Figure 6, the response depends strongly on the surface density of the 
immobilised capture antibody. Apparently, 7.7 ng/mm2 is the optimum when it comes 
to high sensitivity and linear response in the applied HT-2 concentration range of 0-200 
ppb. An attempt at higher surface density results in lower response signal and unstable 
molecular surface consistency. On the other hand, lowering surface density leads to 
rapid deterioration of the sensitivity. The careful optimisation of the antibody density on 
the polystyrene surface probably leads to the molecular arrangement of the antibodies 
as a semi-monolayer. A monolayer would probably also improve the performance of 
the surface-sensitive SAFTIR detection. Tailoring of the capture surface enables the 
modification of the system response towards a wider range of analyte concentrations, 
which can be accomplished, e.g. using multiple, differentially responsive test points on 
the same test strip. The expected HT-2 detection limit in the SAFTIR concept is estimated 
to be below 0.5 ppb.
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Figure 6. Fluorescence intensity (response) as a function of HT-2 toxin concentration in laboratory 
reference solution in various HT-2 antibody densities applied on the measurement spot in the assay 
chemistry testbed

Conclusions

This paper proposed a novel portable rapid-diagnostic test device concept and platform 
for on-farm uses for biomarkers. The robust design has variables for different application 
requirements such as assay chemistry, surface-bonding and optical component designs. 
These inherent variables enable to tailor the sensor response e.g. in relation to the 
requirements of quantitation accuracy and/or lower limit of detection. The platform and 
the development tools enable the system to be tailored for new applications. Further 
studies will be conducted to demonstrate the performance with various assays and 
develop the system technical readiness.
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Abstract

The application of different technological innovations in the intensive systems of pig 
production has generated some problems related to health and animal welfare. The animal 
welfare can be measured with indicators capable of expressing the animals’ adaptability 
to the environment. Temperature is one of the main components of the environment, 
since it influences the physiology, behaviour and productivity of the pigs. The first phase 
of this study aims to verify the adaptive evolution to different environmental conditions 
(summer, thermoneutrality and winter) in growing and fattening pigs. Seven females 
(initial weight: 45 kg) were used. The animals were housed in a room equipped with 
an environmental control system. The environmental data collected were temperature 
and relative humidity. The physiological parameters measured were surface and rectal 
temperature. The feed intake was monitored through an individual feed machine. In order 
to monitor the behaviour of animals, video cameras and microphones were installed. The 
final weight of the animals was about 95 kg. Respectively in summer, thermoneutrality 
and winter, the daily food intake was 2.111 kg day-1; 2.473 kg day-1; 2.814 kg day-1 and the 
average daily gain was 0.768 kg day-1; 0.923 kg day-1; 0.808 kg day-1. The corresponding 
values of surface temperature were 36.2 ºC; 33.6 ºC and 35.2 ºC and of body temperature 
were 38.9 ºC, 38.7 ºC and 38.4 ºC.

In order to validate the methodology and some results, the second phase of the project 
will be in a commercial farm, where the animals are submitted to real conditions. 

Keywords: PLF, animal welfare, environmental control, pigs

Introduction

The new global requirements of agricultural production, within the ethical process, are 
increasingly turning to the concepts of good production practices, considering animals 
and workers welfare, food safety and respect for the environment (Campos, 2009, cited by 
Baêta & Souza, 2010). On the other hand, it is estimated that in the year 2050, the world 
population will grow to 9.8 billion people, compared to the present 7.6 billion (Mota, 2018); 
this will increase the demand for food and animal products (Godfray et al., 2010).

Facilities and their equipment should protect animals from adverse conditions, as well as 
provide adequate comfort and welfare with appropriate levels of ventilation, temperature and 
humidity (Baêta & Souza, 2010). In this sense, intensive pig farms are in a phase of change. 

The environmental conditions have a great impact on the productivity of different animal 
species, especially in poultry and swine industries, that usually work under intensive 
systems (Cruz & Baptista, 2006).

In intensive systems, animal comfort and welfare suffer directly from the environment, 
causing difficulties in maintaining thermic balance inside the facilities, in the form of 
natural behaviours which affects the productive and reproductive performance of the 
swine (Pandorfi, 2006).
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In order to reach the optimal environmental conditions, the livestock facilities must have 
a monitoring and a control system. However, there is a need for modern facilities to not 
only monitor the environmental conditions, but also the behaviour and health of the 
animals (Banhazi & Black, 2009; Koenders et al., 2015).

Animal welfare indicators provide the necessary information to assess welfare and to improve 
it so we can measure animal welfare by productive, sanitary, behavioural and physiological 
indicators (Candiani et al., 2008). In this evaluation of animal welfare, we can’t use only one 
indicator, a set of indicators must always be considered when measuring animal welfare.

Precision livestock farming can be defined as the application of technological principles 
and engineering processes to the farm management (Wathes et al., 2008). This tool has 
the potential to improve animal welfare and increase productive outcomes (e.g. weight 
gain) (Koenders et al., 2015), as well as to detect, in real time, certain behaviours of the 
animal that could indicate its level of welfare. Early detection, possible through real-time 
monitoring, can minimise production costs by reducing the incidence of diseases and 
mortality (Nasirahmadi et al., 2017).

The goal of AWARTECH Project is to develop a new tool that responds in real time to 
the environmental needs of animals through physiological, behavioural and productive 
indicators. In other words, our final goal is to have a platform that, through the animal, 
will make it possible to control all the environmental parameters (temperature, humidity, 
gas concentration, air speed). 

Materials and methods

The project began with the small lab prototype. We submitted the animals to different 
environmental conditions to test animal adaptation/stress. In order to measure this 
adaptation, we used several indicators like physiological (e.g. temperature of the animal), 
behavioural (e.g. lying patterns) and productive (e.g. growth rate). In addition, we control 
the interior environmental conditions and test the interconnection between all the 
collected data in order to adjust the environment according to animal responses in an 
automatic and real time basis – the technologic platform of the project.

Animals, Housing and Equipment 

Seven crossbred (Topigs Norsvin (TN60) x Pietrain) growing gilts were used in this study. 
The animals were randomly selected from a commercial farm and transferred to the 
experimental farm of Mitra in Évora. The initial body weight was around 45 kg and they 
were housed in one pen with an area per animal of 1.5 m2. This room was equipped with 
an environmental control system.

All gilts were identified with an RFID ear tag. The experiment started after two weeks of 
adaptation to the room, environment and human presence. During this period, the food 
was provided in ad libitum, with a standard commercial diet and free access to water. 
During this period, the gilts were trained to be accustomed to saliva sampling. In these 
days of adaptation, the environmental control system was set to thermoneutrality, the 
temperature was 18 ± 2 ºC and relative humidity was 60%. 

The room was equipped with sensors of temperature (T) and relative humidity (RH). 
The sensors collected the data at every hour. To monitor the behaviour, cameras and 
microphones were also installed. The food was provided to the animals with an individual 
automatic feed machine (schauer compident MLP II) that had one scale for the food and 
another for the animals. The machine was provided with an electronic identification 
system that was activated by the RFID ear tag. The feeding machine was connected to a 
computer that recorded and saved the data (feed intake and animal weight). 
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Experimental Design

The experimental period of each condition was 13 d. We have simulated three different 
environmental conditions: winter (W) – cold stress, thermoneutrality (TN) and summer 
(S) – heat stress. The control system allowed us to make a variation of the temperature 
and the humidity. We set up the control system for summer with T: 30 ± 2 ºC, RH: 50%; 
thermoneutrality with T: 17 ± 2 ºC, RH: 60% and in winter conditions to T: 10 ± 2 ºC, RH: 
80%.

Physiological Evaluation

We measured, manually, surface temperature and body temperature. All the samples 
were collected two times by condition, at 9 a m. The first data collection was made 4 d 
after the change of the conditions; the other one was made before the change for the next 
condition.

Surface temperature (sT) was measured with an IR thermometer (Pro’sKit MT-4612) in the 
neck and was taken very quickly, approximately 5 s per animal. Body temperature (bT) 
was measured in the rectal area with a digital thermometer and each measure was taken 
in 1 min. 

Behavioral Evaluation

In this test, five video cameras and one microphone (strategically positioned inside the 
room) were used to monitor the behaviour of the animals, namely the lying patterns and 
intensity and frequency of the animals’ grunts and screams, respectively. 

The study of the animal behaviour with regard to their dispersion through the park 
was possible using video images captured 24 h/24 h and an artificial vision algorithm, 
specifically developed for this purpose. The algorithm works in two steps:

•	 Recognition of animals and/or groups - The algorithm looks for shapes that coincide with 
the contour of an animal, in this case a pig, and registers the positioning of each one 
in the park. If several animals are in contact forming a group of animals, the algorithm 
also identifies this fact.

•	 Calculation of the proximity index - Taking into account the area of   the pen, the total 
number of animals and the position of each one, the algorithm calculates the proximity 
index of the animals, with results between 0–1, where 1 means that the animals are 
all together in a group, and zero means that the animals are as scattered as much as 
possible given the area of   the pen.

Currently, sound and image software is still under development and will aim to detect 
abnormal behaviours such as animal huddle/apart and vocalizations above certain 
frequencies. The equipment saved, in real time, all the information in a server that could 
be consulted at any moment.

Productive Evaluation 

We measured body weight (BW), feed intake (FI) and average daily gain (ADG) of the 
animals. The body weight and feed intake were measured through the individual automatic 
feed machine. After detecting the animals entrance, the system measured the weight and 
registered feed intake. At the end of each day the system calculated the average of the 
recorded weights, as well as the sum of the amount of feed intake.
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Statistical analysis 

For statistical analysis we used SAS studio software (v.9.4 TS1M6, 2018).

The data were analysed with ANOVA and multiple comparisons were taken. The statistical 
model was: Y = μ + Ei + e(ij), where Y = parameter of interest, μ = mean, Ei = environmental 
conditions and e(ij) = residual error. The relationship between FI and ADG was analysed 
with non-linear regression.

Results are presented as mean ± SE and we considered significantly different at P < 0.05.

Results and discussion 

The average temperature recorded in summer, 25.8 °C, was 2.2 °C below the lower 
temperature established, 28 °C. In the thermoneutrality situation, the average temperature 
recorded was 19.3 °C. This value was above the higher temperature of 19 °C, however, this 
variation was minimal, at 0.3 °C. On the other hand, in the winter situation the value 
obtained 17.9 °C and was 5.9 °C above the higher desired temperature, 12 °C (Table 1).

Table 1. Comparison between stipulated temperatures and average temperatures obtained in 
interior (Ti) and exterior (Te)

Environmental 
Conditions Set Temperatures (ºC) Real Temperature (ºC)

Ti Te

S 30 ± 2 25.8 14.4

TN 17 ± 2 19.3 21.9

W 10 ± 2 17.9 16.8

The mean values   of relative humidity recorded in summer and thermoneutrality, 60.4% 
and 70.8%, respectively, were 10.4 and 10.8% higher than those intended. In the winter 
season, this value was 3.1% higher than desired (Table 2).

Table 2. Comparison between stipulated relative humidity and average relative humidity obtained 
in interior (HRi) and exterior (HRe)

Environmental 
Conditions Set RH (%) Real RH (%)

RHi RHe

S 50 60.4 71.3

TN 60 70.8 64

W 80 83.1 58.1
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The equipment of the environmental system (heating and cooling systems) was unable to 
express its maximum efficiency in the different environmental situations. This happened 
because of the difference between the average external temperature reached and the 
defined internal temperature. In the summer situation, the outside temperature was 
14.4 °C, which led to exhaustion of the heating system. In the winter situation, the Te was 
16.8 °C, which caused major limitations in the cooling system (nebulization). Therefore, 
the system was unable to cool the room to the set-up temperature.

Table 3. Mean temperatures of animals, body temperature (bT) and surface temperature (sT), for 
the three environmental conditions

Environmental Conditions
Temperature (ºC)

sT bT

S 36.2 ± 0,62 a 38.9 ± 0,34 a

TN 33.6 ± 0,44 b 38.7 ± 0,24 a

W 35.2 ± 0,34 ab 38.4 ± 0,34 a

P 0.005 0.567

a, b – Values   of the same column in each parameter affected by the same letter are not significantly different due 
to the effect of environmental conditions

We observed in Table 3 that in summer conditions sT increases significantly when 
compared to TN conditions (P = 0.006). This indicator is more variable and more influenced 
by the environment (Manno et al., 2006). This increase in sT was also reported by Huynh 
et al. (2005), Manno et al. (2006) and Kiefer et al. (2009). These authors observed that when 
the ambient temperature increases, the surface temperature also increases. Surface 
temperature measurement is a quick and practical method of verifying that animals are 
outside the comfort zone (Mostaço, 2014). 

As observed before, the environmental control system could not reach the set-up 
temperatures for W. That happened because the weather outside was too hot, this 
influenced the sT, so we don’t observed a decrease in winter sT when compared to the TN 
(P=0.1).

bT, in growing and finishing pigs is about 38.8 ºC (Cunningham, 1993). The results observed 
in this study fall within this temperature. We did not observe statistical differences 
between the groups when compared to TN conditions (S: P = 0.88; W: P = 0.55). Our results 
agree with Soerensen & Pedersen, (2015). These authors noticed that bT remains constant 
because of thermoregulation mechanisms. Although when the ambient temperature rises 
above the capacity of physiological readjustment, the retained body heat is capable of 
altering the state of homeothermia, this increases the rectal temperature (Huynh et al., 
2005; Kiefer et al., 2009). The increase in bT becomes more intense with the degree of 
deviation of the temperature of thermal comfort, as a rule, that means that the animal 
is storing heat due to the failure of thermoregulation mechanisms (Ferreira, 2002, cited 
by Rodrigues, 2010). We do not observe this increase in our results, probably because the 
environmental temperatures were not too high for the animal to retain the heat.

As expected, the environmental conditions had a significant effect on the FI (P < 0.001) but 
not in the ADG (P ≥ 0.05) (Table 4). 

Regarding the FI, it was possible to observe that, in relation to thermoneutrality, it was 
6% lower in the S situation and 6% higher in W. On other hand, the highest daily gain was 
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achieved in the TN situation, with 0.923 kg day-1, and there were no significant differences 
between this value and those obtained in S and W simulations, 0.768 kg day-1 and 0.808 kg 
day-1, respectively. However, in both situations there was a decrease in the average daily 
gain of 17% in the summer situation and 12% in the winter situation.

Table 4. Influence of environmental conditions on growth performance of pigs

Environmental 
Conditions

Parameter

BW (kg) FI (kg day-1) ADG (kg day-1)

S 57.7 2.111 c ± 0.034 0.768 a ± 0.960

TN 69.9 2.473 b ± 0.030 0.923 a ± 0.086

W 86.1 2.814 a ± 0.030 0.808 a ± 0.086

P < 0.0001 0.1036

a, b – Values   of the same column in each parameter affected by the same letter are not significantly different due 
to the effect of environmental conditions

In S conditions, FI decreases (Quiniou, et al., 2000; Pearce et al. 2013) as does the ADG. These 
results are reported by Collin et al. (2001), Banhazi et al. (2009) and Kiefer et al. (2009). 

Due to the system failure in W conditions, the ADG is similar to the TN conditions. The 
FI seems to be higher in W than in TN, this cloud happened because the animals are 
bigger, so they eat more. During the growing period, the voluntary FI is influenced by the 
physiological status (age, body weight) (Kanis & Koops, 1990; cited by Quiniou et al., 2000). 

We verified that the correlation between FI and BW is a polynominal regression (R² = 
0.5723), represented in Figure 1. These results are in agreement with Botermans and 
Pierzynowski (1999). The need for dietary nutrients increases as the pigs grows, therefore, 
the feed intake increases with body weight (Li and Patience, 2017).

Figure 1. Relationship between FI and BW represented by a polynominal regression (R2 = 0.5723)

At last, when the ambient temperature does not correspond to comfort levels, pigs show 
specific behavioural characteristics and are able to change their behaviour to adapt to 
the environment that surrounds them (Quiniou et al., 2000). Indeed, temperature is the 
main parameter affecting pigs lying behaviour (Nasirahmadi et al., 2015). We can observe 
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some of these behaviours, with the animals gathering when the ambient temperature was 
below the thermo neutral temperature (W condition), and spacing between them when 
the ambient temperature was above the thermo neutral temperature (S condition), which 
is in accordance with the bibliography consulted (Nasirahmadi et al., 2017). Examples of 
the image that we recorded can be seen in Figure 2 and 3.

Figure 2. In S conditions the gilts prefer to rest 
apart, without contact between them

Figure 3. In W conditions the gilts choose to 
huddle

Conclusions

We can conclude that the welfare indicators that we used can give us information about 
the animal’s welfare. Although we have collected some of the data manually, there are 
technologies that can gather and analyse the data, for example, thermo cameras that give 
surface temperature. Feed intake and sT changes with the environmental conditions. sT 
changes more that bT with the environmental conditions, so it can be more useful as a 
welfare indicator. We are still analysing some of the data, and have more trials to do, but 
we hope to collect and gather most of these welfare indicators automatically and in real 
time, in one platform.

In order to validate the methodology and some results, the second phase of the project 
(living lab) will be in a commercial farm, with a larger number of animals and it aims 
to test all the equipment and analyse the efficiency of the system in a real production 
environment. 
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Abstract 

The objective of this study was to pilot-test a novel biosensor to predict the onset of stage 
two of calving in dairy cows. A monitor was developed containing an accelerometer and 
other gravitational measurement devices. It was attached to the upper side of the cow’s 
tail approximately 6 cm below the anus. Three behavioural changes were monitored: 
(1) tail raise frequency and duration; (2) angle of tail raise; and (3) bouts of standing/
lying down. Measurement of these behaviours was taken every two seconds and the data 
transmitted to a receiver base. The device was tested on 20 dairy cows. The time of calving 
was established by 24 h staff supervision and CCTV. Of the 20 cows, 12 calvings were 
monitored, (six primiparae, six pluriparae); five unassisted, six easily assisted and one 
difficult. Prolonged elevation of the tail (> 30 - 45 degrees, > 20 seconds and four repetitions 
within 60 minutes), either alone or in combination with an abnormal standing pattern 
(within a 30 minutes period) were observed within four hours of each calving (unassisted 
calvings two - 3.3 h; assisted calvings 45 min – 3 h). Prolonged tail elevation combined with 
increased restlessness was indicative of imminent calving. The monitor was able to detect 
and record the pattern of calving behaviours and the algorithm was able to detect distinct 
onset of calving-specific behavioural change up to four hours before birth. 

Keywords: calving, sensor, prediction, tail, dairy cow

Introduction

The timing of calving can be difficult to predict accurately. Ideally, farmers would like to be 
able to predict to within a few hours when a cow is going to calve in order to observe normal 
calvings or to intervene during abnormal calving and to care for the newborn calf. But, both 
the signs of impending calving and the ability of the observer to detect and interpret them 
are highly variable (Lange et al., 2017). Prediction of the onset of calving would potentially 
prevent dystocia (difficult calving) and stillbirth at unobserved calvings and facilitate 
prompt colostrum feeding, especially for heifer calves, and calf removal, particularly in 
paratuberculosis-infected herds. The primary modifiable risk factor for stillbirth in dairy 
cows is dystocia (difficult calving), (Mee et al., 2014) and bradytocia (prolonged calving) is 
the most important type of dystocia in dairy heifers causing stillbirth (Mee et al., 2017).

Traditionally, farmers used physiological signs of impending parturition such as udder 
and teat engorgement, sacrosciatic ligament relaxation, appearance of vaginal mucous, 
etc. to predict onset of calving. But in recent years there has been renewed interest in 
automated monitoring of parturition across species, primarily due to advances in 
technology. More than a dozen indicators of impending parturition have been tested to 
develop commercial calving alarms. Non-commercial approaches include monitoring 
blood progesterone decline, maternal heart rate and heart rate variability, feeding 
behaviour (eating and rumination time and frequency, dry matter intake) and detection of 
amniotic sac (waterbag) colour. Currently available devices predict onset of calving from 
body (rectal, reticuloruminal, vaginal, ear) temperature changes, abdominal contractions, 
tail elevation, recumbence posture, restlessness (locomotion time/bouts, standing/lying 
bouts), vulval separation or detection of ambient light or temperature. 
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Some approaches only predict the day of calving (e.g. progesterone decline precalving) 
while others attempt to predict the hour of calving. One area which shows potential 
promise is counting of tail elevations precalving as this has been shown to uniquely 
change within six hours of calving in cows (Miedema, 2009). 

The ideal calving alarm would detect the onset of stage two of calving (when the farmer 
can possibly intervene) and differentiate between eutocia (normal calving) and potential 
dystocia.

The objective of this study was to pilot-test a new biosensor to predict the onset of stage 
two of calving in dairy cows. The study was also designed to detect any problems associated 
with in vivo testing of this pre-commercial prototype and to collect preliminary data from 
calvings to train the predictive algorithms. 

Materials and methods

The prototype device consisted of a tail-mounted sensor and a base station. The activity 
monitor was developed for this project containing a wireless inertial unit that used an 
accelerometer and other gravitational measurement devices. The prototype contained 
a Printed Circuit Board and two rechargeable batteries within a grey waterproof casing 
and weighed 133 g. It was attached to the upper side of the cow’s tail approximately 6 
cm below the anus using a self-adhesive bandage wrap. Three behavioural changes were 
monitored: (1) tail raise frequency and duration; (2) angle of tail raise; and (3) bouts of 
standing/lying down. The accelerometer data were converted to CSV files by the algorithm 
within the monitor and the data were transmitted within a range of c. 10 m via radio 
frequency to a receiver base where they were stored on micro-SD cards. The base station 
was connected to the GSM network over a range of c. 30 m indoors, with a capacity for 
up to 20 tail units. The receiver base was connected to a laptop via the USB port. The CSV 
files were saved to the desktop using Microsoft Excel. The algorithm created an Excel file 
for each minute of recorded data. Within each file there were individual tables for each 
two second recording. Each table presented data in percentages of time over the previous 
48 hours that the cow was either standing or lying down, and percentage of time the tail 
was held at various angles from 0 to > 90 degrees. In order to aggregate the data to find a 
pattern of behaviour, the first two second recording from each one minute Excel file was 
taken as representative of behaviour during that minute. For every hour, 60 of the two 
second recordings were combined.

The device was tested in two phases. In Phase 1, 20 dairy cows (six primiparae, 14 pluriparae) 
were used. Cows were housed in a group pre-calving pen and adjoining individual calving 
pens, both straw-bedded, at Moorepark Research Centre. Given the attachment problems 
detected in this study, a Phase 2 study was conducted on 10 dairy cows. The device was on 
the cows for between one and five days precalving. The time of calving was established by 
24 h staff supervision and CCTV. 

Results and discussion

Of the 20 cows, 12 calvings were monitored, (six primiparae, six pluriparae); five unassisted, 
six easily assisted and one difficult. The reasons for the incomplete recordings were: in 
the initial stages of recording, the prototype was not programmed to save background 
Excel files. The data were simply presented in GUI (graphical user interface) format. The 
GUI data could not be disaggregated enough to define trends in behavioural change (two 
calvings), signal was poor, resulting in data not being received by the laptop, or gaps in 
the data rendering it unusable (2), cows pulled the devices from each other’s tails - cows 
in pre-calving pen dislodged the prototypes by licking and chewing in play/boredom 
(2), laptop in hibernation failed to record the data being sent from the monitor (1) and 
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antenna snapped off the receiver base (1). In recorded calvings, prolonged elevation of the 
tail (> 30-45 degrees for > 20 seconds and four repetitions within 60 minutes), either alone 
or in combination with an abnormal standing pattern (within a 30 minute period) were 
observed within four hours of all calvings (unassisted calvings 2 - 3.3h; assisted calvings 
45 mins – 3 h). 

Some practical issues arose during this study with the tail-mounted sensor. Cows dislodged 
some devices from each other’s tails and after a period of 3 - 4 days attachment of the 
prototype as described caused oedema of the tail above and below the device in some 
cows. Hence, a follow-up study was carried out to resolve issues which arose during Phase 
1. Firstly, the colour of the self-adhesive bandages and the plastic waterproof housing units 
were changed from blue and grey, respectively, to black. Secondly, the ProWrap bandage was 
replaced by a Neoprene wrap with velcro fastening. Thirdly, the sensor unit was reduced 
in size and weight from 133 g to 50 g. The second generation devices were attached to 
the tails of 10 dairy cows for up to five days before calving. These changes eliminated the 
problem of cows dislodging the devices and allowed the devices to remain on the tail for 
up to five days before oedema began to develop. Furthermore, the behavioural changes 
recorded in Phase 1 (tail raise frequency and duration and bouts of standing and lying 
down) were confirmed in the data collected during Phase 2. 

Conclusions

It is concluded that prolonged tail elevation combined with increased restlessness was 
indicative of imminent calving. The monitor was able to detect and record the pattern of 
calving behaviours and the algorithm was able to detect distinct onset of calving-specific 
behavioural change up to four hours before birth. Thus, this prototype device shows 
potential to detect the onset of stage two of calving. Further study in a larger population 
of animals with this device is required to confirm these preliminary results.
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Abstract

The extensive nature of grazing systems creates data gaps concerning cows’ physiological 
status, especially where natural service is the breeding strategy. The lack of online information 
hinders informed decision-making regarding individual treatment, feed additives, pasture 
management, etc. Early pregnancy detection addresses all these and provides unique 
information concerning early embryonic death occurrence. In this study we analysed volatile 
organic compounds emitted from cows’ urine in order to characterise pregnancy, using an 
innovative «Scent recorder» (NanoScent, Israel, ltd.). Twenty grazing beef cows were palpated 
for pregnancy and urine samples were collected. The gas phase over each sample was 
pumped through the sensor, resulting in absorption of molecules to an array of gold nano-
sensors each covered with specific ligand. Feature extraction from the sensors was processed 
according to a protocol developed in the Technion nano-chemistry lab, Israel. Three features 
derived from different sensors showed significant differences between pregnant and open 
cows (P < 0.05), 13 features which showed differences with P values < 0.09 were considered 
sub-significant. Statistical analysis was performed using SAS-JMP applying Wilcoxon-
Kruskal test. Applying model using two features resulted in 95% accuracy, with only one cow 
misclassified (false positive). Palpation resulted in 90% accuracy, misclassifying two cows 
(false negative). Conception date (determined by pedometric system) showed pregnancy 
detection by the «Scent recorder» as early as 10 + 2 days. Analysis of the urine volatiles was 
performed by GC-MS. Analysis discovered molecules, known in different physiological and 
chemical contexts. Their possible role in pregnancy needs to be further researched. 

Keywords: electronic nose, nano sensors, volatile organic compounds, pregnancy detection.

Introduction

Cause and consequence gaps are inherent in extensive grazing beef cattle systems. Lack 
of online information concerning cows’ physiological and reproductive status hinders 
informed decision-making regarding individual and herd treatment, feed additives, 
pasture management, and so on. Furthermore, with the common use of natural service 
(breeding bulls) there is no data concerning conceptions and consequently calving dates. 
Calving events and the following 24 hours are the most sensitive period in the whole 
production cycle and bear with it the highest loss rate, starting with dystocia, followed 
by low vitality of the newborn calf, insufficient colostrum suckling and more. An early 
and precise pregnancy diagnosis addresses all these and provides unique information 
concerning early embryonic death occurrence. In dairy farms, early identification of 
nonpregnant cows post insemination can improve reproductive efficiency and pregnancy 
rate by decreasing the interval between AI services and increasing AI service rate. 

Currently different methods (direct and indirect) are in use for diagnosis of pregnancy. The 
direct methods include rectal palpation and ultrasonography. However, their application 
is limited in terms of accurate detection by day 35 and 28 post breeding respectively. 
Additionally, they are costly and invasive and the expertise of a veterinarian is required. 
Indirect methods include immunological based assay for detection and quantitation 



Precision Livestock Farming ’19      739

of target proteins (Pregnancy Associated Glycoprotein: PAG) and hormones such as 
progesterone (P4), pregnadiol, interferon tau related to pregnancy (Vandaele et al., 2005). 
These methods have inherent limitations of specificity and false positive results in ELISA. 
Furthermore, they also require invasive collection of body tissues and they are costly and 
time consuming. To date, early and precise pregnancy detection in bovine is unfeasible. 

An emerging diagnostic approach for infectious disease at its earliest stages relies on 
volatile organic compounds (VOCs) that are emitted from the infectious agent and/or the 
host. The successful analysis of infectious disease-related VOCs is based on principles of 
cell biology. In disease formation, both host and invading cells can undergo structural 
changes, one example of which would be oxidative stress, i.e. a peroxidation of the cell 
membrane that causes VOCs to be emitted (Kneepkens et al., 1994). What is particularly 
significant about this approach is that each type of disease has its own unique pattern of 
VOCs; therefore, the presence of one disease would not mask other disease types (Dummer 
et al., 2011). These VOCs can be detected directly from: 1) cultured cells, 2) urine (i.e. the 
mixture of VOCs trapped above the cells, or above the urine in a sealed vessel) (Naraghi et 
al., 2010); or 3) exhaled breath (Lechner & Rieder, 2007).

Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and 
metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control 
ROS production, one of the central elements in signal transduction pathways involved in 
cell proliferation, differentiation and apoptosis. ROS and antioxidants have been implicated 
in the regulation of reproductive processes in both animal and human, such as cyclic luteal 
and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, 
embryonic implantation, and placental differentiation and growth (Al-Guborya et al., 
2010). High levels of ROS during embryonic, fetal and placental development are a feature 
of pregnancy. Rueda et al. (1995), discovered significantly higher levels of mRNA encoding 
catalase, an enzyme responsible for detoxification of superoxide to water, in Corpus Luteum 
(CL) collected from 21 days pregnant cows compared to CL collected from cows in day 
21 of estrous cycle (functioning compared to regressed CL). This implies that a decline in 
expression of specific oxidative response genes during luteolysis, and maintained expression 
of these genes in the CL during pregnancy, may prevent oxidative damage. In other words, 
inherent ROS level increase in pregnancy is dealt by indirect pathways. This evidence led us 
to hypothesize that we can apply VOC’s analysis to differentiate between pregnant and non-
pregnant cows. In this paper we describe a field trial performed in order to test the feasibility 
of early pregnancy detection using an innovative device containing an array of sensors, 
termed Nano Artificial NOSE (Peled et al., 2012; Hakim et al., 2011; Tisch & Haick, 2010). 
Unlike gas chromatography and mass spectrometry, electronic noses cannot chemically 
characterise or directly quantify individual molecular components, but are able to separate 
and recognise different gas mixtures by ‘fingerprinting’. This unspecific sensor approach is 
analogue to the mammalian olfactory system (Buck & Axel 1991), and is similarly specific 
since each smell has a unique fingerprint. In this study we performed GC-MS analysis 
following the dichotomic detection of pregnancy by the artificial nose in order to detect 
changes in concentrations of specific molecules in the urine of pregnant compared to non-
pregnant cows. Some possible explanations regarding these changes and their possible role 
in supporting pregnancy establishment and maintenance are offered in the discussion. 

Objectives
•	 Test the feasibility of an early pregnancy detection using an innovative device termed 

Nano Artificial NOSE. 

•	 Characterise chemical compounds and their concentration change between pregnant 
and non-pregnant beef cows. 
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Materials and methods

Animals

Urine was collected from 20 healthy beef cows grazing on pasture near Kibbutz Snir, 
Northern Galilee, Israel. The cows were randomly selected out of a herd of 120 cows. Breed 
composition was Simmental crosses, typical to any commercial herd in Israel. The ages of 
the cows ranged between four to 13 years at the time of the study. All the cows were born 
at the farm and had good production records (yearly calvings). The cows were nursing 
calves between the ages of two to six months. The experiment was performed on 25 
April 2017, (spring time) when vegetation’s biomass and nutritional value just passed its 
peak. Pasture vegetation biomass averaged 6,000 kg ha-1 with 35% dry matter content and 
14% protein. Cows were brought to kennel the same day to be pregnancy checked by an 
experienced veterinarian who performed rectal palpation. Urine was collected following 
each check. 

The breeding season started on 10/1/17 when bulls were introduced into the cows’ 
herd. Breeding season ended on 23/4/17 two days prior to the trial day. Resulting calving 
season occurred between October 2017 and February 2018. All cows that were detected as 
pregnant calved during this season. Cows that were detected as non-pregnant both by the 
E-Nose and by the veterinarian didn’t calf during this season. Two cows that were detected 
as non-pregnant by the veterinarian and pregnant by the E-Nose, calved on the end of the 
season, indicating a very early pregnancy detection by the E-Nose.

Electronic Nose

The electronic nose, is an array of 18 chemiresistive films of gold nanoparticle (GNP) 
sensors, each covered with a different chemical absorber, the organic functionalities 
of which provided broadly cross-selective absorption sites for VOCs. The gold particles 
provide the electric conductivity and the organic film component provides sites for the 
sorption of analyte (guest) molecules. Details of the sensing materials synthesis have been 
described elsewhere (Peled et al., 2012; Tisch & Haick, 2010). Sensors output was monitored 
for a change in resistance using a custom program (LabView, National Instruments). All 
sensors were monitored simultaneously through an Agilent 34980A multifunction switch. 
The general setup allowed for measuring normalised changes of conductance as small as 
0.01%, corresponding to chemical concentration changes of several ppb. The system was 
degassed under vacuum for five minutes between each two consecutive samples. 

We used the original version of the device in this trial, located on the Technion’s 
nano-chemistry laboratory. A smaller, hand-held version currently manufactured by 
«NanoScent» ltd. is operative and suitable for field conditions. The device is shown in the 
following pictures:

Picture 1. NanoScent hand held electronic nose. On the right: the chamber, on the left: the sensors 
inside the chamber. Dimensions of the chamber: height:15 cm; depth: 17 cm; width: 8 cm.
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Sample collection and analytical procedure

Urine samples were collected on field by manual stimulation of the perineal region into 
plastic containers and were immediately transferred into cell culture flasks (75 cm), sealed 
and kept in a picnic cooler, then transferred to the Technion, Haifa and kept in a refrigerator 
until the following day. The headspace of each urine sample (mixture of VOC’s trapped 
above the urine in the glass vessels) was analysed the next day, by GC-MS and by the E-Nose.

GC-MS analysis: was performed employing a Gas Chromatography–Mass Spectrometry 
equipment (GC–MS-QP2010; Shimadzu Corporation, Japan), combined with a thermal 
desorption system (TD20; Shimadzu Corporation, Japan). The molecular structures of the 
VOCs were determined by spectral library matching, using the Automated Mass Spectral 
Deconvolution and Identification System software. 

Data analysis

The GC-MS results for a given identified compound were compared across two groups: 
pregnant and non-pregnant, using SAS JMP software applying Wilcoxon-Kruskal test at a 
significance level of p-value < 0.05. 

The electronic nose sensors responses, defined as the relative resistance change experienced 
by the sensors immediately after exposure to the head-space of the urine sample, were 
processed using feature extraction UI developed in the Technion lab (MATLAB based). The 
features included: area under curve (AUC), delta R peak, mid and end (change in the sensor 
resistivity relative to its vacuum response at the peak, middle and end of response). The 
features were used as inputs for Discriminant Factor Analysis (DFA) pattern recognition 
algorithm (Ionescu et al., 2002). 

Results and discussion

Calving dates

Pregnancy test results were compared with pedometric data recorded by a long range pedometric 
system operating automatically in the pasture. None of the cows appearing in Table 1 showed 
estrus cycles following the 25/4/17 (test day). Calving dates of the cows that were detected 
as pregnant by the E-Nose are presented in Table 1. Two cows detected by the E-Nose were 
not detected by the rectal palpation conducted by an experienced veterinarian. These cows 
apparently conceived few days prior the test day, as validated by the following calving dates. 
Cows that were non-pregnant according to the E-Nose and the veterinarian showed estrus 
cycles in the pedometric system and didn’t calf during the following calving season. 

Table 1. Calving dates of the study cows 

Cow E-Nose test Palpation test Calving date

580 Yes No 24/1/18

1389 Yes No 7/1/18 

4284 Yes Yes 21/12/17

14101 Yes Yes 16/11/17

4054 Yes Yes 1/11/17

1419 Yes Yes 20/10/17

7087 Yes Yes 27/10/17
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The rest of the cows that were tested as negative both by palpation and by E-Nose, didn’t 
calf during the relevant calving season 

Analysis of urine samples with the electronic nose

Each urine sample was processed as described and the head-space was vacuum pumped 
through the electronic nose. Features extraction resulted in three features showing 
significant differences (P < 0.05) and 13 features showing differences with (p values < 0.09). 
Table 1 presents the three features showing significant differences. 

Table 2. Single sensor/feature results for pregnant and non-pregnant cows. Values expressed in 
Ohms (O)

Features P-value Average pregnant Average non-pregnant

S22 dRend 0.0325 3.70 ± 0.23 4.27 ± 0.62

S39 dRmid 0.0495 1.11 ± 0.43 1.76 ± 0.62

S19 dRpeak 0.0129 1.41 ± 0.127 1.62 ± 0.19

All features shown in the table expressed a decline in pregnant compared to non-pregnant 
cows’ samples. This fact may suggest a decline in absorption of VOCs to the sensors for 
the pregnant cows, resulting in a ‘thinner’ cover layer, causing smaller resistivity change. 
Another possible explanation may be a change in the absorbed (guest) VOCs’ electric 
charge. The significant differences between pregnant and non-pregnant samples are 
expressed in different stages of each sensor response. In S22 the significant change occurs 
at the end of the sensor’s response, S39 in the middle and S19 in the peak. 

DFA analysis was then performed, applying the palpation pregnancy results as determined 
by the veterinarian for the ‘yes’ and ‘no’ groups (pregnant and not pregnant, respectively). 
The DFA plot obtained employing two features (S30 dRmid and S19 dRpeak) is shown 
in Figure 1. The horizontal line represents the division according to the DFA model, the 
dots above the line represent non-pregnant cows and the dots under the line represent 
pregnant cows according to the sensor’s diagnosis. The two cows identified as pregnant 
by the model and non-pregnant by the veterinarian, calved 274 and 282 days following 
the sampling day, meaning a 100% accuracy achieved by DFA analysis and an extremely 
sensitive technology of 100% sensitivity of the electronic nose. However, pregnancy shorter 
than 282 days is possible (though not likely), and the cow could have conceived a few days 
post sampling day. Therefore, we assume a possible misclassification of one cow by the 
model, and an accuracy of 95% detection by the electronic nose. Whether or not there was 
one misclassification, this is the first record of pregnancy detection at such an early stage 
of either few or ten days approximately, known to us. 



Precision Livestock Farming ’19      743

Figure 1. DFA analysis using two features. Black dots represent non-pregnant, grey dots represent 
pregnant cows according to palpation check, horizontal line divides non-pregnant (above) and 
pregnant (under) according to the model

Chemical analysis

CG-MS analysis resulted in a significant difference in one molecule between pregnant and 
non-pregnant cows (p = 0.02) and five other molecules with p values around 0.06 which 
needed consideration in our opinion. The results are presented in Table 2. 

Table 3. Molecules detected by GC-MS and their p values. Values expressed in ppb

Molecule P-value Least square mean 
± SE pregnant

Least square mean ± 
SE non-pregnant

Tridecane, 4-methyl 0.0265 3,000 ± 1,000 733 ± 175

Benzen 0.05 54,076 ± 26,574 20,570 ± 7,901

Ethanol 0.067 287,718 ± 226,490 55,006 ± 25,453

4-Heptenal, (Z) 0.063 88.75 ± 89.9 456.1 ± 144

1-Octene-3-one 0.065 1,302 ± 690 542 ± 245 

Pinocarvone 0.067 3,745.25 ± 1,195 2,069.45 ± 1,104

Tridecane 4-methyl is a non-cyclic alkane with an anti-androgenic activity, patented 
in 2006 as a chemotherapeutic drug for treatment of prostate gland cancer in humans 
(US7018993). Its increased level during pregnancy might imply a support to the corpus 
luteum progesterone secreting activity by depressing estrogen levels. This finding is 
intriguing considering its implication of existence of pregnancy supporting mechanisms 
unknown to date, acting in a completely different arena of non-protein, small molecules. 
We had difficulty explaining possible advantages in Benzene and Ethanol level elevations 
in pregnant cows. It could be an expression of the reduced antioxidative activity known to 
occur during pregnancy (Al-Guborya et al., 2010). 4-Hepenal is an alkene found in milk. It 
was patented as prophylactic and therapeutic agent for cancer treatment (US2012196864), 
as an agent for treatment of metabolic disease and skin disease (US2008234229; US7589239) 
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in humans. It is also an antagonist to reductase activity. The decrease in 4-Hepenal level 
during pregnancy probably contributes to reducing oxidative damage by reducing its anti-
reductase activity. On the other hand, it might reduce the possibly favorable effect of its 
antimicrobial activity. This implies the complexity of the discovered chemistry and its 
interpretation. 1-Octene-3-one is a degradative reduction product of skin lipid peroxides 
with Fe+2. Its reaction with CO2 attracts several species of mosquitos (Takken & Kline, 
1989). Behar, 2018 (personal communications) found that 1-Octene-3-one increased 
horses’ susceptibility to infection by SIMBU group viruses. 95% of the cows in the study 
herd are positive to SIMBU viruses as indicated by levels of antibodies in sera sampled in 
the last two years. The role of these viruses in the increased abortion rates observed in 
this herd is being studied presently. Application of environmental management to reduce 
presence of these viruses’ vectors is also being tested presently. Pinocarvone (2(10)-pinen-
3-one) possesses anti-microbial and anti-fungicidal activity. It is commercially produced 
from Tasmanian Blue Gum (Eucalyptus globulus) to ease skin irritations in humans. The 
increased level of pinocarvone might be connected to the increased level of 1-Octene-3-
one since each produces an opposite effect. 

Conclusions

This paper proposed a new nano technology for early pregnancy detection based on 
identifying unique VOCs, or profiling VOCs specific to pregnancy in cows’ urine. The 
electronic nose used in this study showed great promise as an accurate, fast, non-invasive 
tool applicable in farm conditions. The earliest pregnancies detected were a few days old, 
possibly revealing VOCs characteristic to pregnancy establishment that are unfamiliar as 
such to-date. These VOCs need to be further researched. Their chemical structures and 
activities suggest pathways aimed to decrease oxidative damage inherent in pregnancy, 
and they might bear a potential for pregnancy supporting protocols. Furthermore, the 
possibility to detect pregnancy at such an early stage, may provide important information 
concerning early embryonic deaths, and possibly even embryogenesis and embryo 
implantation. These data are unavailable to-date, hindering treatment in a crucial stage 
of production. 
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Abstract

The use of near infrared reflectance spectroscopy (NIRS) was explored to predict macro 
and micro mineral concentrations in hay samples. Hay samples (n = 37) from different 
locations in Ireland representing a wide distribution of grass species, season, time 
of harvest and soil types were used to examine the impact of sample preparation and 
presentation procedures (presence of residual moisture (RM) and particle size (PS) variation 
i.e. 0.5 and 1 mm) on resultant NIRS calibration and prediction statistics. The samples 
were scanned in reflectance mode using NIRS DS2500 (1,100 – 2,500 nm) and analysed for 
Ca, P, Mg, S, Na, Mn, Fe, Cu and Zn using inductively coupled plasma mass spectrometer 
(ICP - MS) for computation of reference data. Calibration models (n = 24) were developed 
using modified partial least squares regression (MPLS) based on cross-validation and 
tested using a validation set (n = 13). To optimise calibration accuracy, mathematical 
treatments (first and second derivatives) of the spectra and scatter corrections (SNV and 
Detrend) were applied. Better calibration statistics were obtained at 0.5 mm particle size 
without re-drying samples for Mg, S, Na, P and Fe. However, calibrations for Mn and Cu 
performed better at 0.5 mm with re-drying. The predictability of each mineral seems to be 
more affected by particle size than residual moisture. Overall, these results showed that 
NIRS prediction accuracy for different minerals vary with the sample preparation and 
presentation procedure. 

Keywords: NIRS, mineral analysis, particle size, residual moisture

Introduction

Minerals are essential in horse nutrition as they play vital roles such as formation of 
structural components, enzymatic cofactors, energy transfer, and as integral parts of 
vitamins, hormones and amino acids (Nutrient Requirement of Domestic Animals, 2007). 
The horse obtains most of its required minerals from pasture, roughage, grains and 
mineral supplements. It is essential to know the mineral composition of these forages. 
However, chemical reference methods for the determination of mineral components are 
laborious and time consuming (De Boever et al., 1995). 

Near-infrared reflectance spectroscopy (NIRS) is widely accepted as a good tool for the 
analysis of several chemical constituents in different tissues of plant species. The technique 
is extremely rapid, non-destructive, involves no sample preparation, and is less expensive 
than conventional methods (Pestico et al., 2008). It is based on selective absorption of 
electromagnetic radiation from 800–2,500 nm in accordance with the characteristic 
vibration frequencies of functional groups (De Boever et al., 1995). Components measured 
include total N, moisture, fibre, starch, individual sugars, amino acids and plant tannins 
(Foley et al., 1998). 

The use of NIRS for the analysis of elements in forages was first reported by Shenk et 
al. (1981). NIRS has been used to determine macro and micro elements in a wide range 
of agricultural products and foods (McClure, 2003). However, these have produced 
contrasting results with low accuracy and precision. This could be attributed to the 
absence of absorption bands for minerals in the near-infrared region (Shenk et al., 1992). 
Moreover, it is not clear which mineral element can be determined using this technique. 
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The determination of minerals by NIRS is generally dependent on the occurrence of those 
minerals in organic or hydrated molecules (Clark et al., 1987; Vazquez de Aldana et al., 
1995). Also, mineral determination varies among species, or mineral percentages may 
simply be correlated to some organic material that the NIRS can easily measure. 

The determination of the nutritional composition of feed and forage samples using NIRS 
is based on developed calibration models. This involves the derivation of a mathematical 
relationship between reference values obtained with a standard method and the spectral 
data. This information should be gleaned for many samples and should be representative 
of the normal sample variation (De Boever et al., 1995). The accuracy of NIRS calibration 
models can be altered due to changes in sample moisture content (Baker et al., 1994; 
Dardenne et al., 1995). Consequently, lengthy procedures such as the spectral meaning of 
scans (De Boever et al., 1997), the removal of residual moisture (RM) through additional 
oven drying (Givens et al., 1991) and the creation of repeatability files (Baker et al., 1994; 
Dardenne et al., 1995) have been developed. In addition, particle size (PS) variation has 
been reported to account for up to 90% of the variation in the spectral profile (Baker and 
Barnes, 1990). In a study by Lovett et al. (2005), it was observed that particle comminution 
consistently improved prediction accuracy as samples ground to pass a 1 mm screen 
provided the lowest standard error of cross validation (SEC) and/or standard error cross-
validation (SECV) statistics with most parameters investigated. Hence, the right sample 
preparation and presentation method for the achievement of accurate and reliable 
mineral analysis is critical. 

Therefore, the objectives of this study were to determine the effect of variation in 
particle size and the presence of residual moisture for optimum sample preparation and 
presentation on calibration models and improvement of predictive accuracy for mineral 
analysis using the NIRS.

Materials and methods

Sample description and preparation 

A population of hay samples (n = 37) representative of those fed to horses from different 
locations in Ireland was used for this study. Locations varied in soil characteristics 
(texture, organic matter, N content, pH) and farm management with the primary aim to 
maximise variability of the samples. The samples were dried at 105 oC in a fan oven to a 
constant weight, ground through a 0.5 and 1.0 mm screen in a Cyclotec mill and stored in 
polyethylene containers. 

Examination of the effect of particle comminution (milled through a 0.5- or 1.0- mm 
screen) and sample residual moisture content on NIRS spectra resulted in four treatment 
combinations. Initially, samples were passed through a 1 mm screen using a Cyclotec 
mill (FOSS) and subsequently scanned. The same sample was then passed through a 0.5 
mm screen and scanned. At each stage, the samples were scanned with or without the 
presence of residual moisture. The removal of the residual moisture was achieved by an 
additional oven drying for one hour at the original oven temperature (105 oC) and then 
cooled in the desiccator. 

Reference data acquisition

About 0.5 g portion of ground sample was digested with 10 mL of concentrated nitric acid 
in an open vessel using a digiblock digester (Labtech, ED36S model). Samples were cooled 
to room temperature, filtered and made up to 100 mL with deionised water. The samples 
were stored at 4 ºC until analysis. The samples were analysed for Ca, P, Mg, S, Na, Mn, Fe, 
Cu and Zn in duplicate using the ICP-MS for computation of reference data. 
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NIRS acquisition of spectra data

Ground and dried forage samples were placed in a 50 mm diameter ring cup and scanned 
in reflectance mode at 4 nm intervals from 1,100–2,500 nm using a DS2500 Foss NIRS 
system. WinISI 4.0 software was used for spectral data collection, spectral processing and 
calibration development. Reflectance data were stored as the logarithm of reciprocal of 
reflectance (1/R). The samples were subsequently divided into calibration (n = 24) and 
validation (n = 13) sets.

Statistical Analysis

Calibrations were performed by modified partial least squares regression (MPLS). To 
optimise the accuracy of calibration, several scattering corrections and mathematical 
treatments were tested (standard normal variate, (SNV); De-trending, (DT); first derivative 
and second derivative). Assessment of the calibration model was performed by cross-
validation. This was applied to avoid overfitting. During cross-validation, the calibration 
set was divided into five groups, using one group to check the results and the other four 
to construct the calibration model. Samples with high prediction residuals values, which 
were more than 2.5 times SECV were eliminated. The best calibration model was selected 
for each mineral based on the lowest SEC, SECV and highest 1-variance ratio (1-VR) (Stone, 
1974). 

After the development of calibration models, the models were subjected to external 
validation by application to a validation set. Spectra were recorded seven times and the 
spectral average was taken. The predicted values were compared with the laboratory 
results obtained. The prediction capacity of the model was assessed using the ratio 
performance deviation (RPD) parameter, defined as the relationship between the standard 
deviation (SD) of the chemical method for the collation of the reference data and that 
of the standard error of prediction (SEP) of the NIRS model (Chang et al., 2001). Three 
categories of RPD values have been reported: category A with a SD/SEP > 2.0 for good 
models, category B with SD/SEP between 1.4–2.0 for models that could be improved using 
different calibration strategies, and category C with SD/SEP < 1.4 for models that may not 
be reliable for prediction using NIRS (Chang et al., 2001).

Results and discussion

Mineral composition of hay 

The statistical data for the population sets used in calibration and validation processes for 
both macro-minerals and micro-minerals analysed are presented in Table 1. The samples 
analysed varied considerably in mineral composition as shown by the range and CV. This 
is possibly as a result of the variation in soil types, fertilizer management and location. 
For the macro-minerals, the coefficient of variation (CV) was similar for all the minerals 
except for Na (54.27%). The wide variability obtained in Na concentration was also reported 
by Clark et al. (1987) within a single species and by Vazquez de Aldana et al. (2008) in a 
mixed grass species. The high variability in Na concentrations could be attributable to 
differences in Na translocation to different plant structures. While there tend to be very 
little Na translocation to storage and reproductive structures via phloem transport, most 
of the Na translocation is towards the vegetative structure via xylem transport (Subbarao 
et al., 2003). Coefficient of variation for Mn and Fe (82.50–95.44%), respectively, were the 
highest for the micro-minerals. The variability in elemental composition was considered 
suitable for developing NIRS calibrations for these elements.
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Table 1. Statistical summary of the macro and micro mineral composition of samples for 
calibration and validation. standard deviation (SD); coefficient of variation (CV)

Mineral Mean Range SD CV (%)

Macro-mineral (g kg-1 DM)

Ca 4.17 2.54 – 6.26 1.099 24.45

P 2.09 0.99 – 3.24 0.521 24.94

Mg 1.26 0.62 – 1.72 0.313 24.70

S 1.37 0.77 – 1.76 0.289 21.21

Na 1.82 0.20 – 4.60 0.990 54.27

Micro-mineral (mg kg-1 DM)

Mn 135.33 28.70 – 483.00 111.640 82.50

Fe 74.53 31.30 – 220.30 71.122 95.44

Cu 3.79 2.00 – 6.00 1.056 27.91

Zn 19.31 11.00 – 33.70 4.821 24.97

NIRS calibration statistics

Table 2 shows the calibration equations selected from the four treatment combinations 
resulting in the best statistics for the prediction of each of the minerals in hay samples. 
For the macro-nutrients, sample combinations of 0.5 mm and dried, resulted in the best 
calibration statistics for P, Mg, S, and Na. This could be attributed to less spectral noise 
caused by particle size and moisture band disturbance. Similar to the trend observed in 
the calibration statistics for macro-minerals, sample combinations consisting of lower 
particle size (0.5mm) resulted in better calibration models for Mn, Fe and Cu; however, the 
effect of moisture contents varied. 

The R2 for macro and micro minerals are within the range of 0.83–0.95 and 0.93–0.95, 
respectively, similar to the R2 reported by Vazquez de Aldana et al. (2008) and Ruano Ramos 
et al. (1999). The R2 may not be a suitable indicator of evaluating NIRS models of minerals 
because NIRS is not directly measuring the minerals (Huang et al., 2009). This is noticeable 
from the increased variation ratio of Fe (based on 1-VR value of 0.33) but with a high R2 of 
0.9517.

NIRS validation statistics

As previously stated, the best calibration model from the four sample combinations were 
selected for each of the minerals. It was expected that the selected calibration models 
generate the most accurate and reliable validation statistics, however, this was not 
the case. It was observed that calibration equations that were less statistically reliable 
resulted in better prediction when tested on the validation set for all the minerals except 
for S and Mn. This could possibly be attributed to the need for the expansion of the 
sample population set for calibration and validation to increase variability as this was an 
exploratory study utilizing small population size.
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Table 2. Calibration statistics for measurement of minerals in hay samples. particle size in mm and 
residual moisture (PS (mm) + RM), coefficient of determination (R2), standard error of calibration 
(SEC), standard error of cross-validation (SECV); 1-variance ratio (1-VR)

Mineral PS (mm) +RM SEC R2 SECV 1-VR

Macro-mineral (g kg-1 DM)

Ca 1.0 dried 0.233 0.9522 0.627 0.6385

P 0.5 dried 0.148 0.9005 0.276 0.6370

Mg 0.5 dried 0.069 0.9583 0.189 0.6769

S 0.5 dried 0.115 0.8647 0.116 0.8545

Na 0.5 dried 0.457 0.8325 0.799 0.4662

Micro-mineral (mg kg-1 DM)

Mn 0.5 re-dried 30.597 0.9308 54.946 0.7662

Fe 0.5 dried 2.8922 0.9517 10.2507 0.3662

Cu 0.5 re-dried 0.2969 0.9331 0.6304 0.6856

Zn 1.0 re-dried 1.2939 0.9494 3.7472 0.5532

Table 3. Validation statistics of for NIRS prediction of minerals in hay samples. Particle size and 
residual moisture (PS (mm)+RM), coefficient of determination (R2), standard error of prediction (SEP), 
1-variance ratio (1-VR), ratio performance deviation (RPD = SD/SEP)

Mineral PS (mm) +RM R2 SEP Bias RPD

Macro-mineral (g kg-1 DM)

Ca 0.5 re-dried 0.393 0.9 -0.35 1.244

P 1.0 dried 0.813 0.18 0.11 1.722

Mg 0.5 re-dried 0.348 0.20 0.0 1.25

S 0.5 dried 0.169 0.25 -0.01 1.12

Na 0.5 re-dried 0.222 0.55 0.09 1.127

Micro-mineral (mg kg-1 DM)

Mn 0.5 re-dried 0.346 86.709 27.947 1.206

Fe 1.0 dried 0.001 61.573 17.549 0.979

Cu 1.0 dried 0.547 0.491 -0.161 1.473

Zn 1.0 dried 0.550 3.075 0.282 1.413

Table 3 shows the details of the validation statistics for the best prediction of macro 
and micro minerals in hay. The RPD was consistently lower than 2 for all the minerals 
analysed. P, Cu and Zn had RPD values within the range of 1.4 - 2.0 suggesting models 
could be improved through different strategies. Even though RPD values of < 1.4 signify 
statistics with poor reliability (Ca, Mg, S, Mn and Na), further study is ongoing with larger 
population set to verify this by increasing the sample population size for the calibration 
and validation sets.
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Conclusion 

Smaller particle size (0.5 mm) and sample presentation without re-drying improved 
the calibration statistics of NIRS for macro-minerals, except for Ca. Accuracy of NIRS 
calibration and predictive models are altered due to changes in sample moisture and 
particle size. Overall, our study has shown that NIRS has potential to accurately quantify 
some minerals in hay. Further studies are ongoing to establish the best sample preparation 
and presentation for mineral analysis. 
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Abstract

Achievement of growth targets is crucial to enable dairy heifers to reach critical 
development goals at the optimal age, to achieve first calving at 24 months. Feed costs are 
a significant proportion of the rearing costs, thus incentivising more precise and effective 
use of concentrate supplements. The objective of the study was through precision 
feeding at grass whilst achieving growth targets, to reduce the variation in weight gain of 
heifers. Holstein heifers (n=63) were assigned to three treatments across three replicates 
- individually supplemented, group supplemented and no supplementation. The study 
commenced on 08 August 2018 and ran for 69 days. In-field precision supplementation 
hubs allocated concentrates individually, recording several parameters: visit data, water 
consumption and live weights. Heifer live weights were also manually recorded on a weekly 
basis. Targeted heifer live weight performance day-1 and concentrate supplementation 
levels were updated weekly. Grass samples were taken weekly for nutritional analysis 
to calculate concentrate allocation. Heifer behaviour was monitored using Ice Robotics 
activity sensors, recording standing and lying bouts throughout the duration of the study. 
All treatments were allocated 1.8% of live weight in grazed grass day-1. The supplemented 
treatments and the pasture only treatment heifers grew at 1.18 kg day-1 and 0.85 kg day-1, 
respectively (P < 0.032). Treatment had an effect (P < 0.006) on the utilisation of the pasture. 
Tailoring supplementation to individual heifers compared with group feeding reduced the 
mean amount of concentrates used.

Keywords: grazing, heifers, supplementation 

Introduction

The ability of heifers to reach puberty, cycle normally and conceive at the desired time is 
crucial for the physical and economic performance of the heifer rearing process (Brickell et 
al., 2009). Twenty four months is widely recognised as the optimal age at first calving (AFC) 
for animal health, productivity, as well as the economic performance through minimising the 
non-reproductive rearing period (Wathes et al., 2014). Nutrition and breeding management 
are two important factors in the control of the farmer, to achieve an AFC of 24 months. 
The consistent achievement of growth targets is imperative to enable dairy heifers to reach 
critical development goals, at the optimal age to achieve 24 month AFC (Cozler et al., 2009). 
The management of feeding is especially important post weaning as this is a time of great 
physiological change when heifers reach sexual maturity. Heifers often experience a growth 
check post weaning at the start of their first grazing season (Cozler et al., 2009). Grazed grass is 
a comparably cheap grazed feed source in ruminant livestock systems (Patton et al., 2016). The 
profitability of such systems is determined by their ability to convert the cheaply produced 
grass into high quality products whilst maximising grass utilisation (Dillon et al., 2008). The 
limitations of a grazed grass diet is the inconsistency in its growth and nutritional quality 
across the season, which can make achieving consistent heifer growth challenging. A common 
method of overcoming this challenge is the supplementary feeding of concentrates (Boulton 
et al., 2015). Feed costs are a significant proportion of heifer rearing costs, with concentrate 
supplements more expensive than grazed grass, thus incentivising more precise and effective 
use of concentrate supplements. Advancements in precision technology through electronic 
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identification and automated concentrate feeders, has made the individualised management 
of cows possible (Hills et al., 2015). Precision feeding allows concentrate supplements to be fed 
on an individual heifer requirement basis, opposed to a more basic ‘flat rate’ system (Purcell 
et al., 2016). Feeding heifers a flat rate of concentrates at grass can increase rearing costs 
unnecessarily and limit the utilisation of pasture. The objective of this study was to reduce 
the variation in the weight gain of heifers within a grazing group, through the use of strategic 
individualised precision feeding. Mobile in-field precision supplementation hubs (Biocontrol, 
Norway) were designed at AFBI Hillsborough for use in the study. The hypothesis of the study 
was that: there is less variation in live weight between heifers when they are fed individually; 
less concentrates are required on a group basis; and pasture utilisation would be significantly 
higher in the non-supplemented treatment compared against the supplemented treatments. 

Materials and methods

This study was carried out on the AFBI Hillsborough research farm, on a 16 ha block of 
grassland. The experimental design comprised three treatments with three replicates. 
Holstein heifers (n = 63) were assigned to three treatments in groups of seven, balanced 
on their age and weight averaging nine months old and 250 kg. The treatments comprised 
an individually tailored supplementation (IS), a group average supplementation (GS) and 
no supplementation (NS). The study commenced on 08 August 2018 and continued for 69 
days until 16 October 2018. In-field precision supplementation hubs allocated concentrates 
individually, recording animal visit data, water consumption and live weights at each visit. 
Heifer live weights were recorded on a manually operated and calibrated weighbridge (Tru 
Test Ltd, UK) on a weekly basis. 

Desired live weight performance per day and concentrate supplementation levels were 
updated weekly for each heifer on the supplemented treatments. They were calculated 
on the daily live weight gain required day-1 to achieve target live weight gain; pasture dry 
matter (DM); pasture metablolisable energy (ME); concentrate supplement DM and ME; 
and optimal grass metablolisable energy intake. A formula was used to calculate energy 
demands and balanced the level of concentrates with the amount of energy supplied from 
pasture (T Yan., 2017).

The individually supplemented heifers received meal through the precision feeders, whilst 
the group average treatment received meal through troughs. Grass quality samples were 
taken weekly to calculate concentrate allocation. Five samples were taken randomly within 
the paddock (0.2 m2 above 4 cm) and were scanned fresh via near infrared spectrometry 
to determine water soluble carbohydrate (WSC), crude protein (CP), acid detergent fibre 
(ADF) and metabolisable energy (ME).

All treatments were rotated throughout a system of grazing paddocks on a weekly basis, 
with the precision supplementation hubs moving with each group. All treatments were 
allocated a pasture allowance based on 1.8% of live weight in grazed grass kg DM day-1. 
Paddock length was adjusted to achieve the desired paddock area and calculated based 
on the kg DM demand of the group. Paddock area was measured using a measuring wheel 
(Forge Steel, UK) to the nearest 0.1 m.

Compressed sward heights were measured with a rising plate meter (Jenquip, New Zealand) 
and recorded on animal entry and exit of each paddock. Herbage mass was calculated 
using a predetermined equation calibrated at AFBI Hillsborough (Dale, 2010) and validated 
weekly by taking grass clippings (Bosch, UK) of 0.2 m × 1 m across five random plots 
within each paddock (total 1.0 m2) cut to an estimated stubble height of 4 cm. Samples 
collected were weighed fresh and submitted for laboratory analysis to determine the oven 
DM (dried at 60 oC for 72 h). 
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Heifer behaviour was monitored using Ice Robotics activity sensors (IceRobotics, UK), 
recording standing and lying bouts throughout the duration of the study. The data were 
analysed using GenStat (VSN International, 2015). Data gathered at multiple time points 
on individual heifers were analysed using a linear mixed model with repeated measures.

Figure 1. A heifer feeding from an in-field precision supplementation hub

Results and discussion

The statistically analysed results are the liveweight records from the Tru Test weighbridge. 
The heifers on the IS and GS treatments both grew at an average of 1.18 kg day-1, whilst 
the NS treatment grew 0.33 kg day-1 less at 0.85 kg day-1 (Table 1).

Treatment had an effect (P < 0.006) on the utilisation of the pasture, being lowest in the 
individually supplemented treatment, increasing by 4% and 6% for the group supplemented 
and no supplement treatments, respectively (Table 1). 

Tailoring supplementation to individual heifers compared with group feeding reduced the 
amount of concentrate supplement required to achieve similar weight gain by 11.5 kg 
heifer1 across the study (Table 2). Heifers receiving the individual supplements on average 
consumed 89% of the amount they were allocated. 

Table 1. The effect of concentrate supplementation method on heifer growth and grazing utilisation

  Individual 
supplement

Group av. 
supplement 

No 
supplement SED P value

Mean live weight (kg) 298 290 283 6.74 0.145

Average weight gain (kg/day) 1.18a 1.18a 0.85b 0.11 0.032

Pasture utilisation (%) 81.6 86.1 88.0 3.1 0.006

The IS, GS and NS treatments reduced the proportion of heifers within each group below 
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target weight for age by 34%, 38% and 20% respectively (Table 2). The total amount of 
concentrates consumed over the study period by each individual heifer on the IS treatment 
ranged from 37 kg to 186 kg, with a group mean of 106 kg (Figure 1).

Table 2. The effect of concentrate supplementation method on concentrate use and group 
performance

Individual 
supplement

Group av. 
supplement No supplement

Mean total conc consumed (kg/hd) 106 118 0

Under target weight at start (%) 48 57 53

Under target weight at end (%) 14 19 33

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

To
ta
l	c
on
ce
nt
ra
te
	co

ns
um

ed
	(k

g)

Heifer

Figure 2. Variation in total concentrates consumed between heifers fed individually across the study 
period

Tailored individual feeding of concentrates has had a significant role over previous decades 
within indoors system in increasing production and improving efficiencies, especially 
regarding dairy cows. This study has highlighted the potential to reduce concentrate use 
through more specific feeding within a grazing system. Further work to focus on from this 
study includes tying the feeding behaviour of the heifers on the feeders with the weather 
data and their activity data.

Conclusion

Pasture utilisation for the supplemented groups was significantly lower than the non-
supplemented treatment. The mean concentrate supplement required per heifer for the 
same mean daily live weight gain was less for the individually supplemented heifers than 
the group supplemented.
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Abstract

In response to predicted climate change and the growing interest of consumers in livestock 
farming, the heat load and welfare of dairy cows have become increasingly important. 
The objective of the study was the investigation of the accumulation of heat load and 
intensity on the individual activity changes of lactating dairy cows. The results of our 
analysis constitute the basis for the development of algorithms for early detection of heat 
load in dairy cows and for the optimization of the barn climate. The study was conducted 
from June 2015 to May 2017 in a naturally ventilated barn in Germany. The climate was 
measured at eight locations inside of the barn and the average temperature-humidity 
index was calculated every ten minutes. The activity of the dairy cows was measured 
using accelerometers and described with several behavioural traits per cow and day. The 
statistical models included autocorrelations in time series and cow individual factors (e.g. 
lactation number, lactation stage etc.). The results of the barn climate measurements 
showed distinct periods of heat exposure. The dairy cows individually changed their 
activity depending on the heat load duration and intensity. For example, with increasing 
heat load the lying time decreased, and the number of steps increased. The accumulation 
of heat load during three days preceding the measurement day led to less pronounced 
activity changes at the measurement day. Furthermore, the first lactating cows and the 
cows in an advanced stage of lactation showed the most pronounced changes in terms of 
heat load impact.

Keywords: temperature-humidity index, heat load accumulation, cow individual activity, 
time series analysis

Introduction

To reduce the adverse effects of heat load, it is important for the farmers to know when 
the cows suffer from heat load and to correspondingly cool cows to help them effectively 
off-load heat. In addition to physiological thermoregulatory responses to heat load (de 
Andrade Ferrazza et al., 2017; Toušová et al., 2017), cows change their activity (Brzozowska et 
al., 2014; Endres and Barberg, 2007) to reduce the production of metabolic heat and sustain 
their normal body temperature. Currently, the temperature-humidity index (THI) with 
different thresholds is the standard method to define the intensity of heat load conditions. 
The study of Heinicke et al. (2018) determined a heat load threshold of 67 THI that led to 
changes in different activity traits of lactating high-yielding dairy cows. Furthermore, this 
study revealed that the average daily THI, as well as the heat load duration concerning 
the accumulation of heat load on the measurement day, should be considered for the 
evaluation of the heat load of cows. West et al. (2003) found that during a hot period, 
the heat load two and three days preceeding the measurement day had a greater impact 
on milk yield and dry matter intake than the actual values on the measurement day. 
It would be interesting to analyse the activity response during heat load accumulation 
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for several days preceeding the measurement day. Generally, the data obtained from 
activity monitoring systems should be compared with individual cow factors, because 
they influence the activity of the individual cows (Bewley et al., 2010; Brzozowska et al., 
2014; Maselyne et al., 2017). The objective of the study was the investigation of individual 
activity changes of lactating high-yielding Holstein-Friesian cows regarding the heat load 
accumulation and intensity in a moderate climate zone.

Material and methods

Barn design and animals

The data were recorded from June 2015 to May 2017. The experimental farm was located 
in a moderate climate zone in Brandenburg, Germany. The measurements were carried 
out in a naturally ventilated dairy barn (39 × 18 m) with a loose housing system. The 
height of the fiber cement roof varied from 6.2 m at the gable peak to approximately 3.6 
m at the sides. The barn was equipped with 51 lying cubicles, with a mixture of straw and 
lime as bedding material, and an automatic milking system (Lely Astronaut A4, Maassluis, 
Netherlands). Additionally, there was a fan system for cross ventilation (Figure 1). The 
herd consisted of approximately 51 Holstein-Friesian cows (first to eighth lactation) that 
had an average daily milk yield of 40.7 ± 6.8 kg per cow. 

Barn climate measurements

The ambient temperature and relative humidity within the barn were automatically 
measured every 10 minutes using EasyLog USB 2+ sensors (Lascar Electronics Inc., Erie, 
Pennsylvania, USA). The sensors were positioned at eight locations inside the barn (Figure 
1) and 3.4 m above the floor. In this study, the THI based on the formula of the National 
Research Council (1971) was applied:

 THI = (1.8×T+32)-(0.55-0.0055×RH)×(1.8×T-26), (1)

where T is the dry bulb temperature in °C, and RH is the relative humidity in per cent. The 
THI calculations of all eight measurement points were averaged afterwards per time point 
(every 10 min). This resulted in 144 THI values per day to describe the climate conditions 
inside the barn. In addition, the heat load intensity (THI level) for each time point was 
categorized as THI < 68 (no heat), 68 ≤ THI < 72 (mild heat), 72 ≤ THI < 80 (moderate heat), 
and 80 ≤ THI (severe heat) (Armstrong, 1994; Zimbelman and Collier, 2011). The estimated 
climate effects regarding the average daily THI and the heat load duration per heat load 
intensity are described in Table 1. 

Figure 1. Layout of the naturally ventilated dairy barn with the temperature humidity sensor positions 
as black points



760      Precision Livestock Farming ’19

Table 1. Definition of the estimated climate effects

Contemporaneous heat load effects 

THIt Average daily temperature-humidity index (THI) on the measurement day (t)

 HLDTHIϵ[68,72)
t

Mild heat load duration (number of time points with 68 ≤ THI < 72 on t)

 HLDTHIϵ[72,80)
t

Moderate heat load duration (number of time points with 72 ≤ THI < 80 on t)

 HLDTHIϵ>80
t

Severe heat load duration (number of time points with THI ≥ 80 on t)

Delayed heat load effects 

THIt-1 Average daily THI one day preceding the measurement day (t-1)

THIt-2 Average daily THI two days preceding the measurement day (t-2)

THIt-3 Average daily THI three days preceding the measurement day (t-3)

HLDTHIϵ[68,72)
t-1,t-2,t-3

Mean mild heat load duration of all three days preceding the measurement day, 
given that 68 ≤ THI < 72 on at least one time point on each of the three days (t-1, 
t-2, t-3)

HLDTHIϵ[72,80)
t-1,t-2,t-3

Mean moderate heat load duration of all three days preceding the measurement 
day, given that 72 ≤ THI < 80 on at least one time point on each of the three days 
(t-1, t-2, t-3)

 HLDTHIϵ≥80
t-1,t-2,t-3

Mean severe heat load duration of all three days preceding the measurement day, 
given that THI ≥ 80 on at least one time point on each of the three days (t-1, t-2, t-3)

Activity measurements

The cows were equipped with an IceTag3DTM activity sensor (IceRobotics, Edinburgh, UK) 
on one hind leg. The IceTag3DTM is a noninvasive, electronic sensor that measured animal 
activity with three-dimensional acceleration technology. Per day the activity of 35–50 
cows was recorded. Because of the permanent fluctuation of incoming and outgoing cows 
within the experimental herd, there was a data collection of activity values for in total 196 
different cows during the whole experimental period. The analysed activity traits included 
the total lying time (LT) and the number of steps (NS) per cow and day.

Statistical data analysis

For each activity trait, a linear mixed model was used to test the influence of the 
contemporaneous and delayed heat load effects on the activity of the cows. In addition, 
the following individual cow factors were included in the models as a single effect and in 
interaction with the effects that describe the heat load duration: milk production level 
(Milkt

low; Milkt
normal; Milkt

high), lactation number (Lt
1; Lt

2,3; Lt
≥4), days in milk (DIMt

1-60; DIMt
61-150; 

DIMt
>150, pregnant status (Gt

0; Gt
1-90; Gt

91-180; Gt
>180), estrus status (It,t-1

estrus. The reference group 
included the cows which were classified in all of the following factor levels: Lt

1, DIMt
1-60, 

Milkt
normal, Gt

0, not in estrus. The models incorporated the random effects of the individual 
cows, and the within-cow temporal correlation structure was modeled by autoregressive-
moving-average-processes. The variables were chosen based on the model diagnostics. 
The model can be written as;
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yijklmnt = µ + a∙THIt + b∙THIt-1 + c∙THIt-2 +d∙THIt-3 

 + Milki + Lj + DIMk + Gl + Im

 + fijkl ∙HLDt
THIϵ[68,72) + gijkl ∙ HLDt

THIϵ[72,80) + hijkl ∙ HLDt
THI≥80

 + iijkl∙ HLDTHIϵ[68,72)
t-1,t-2,t-3  + j_ijkl∙ HLDTHIϵ[72,80)

t-1,t-2,t-3  + k_ijkl∙ HLDTHIϵ≥80
t-1,t-2,t-3

 + cown  + eijklmnt,   (2)

where 

yijklmnt is the observed value of the activity trait; µ is the general mean; a, b, c, d are the 
regression coefficients for the average daily temperature-humidity index (THI) on the 
measurement day (t) and one (t-1), two (t-2), and three (t-3) days preceding the measurement 
day; Milki is the fixed effect of the i-th level of milk production; Lj is the fixed effect of the 
j-th number of lactation; DIMk is the fixed effect of the k-th stage of lactation; Gl is the fixed 
effect of the l-th trimester of pregnancy; Im is the fixed effect of the m-th stage of estrus; 
fijkl, gijkl, hijkl, iijkl, jijkl, kijkl are the regression coefficients for the interactions of the individual 
cow factors with the heat load duration (HLD) on the measurement day (t) and the three 
days before (t-1,t-2,t-3) per heat load intensity; cown is the random effect of the n-th cow, 
and eijklmnt is the random residual. 

The null hypotheses for all tested traits were that the contemporaneous and delayed heat 
load effects, as well as the individual cow factors, had no effect on the activity traits of the 
dairy cows. The significance level for the linear mixed model was 0.05. All analyses were 
performed using the free statistical software R version 3.4.2 (R Development Core Team, 
2017). The linear mixed models were estimated using the lme-function from the nlme-
package (Pinheiro et al., 2014).

Results and discussion

Barn climate conditions

The THI values (at least a period of 10 min) ranged from 20.4 THI to 86.0 THI during 
the experimental period. The measured climatic conditions were similar to THI values 
recorded previously in dairy barns in adjacent regions (Ammer et al., 2016; Lambertz et 
al., 2014). From May to September, heat load duration was strongly pronounced. The heat 
load duration exceeding the heat load threshold of 68 THI ranged between 84 h month-1 
and 480 h month-1. In contrast, heat load duration was minimal or zero from October to 
April. The average THI per month decreased to 37 THI in winter and increased up to 70 THI 
in summer. Other studies also indicated the highest THI values and the associated heat 
load from April to September (Gorniak et al., 2014; Lambertz et al., 2014). The longest heat 
load duration exceeding the heat load threshold of 68 THI was observed in August 2015 
(Figure 2). The daily heat load duration of the different heat load intensities showed large 
differences between the individual days. The daily heat load duration was achieved for up 
to 24 h for several consecutive days without a relief phase between the days. Therefore, it 
is recommended for farmers to react with practical mitigation measures like ventilation, 
cooling or sprinkler systems to reduce heat load during this period. Compared to the 
existing literature, our study provides additional information to heat load of the cows 
because of the supplementary specification of heat load duration. The heat load duration 
includes information on how long the cows were exposed to heat load per day. It will be 
important to analyse the activity changes during heat load accumulation for several days. 
Furthermore, the information of daily heat load duration indirectly shows the variance 
of average THI during the day and therefore, conclusions can be drawn about heat load 
periods and recovery periods of the cows.
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Figure 2. Daily average temperature-humidity index (THI) during August 2015 (mean THI, 95% 
confidence limits for mean THI), as well as the daily heat load duration regarding the heat load 
intensities

Changes in the total lying time

The significant results of the linear mixed model for LT are presented in Table 2. Under 
conditions without heat load on the measurement day and the days before, the daily 
LT of the cows in the reference group was approximately 647 min. If the characteristics 
of the cow differed from the reference group, in addition the significant individual cow 
factors must be taken into account to determine the estimated LT. For example, low-
producing cows were found to lie down more than cows with a normal or high level of 
milk production, and LT in Lt

≥4 increased by 52 minutes d-1 compared with LT of cows in 
earlier lactations. Cows with DIMt

>150 lay down approximately 19 minutes per day more 
than cows with less than 150 DIM. Similar findings have been reported by Bewley et al. 
(2010), Endres and Barberg, (2007), and Maselyne et al. (2017). The contemporaneous heat 
load effects were negatively correlated with LT. In addition to the general negative effect 
of THIt, the LT in the herd decreased with increasing intensity and duration of heat load. 
There was a reduced daily LT to 479 minutes for cows in the reference group with heat load 
on the measurement day and without heat load the days before. The decrease in LT during 
heat load conditions agrees with the findings from the literature (Endres & Barberg, 2007; 
Herbut & Angrecka, 2018). The predicted reduction in LT with increasing severe heat load 
duration by 10 minutes was higher in cows with DIMt

61-150 and DIMt
>150 compared to that in 

cows with DIMt
1-60. The delayed heat load effects were positively related to LT. The result 

was that the daily LT of cows in the reference group increased again to 568 minutes when 
there was heat load on the measurement day and additional heat load during the three 
days preceding the measurement day. The cows with Lt

≥4 reacted less strongly to increasing 
moderate heat load duration compared with cows in earlier lactations. Previous studies 
that analysed the reactions of cows with lying deprivation illustrated the increasing lying 
motivation and the compensatory reactions (Cooper et al., 2007; Norring & Valros, 2016). 
They recognised that the cows recovered some of their lost lying time by rescheduling 
feeding and standing times.
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Table 2. The table reports the significant results of the linear mixed model for the total daily lying 
time in seconds per day depending on the different climate effects and individual cow factors. 
Standard errors of the predicted coefficients are in parentheses

Individual cow factors Contemporaneous heat load 
effects and interactions

Delayed heat load effects and 
interactions

Milkt
low

1,141.4*

(540.1)
THIt

-192.8*

(13.6)
THIt-1

109.1*

(13.4)

DIMt
61-150

133.7

(290.5)
 HLDt

THIϵ[68,72)
-23.8*

(3.7)
THIt-3

19.1*

(9.7)

DIMt
>150 

1,142.3*

(432.2)
 HLDt

THIϵ[72,80)
-47.6*

(3.2)
HLDTHIϵ[72,80)

t-1,t-2,t-3  
30.2*

(6.9)

Lt
≥4

3,115.0*

(1,102.6)
 HLDTHIϵ≥80

t-1,t-2,t-3

-58.9*

(12.7)
 x Lt

≥4
-25.7*

(9.6)

Gt
1-90

1,417.7*

(342.4)
 x DIMt

61-150
-40.1*

(16.1)
 HLDTHIϵ≥80

t-1,t-2,t-3

67.7*

(27.4)

Gt
91-180

1,088.8*

(553.7)
 x DIMt

>150
-58.3*

(17.4)
 x Lt

≥4
-80.5*

(36.3)

It,t-1
estrus 

-5,506.7*

(282.9)

* p < 0.05     THI values: 99648     activity values: 22221 Intercept
41,797.4*

(1,016.5)

Changes in the number of steps

The significant results of the linear mixed model for NS are presented in Table 3. The 
cows in the reference group had a daily NS of approximately 2,062 steps under climate 
conditions without heat load on the measurement day and the days before. The NS 
decreased with increasing DIM, increasing lactation number, and increasing gestation 
status. Similarly, Brzozowska et al. (2014) and Steensels et al. (2012) have verified that NS 
decreases with increasing days in milk. In contrast, the cows in estrus made significantly 
more steps than cows that were not in estrus. In general, increasing the average daily THI 
and heat load duration on the measurement day led to an increase in the NS. As a result, 
the daily NS increased to 2,482 steps when the cows in the reference group were exposed 
to heat load on the measurement day and without heat load the days before. It agrees 
with the findings by Endres & Barberg (2007). The contemporaneous heat load effects of 
mild and moderate heat load duration were dependent on the lactation number. The cows 
in Lt

2,3 and Lt
≥4 showed a weaker increase in the NS with increasing heat load duration on 

the measurement day compared with primiparous cows. In contrast, cows in Gt
>180 reacted 

more strongly to moderate heat load duration. The delayed effects of THIt, moderate and 
severe heat load duration were negatively related to the NS. However, THIt-2 was positively 
related to the NS. Consequently, the predicted daily NS for the cows in the reference group 
decreased to 2,207 steps under heat load on the measurement day and additional heat 
load during the three days preceding the measurement day. The delayed heat load effect 
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of mild heat load duration was dependent on the milk production level, and the effect of 
moderate heat load duration was dependent on the lactation number. 

Table 3. The table reports the significant results of the linear mixed model for the logarithmized 
number of steps per day depending on the different climate effects and individual cow factors. 
Standard errors of the predicted coefficients are in parentheses

Individual cow factors Contemporaneous heat load 
effects and interactions

Delayed heat load effects 
and interactions

Milkt
low

-0.0218

(0.0216)
THIt

0.0013*

(0.0006)
THIt-1

-0.0022*

(0.0007)

DIMt
61-150 

-0.0453*

(0.0112)
 HLDt

THIϵ[68,72)
0.0014*

(0.0003)
THIt-2

0.0016*

(0.0007)

DIMt
>150

-0.0609*

(0.0169)
 x Lt

2,3
-0.0007*

(0.0004)
HLDTHIϵ[68,72)

t-1,t-2,t-3

0.0001

(0.0003)

Lt
2,3

-0.1164*

(0.0365)
 x Lt

≥4
-0.0012*

(0.0004)
 x Milkt

low
0.0014*

(0.0005)

Lt
≥4

-0.3892*

(0.0448)
 HLDt

THIϵ[72,80)
0.0015*

(0.0003)
HLDTHIϵ[72,80)

t-1,t-2,t-3

-0.0019*

(0.0003)

Gt
1-90

-0.0509*

(0.0134)
 x Gt

>180
0.0024*

(0.0012)
x Lt

2,3
0.0009*

(0.0003)

Gt
91-180

-0.0532*

(0.0219)
 x Lt

2,3
-0.0006*

(0.0003)
x Lt

≥4
0.0020*

(0.0004)

Gt
>180

-0.0928

(0.0498)
 x Lt

≥4
-0.0009*

(0.0004)
 HLDTHIϵ≥80

t-1,t-2,t-3

-0.0013*

(0.0005)

It,t-1
estrus 

0.5204*

(0.0118)
 HLDTHIϵ≥80

t-1,t-2,t-3

0.0011*

(0.0003)

* p < 0.05     THI values: 99648     activity values: 22221
Intercept

7.5993*

(0.0410)

Conclusions

Our study confirmed that increasing duration and intensity of heat load led to a decrease 
in the lying time and an increase in the number of steps. In addition to earlier studies, we 
included a novel assessment of the influence of delayed heat load effects and individual 
cow factors under heat load on dairy cow activity. The cows showed a reduced activity 
response to heat load, when there was additional heat load accumulation during the three 
days preceding the measurement day. Our study found cow individual activity responses 
to heat load. The primiparous cows and the cows within an advanced stage of lactation 
reacted most sensitively to heat load. The heat load accumulation as well as individual 
cow factors should be considered in prediction models for sensitive animal-specific 
recognition of heat load based on information on activity responses.
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Abstract

ProWelCow (DAFM RSF - A 14/S/890), a nationally funded research project, was set up 
to investigate risks and strategies to protect/improve the welfare of Irish dairy cows.  
A questionnaire was conducted with dairy farmers (F; n = 115), cattle veterinarians (V; n 
= 60) and Teagasc dairy advisors (A; n = 48). The 223 respondents were asked, 1) Do you 
perceive that expansion in the dairy industry poses concerns for dairy cow welfare? 2) 
Identify the main causes of poor welfare in cows and, 3) Rank in order of importance the 
main reasons for culling. A high proportion (c. 80%) of respondents in all groups agreed 
that expansion poses challenges for cow welfare (P > 0.05). The majority of farmers (22.6%) 
chose poor body condition as the 1o welfare issue; advisors (10.4%) and vets (8.3%), (P < 
0.001). The majority of advisors (43.8%) chose social stress, different to farmers (14.8%, P < 
0.05) but not to vets (30.0%), (P > 0.05). The highest proportion of vets selected lameness as a 
primary welfare issue (28.3%); differed from advisors (2.1%) and farmers (13.0%) (P = 0.001). 
The main reason for culling cows was infertility, followed by lameness and mastitis/high 
SCC. Vets (P = 0.01) and advisors (P = 0.021) perceived infertility as the primary reason for 
culling more often than farmers. There was a lack of consensus regarding the importance 
of lameness and poor BCS between stakeholders. This was surprising, and worrying, but 
probably reflects the differing focus/areas of expertise between the groups. Given these 
results, greater cross-dialogue between stakeholder groups is required.

Keywords: dairy cow welfare, dairy herd expansion, survey, veterinarians, advisors, farmers

Introduction

The predominant model of dairy farming practised in Ireland is a pasture-based, seasonal 
(spring-calving) milk production system. Scientific evidence suggests that there are 
advantages and disadvantages to dairy cow welfare and reproductive performance 
associated with pasture-based systems of milk production (Olmos et al., 2009a, b, Mee, 
2012; Arnott et al., 2017). However, consumers perceive pasture-based systems as ‘natural’ 
and therefore better for cow welfare than confinement systems. This offers a marketing 
advantage to Irish dairy products. Irish systems of milk production will also have an 
advantage over countries in which milk is primarily produced from confined cows should 
legislation protecting cow welfare (and favouring pasture-based systems) be passed in the 
EU. It is speculated that such legislation would ensure that all dairy cows have some outdoor 
access. Such advantages could be threatened by expansion in the Irish dairy industry arising 
from the abolition of the EU milk quota (2015) because of associated risks to cow welfare. 
One of the main features of expansion de facto is larger herd sizes which are likely to be 
associated with higher stocking densities, lower number of labour units/cow and possibly 
longer walking distances (Boyle and Rutter, 2013). These characteristics have potential 
negative implications for dairy cow welfare (Oltenacau and Broom, 2010), particularly in 
terms of lameness (Barker et al., 2009) but also in terms of metabolic, climatic and social 
stress and health and welfare in the peri-parturient period (Boyle and Rutter, 2013). One 
of the first steps in addressing such potential problems comes from an understanding of 
levels of awareness amongst key stakeholders about cow welfare (Kauppinen et al., 2010). 
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Hence, the aim of this study was to evaluate perceptions about risks to welfare associated 
with expansion and the main challenges to dairy cow welfare associated with expansion.

Materials and methods

Three versions of a questionnaire of approximately 40 questions were developed. 
Questions in each version were tailored to the stakeholders/respondents group, tested and 
modified accordingly in conjunction with Teagasc dairy research and specialist advisory 
staff. The survey was conducted in the summer of 2015 with dairy farmers (n = 115) at 
two national farming events (The National Ploughing Championships and the Moorepark 
Open Day) and cattle veterinarians (n = 60) at the Cattle Association of Veterinary Ireland 
Conference by interview. The survey was distributed amongst Teagasc dairy advisors (n = 
48) at the beginning of an in-service training day at Moorepark. The advisors were asked 
to complete the survey themselves at the beginning of the day and the completed forms 
were collected by the researchers immediately afterwards. The researchers were available 
to answer queries while the advisors completed the survey.

Some questions were prompted, while others were open-ended. Regarding the latter, some 
irrelevant and obscure answers were obtained. These were omitted from the analysis. In 
the case of many of the questions, the answers obtained from dairy farmers related to the 
situation on their own farm at that time. In contrast, similar questions put to the advisors 
and vets captured information on their opinions as related to their background knowledge 
of the issue. This paper relates to the findings of three specific questions: namely, 1) Do 
you perceive that expansion in the dairy industry poses concerns for dairy cow welfare? 
(yes/no); 2) Identify the main causes of poor welfare in cows from the following list: 
lameness, poor body condition score, social stress due to overcrowding, mastitis, metabolic 
disorders, infectious diseases, cold stress and calving difficulties and, 3) number in order 
of importance of the main reasons for culling from the following list: infertility, lameness, 
mastitis/high SCC and other.

Statistical analysis

A Chi-Square Fisher test, (PROC FREQ, SAS), was used to investigate whether distributions 
of response frequencies differed between respondents. Relative standard errors (RSE) 
were calculated to estimate the precision of the estimates. Data in tables were compared 
statistically across rows (not down columns) between stakeholder groups.

Results

1) Do you perceive that expansion in the dairy industry poses concerns for dairy cow welfare?

A high proportion of respondents in all three groups reported that expansion in the dairy 
industry poses concern for cow welfare. This did not differ between stakeholder groups (P 
> 0.05) (Table 1).

Table 1. Opinions of advisors, farmers and cattle vets (%+RSE) as to whether there is a cause for 
concern about cow welfare in expanding Irish dairy herds*

Advisors Farmers Vets 

Yes 81.3±5.7 79.1±3.8 85.0±4.6

No 12.5±4.8 20.9±3.8 13.3±4.4

*Note, column totals do not add up to 100% because some respondents did not answer the question.
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2) Identify the main causes of poor welfare in cows 

Poor body condition was rated as a primary cause of poor welfare in dairy cows by the 
majority of farmers, while lameness was rated as a primary cause by the majority of 
vets (Table 2). Social stress due to overcrowding was selected as the primary reason for 
poor welfare by dairy advisors. It was equally important for advisors and vets, while less 
important for farmers (P < 0.05). Advisors did not agree with vets on the importance of 
calving difficulties for cow welfare (P = 0.013). Note, comparisons in Table 2 are made 
across rows, not down columns. Hence, while numerically more vets selected social stress 
than lameness or poor body condition as the primary cause of poor welfare, relative to 
farmers and advisors, more vets selected lameness as the primary cause of poor welfare 
i.e. row comparison.

Table 2. Opinions of advisors, farmers and cattle vets (%+RSE) as to the primary cause of poor 
welfare in Irish dairy cows*

Primary cause of poor 
welfare in dairy cows Advisors Farmers Vets 

Lameness 2.1±2.1a** 13.0±3.2a 28.3±5.9b

Poor body condition 10.4±4.5ab 22.6±3.9a 8.3±3.6b

Social stress due to overcrowding 43.8±7.2a 14.8±3.3b 30.0±6.0a

Calving related disorders or difficulties 18.8±5.7a 8.7±2.6ab 1.7±1.7b

Mastitis 2.1±2.1 10.4±2.9 3.3±2.3

Metabolic disorders 2.1±2.1 2.6±1.5 0.0

Cold stress 2.1±2.1 1.7±1.2 1.7±1.7

Infectious diseases 4.2±2.9 13.0±3.2 6.7±3.2

*Note, column totals do not add up to 100% because some respondents did not answer the question or provided 
only one primary cause. **Values with superscripts differ significantly within rows

3) Number in order of importance of the main reasons for culling in your herd

The main reason for culling cows on farms was infertility, followed by lameness and 
mastitis/high somatic cell count (Table 3). Vets (P = 0.01) and advisors (P = 0.021) perceived 
infertility as the primary reason for culling more often than reported by farmers. Vets 
and advisors agreed with farmers regarding mastitis/high somatic cell count as a reason 
for culling. The main disagreement between farmers and the other two groups related to 
lameness (with advisors: P = 0.05 and with vets P = 0.031). Almost 14% of farmers reported 
lameness as the main reason for culling their dairy cows while none of the advisors and 
only one vet cited it as the main reason for culling.
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Table 3. Opinions of advisors and cattle vets (%+RSE) about the main reasons for culling cows in 
Irish herds and the actual reasons for culling as reported by the surveyed farmers*

Primary reason for culling
Perceptions Reported

Advisors Vets Farmers

Infertility 81.3±5.7a** 81.7±5a 61.7±4.6b

Lameness 0b 1.7±1.7b 13.9±3.2a

High somatic cell count/mastitis 14.6±3.7 11.7±2.2 12.2±1.6

Poor performance 0 1.7±1.7 0

Other 0 0 1.8±0.9

*Note, column totals do not add up to 100% because some respondents did not answer the question or provided 
only one primary cause. **Values with superscripts differ significantly within rows

Discussion

It is perhaps not surprising to discover that members of all stakeholder groups equally 
(~80%) perceived that expansion in the dairy industry posed concerns for dairy cow welfare 
given the relatively close contact between Irish farmers and cattle vets and farmers and 
advisors. This suggests that within the Irish dairy industry a broad consensus exists that 
even in a predominantly pasture-based system, herd expansion may have detrimental 
effects on cow welfare. However, a substantial minority of respondents across groups did 
not hold this opinion suggesting that herd expansion was perceived as a neutral or even a 
positive effect on cow welfare. Unfortunately, the question posed did not allow the latter 
detail to be disaggregated within the answer. 

Causes of poor welfare

All the welfare issues presented were selected by a proportion of the respondents as 
potentially important causes of poor cow welfare to a greater or lesser extent. Given these 
results, further research needs to focus on the identified primary causes of poor welfare 
in pasture-based dairy cows. 

While stakeholders agreed that herd expansion posed concerns about cow welfare, they 
disagreed on the details of these concerns which is in line with findings of Leonard et al. 
(2001). Farmers were most concerned about poor body condition. This result corresponds 
well to the findings of the survey by Leonard et al. (2001) where 64% of farmers ranked 
nutrition as the primary contributor to good welfare in dairy cows. This finding may reflect 
farmers concerns about relying on grass as the main source of feed whilst simultaneously 
trying to increase milk production under a no-quota regime. With volatile milk prices this 
affects their financial capacity to supplement grass with purchased feed. They may also 
be concerned about a reduction in cow body condition affecting cow fertility given its 
effect on cow culling. 

There is poor consensus in the literature as to the welfare implications of poor body 
condition (Roche et al., 2009). While thin cows possibly feel tired and unwell (Webster, 1995) 
it is unlikely that they are actually in pain. However, if thin cows are concurrently hungry 
they are likely to be suffering from very poor welfare. Indeed, the concern about body 
condition expressed by farmers could be linked to memories of the national fodder crisis 
in 2013 when maintaining body condition on cows was particularly challenging. However, 
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low body condition is a problem inherent to high grass/low concentrate diets particularly 
in early to peak lactation (as well as in times of grass shortages due to drought/cold) 
(Webster et al., 2008). The concern expressed by farmers could simply reflect an inherent 
association between poor body condition and suffering. Irrespective of whether or not 
thin cows are actually suffering from poor welfare, poor body condition is an issue which 
farmers, and likely the public, are concerned about and one which needs to be addressed 
if the positive image of pasture-based dairying systems is to be protected and farmers’ 
social licence to farm maintained.

Farmers differed significantly from vets in their appreciation of poor body condition as a 
welfare concern for dairy cows. While the difference between farmers and advisors was 
not significant, 50% fewer advisors cited poor body condition as the primary cause of poor 
welfare than farmers. This disparity between farmers and the other stakeholder groups 
on poor body condition suggests that farmers uniquely perceive the associated welfare 
implications because they uniquely suffer the economic consequences of poorer milk 
production, subfertility and ultimately, premature culling.

There is widespread recognition that owing to its high prevalence and the associated pain, 
lameness is the primary welfare condition of dairy cows (EFSA, 2009). Cattle vets were in 
agreement with this view with a significantly higher proportion citing lameness as a main 
cause of poor welfare compared to farmers or advisors. Given the extensive literature on 
lameness and its importance as a production disease in dairy herds it is perhaps not surprising 
that vets should view it as a primary concern. This, allied to their clinical experiences of 
being called out to treat lame cows, probably informed their views. A more surprising finding 
was the lack of responses from advisors citing lameness as a welfare concern. This may 
be because they view lameness as a ‘disease’ not a ‘welfare’ issue or because they are not 
exposed to lame cows in their daily work and so underestimate its importance. Nevertheless, 
the very low proportion of both advisors and farmers citing lameness as the primary cause 
of poor welfare in dairy cows poses concerns in addressing this painful and highly prevalent 
condition (EFSA, 2009) irrespective of production system (Whay et al., 2003). 

There was a clear (and significant) divergence of opinion between farmers on the one hand 
and advisors and vets on the other about social stress due to overcrowding. This may be 
due to the perception by the latter stakeholders that herd expansion would inevitably lead 
to overcrowding while farmers may have a blind spot about the importance of this concern. 
This is supported by findings that while 77% of the farmers surveyed had increased their 
herd size, 33% did not provide a cubicle per cow during the winter housing period. This may 
be an example of ‘farm blindness’. Farm blindness is a perception by farmers that what 
they see every day on their own farm is normal, particularly when it is not; a new normal 
(Mee, 2019). In contrast, both vets and advisors showed an awareness of the potential link 
between expansion and an increase in stocking densities with no difference between these 
groups in the proportion that cited social stress as the main welfare problem for cows in 
expanding herds. This problem was by far the most common welfare problem for dairy 
cows cited by dairy advisors. It appears that they may have linked the lack of investment 
in housing in expanded dairy herds with the potential risk of overcrowding. 

Clinical mastitis is a highly prevalent health problem in Irish dairying systems (Geary 
et al., 2013). The low number of respondents in all stakeholder groups who indicated 
mastitis as a primary cause of poor welfare may reflect a lack of awareness about the 
pain implications of this condition. On the other hand, the results may also reflect the 
stakeholders’ perception of issues such as mastitis as health rather than welfare problems. 
Similarly, issues such as metabolic disorders, infectious diseases and disorders around 
calving traditionally have more health rather than welfare connotations and very few 
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were selected by respondents as being of importance to cow welfare. However, most of 
these conditions also impact on animal welfare, for example, increased dystocia (Leonard 
et al., 2001) and perinatal calf mortality (Mee et al., 2013). 

The difference between advisors and vets on the importance of calving difficulties 
(dystocia) as welfare concerns, where advisors perceived them to be more important than 
did vets, may stem from the lived experiences of these two groups. Irish cattle vets will 
have seen the decline in the number of calls to dystocia in dairy herds over the last decade 
primarily due to changes in breeding policies (less use of beef sires in dairy herds, genetic 
selection against long gestation length, stillbirth and calving difficulty, introgression of 
Jersey genetics). Advisors may not be as aware of the effects of these changes in this specific 
aspect of farm management, hence, their greater perception of its current importance as 
a welfare concern.

Reasons for culling cows

In spite of significant advances made in improving the fertility performance of Irish dairy 
cows, these results indicate that infertility still remains the main reason for culling. This 
corresponds well with international data from other production systems (Whitaker et al., 
2004). A significantly higher proportion of farmers reported lameness as a main reason 
for culling than perceived by the advisors or vets. These findings may indicate an under 
appreciation amongst dairy advisors and vets as to the contribution lameness makes to 
culling on Irish dairy farms. Amongst UK dairy cows, Whitaker et al. (2004) found lameness 
to be the third most common reason for culling after mastitis and infertility. In many 
cases there is more than one reason for culling, particularly as many animals are infertile 
or have poor milk yields because they are lame (EFSA, 2009). Indeed lameness as a main 
reason for culling was probably underestimated by the farmers themselves as cows that 
are culled for infertility or mastitis can also be lame but lameness will only be recorded 
as a secondary cause of culling, if at all. A similar proportion of farmers cited lameness 
and mastitis as the main reasons for culling. This may reflect, in part, on the national 
mastitis awareness campaign (CellCheck by Animal Health Ireland) and the relatively high 
incidence of lameness in Irish dairy herds. 

Conclusions

There is a lack of consensus amongst key stakeholders on the causes of poor welfare in 
dairy cows. There is also a lack of awareness about main reasons for culling dairy cows by 
advisors and vets relative to farmers’ lived experiences. This probably reflects the differing 
focus and areas of expertise between the three groups surveyed. From the results of these 
surveys it is likely that poor body condition, overcrowding during housing and lameness are 
all important causes of poor cow welfare in expanding, low cost, pasture-based systems. 
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Abstract

Around parturition, 30–50% of dairy cows are affected by metabolic and/or infectious 
diseases. Hence, routine and proactive actions by farmers and veterinarians are intended 
to accurately and efficiently provide early detection of disorders. Nowadays, various 
sensor systems are available to assist the farmer in herd management decisions. Applying 
these technologies targets an improved health monitoring to secure high levels of animal 
welfare, ensure food quality and safety as well as in optimising work efficiency.

The sensor system SMARTBOW (Smartbow GmbH, Weibern, Austria) consists of a 
3D-accelerometer. Commercial features include estrus detection, rumination monitoring 
and localisation of animals in the barn.

In this study the SMARTBOW system was used for retrospectively describing activity 
levels, rumination and distinct behaviours of diseased animals compared with their 
‘healthy’ controls. For this, the system was installed in a commercial dairy farm, housing 
approx. 2,700 Holstein Friesian cows. Animals were enrolled at drying off and followed up 
to 70 days after parturition. Besides body condition scoring and metabolic testing, animals 
were clinically examined daily during the first eight days of lactation. Findings (e.g. rectal 
temperature, ß-hydroxybutyrate concentration) and diagnoses (e.g. Hypocalcemia, Ketosis, 
Metritis, Mastitis) were recorded and the data of 316 animals were used for statistical 
analyses.

During the transition period, numerical differences in the average daily rumination time 
were observed between animals suffering from disorders and their matched healthy 
controls. Further in-depth analyses of the SMARTBOW data with and without considering 
combinations of captured parameters are currently in progress. 

Keywords: cow, transition period, health monitoring, accelerometer

Introduction

Around parturition 30–50% of dairy cows are affected by metabolic and/or infectious 
diseases (Leblanc, 2010). Besides being detrimental from an animal welfare’s perspective, 
disorders in early lactation have a negative effect on animal health, milk production and 
reproductive performance (Fourichon et al., 1999; Rajala-Schultz et al., 1999; Vercouteren 
et al., 2015), and are associated with significant economic losses (Kaneene & Scott Hurd, 
1990; Ingvartsen, 2006). An often occurring problem in practice is the underestimation 
of a disease on farm level. Hence, routine proactive management measures are 
recommended to precisely and efficiently detect health problems which, in turn, allow an 
early intervention and treatment of the animals. These measures are aimed to limit the 
consequences of health problems on herd performance as well as on animal health and 
welfare (LeBlanc, 2006). 

Several standard operating procedures (SOP) were recommended, defining which animal, 
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how and in which specific time period should be examined (Cook et al., 2006a, b; Leblanc, 
2010). Even if these procedures are standardised, the examination of animals is time 
consuming and their success relies on the experience and willingness of the farmer or 
his/her personnel, if applicable to strictly follow the SOPs. In this context, automated 
and continuous monitoring systems may complement health-monitoring programs and 
provide additional information that can be used to improve the management of individual 
cows or the entire herd (Rutten et al., 2013; Lukas et al., 2015). Nowadays, various sensor 
systems are available to assist the farmer in herd management decisions. Applying these 
technologies targets an improved health monitoring to secure high levels of animal 
welfare, ensure food quality and safety as well as in optimising work efficiency (Wathes et 
al., 2008; Bewley, 2010).

The sensor system SMARTBOW (Smartbow GmbH, Weibern, Austria) consists of a 
3D-accelerometer. Based on machine learning algorithms, commercial features (based on 
1 Hz accelerometer) include estrus detection, rumination monitoring and localisation of 
animals in the barn, so far.

The aim of this study was to evaluate if the outputs parameter of the accelerometer 
system SMARTBOW are eligible for early disease detection in periparturient cows.

Material and methods

All study procedures were approved by the institutional ethics committee of the University 
of Veterinary Medicine Vienna, Austria, in accordance with the national authority 
according to § 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 – TVG 2012 
(BMWFW-68.205/0004-WF/V/3b/2016), as well as by the Slovakian Regional Veterinary 
Food Administration. 

Herd description

The study was conducted on a Slovakian dairy farm, housing approximately 2,700 
Holstein-Friesian cows. Cows were kept in groups of up to 250 animals and had no access 
to pasture. The average energy corrected milk yield (based on 4.0% butterfat and 3.4% 
protein) was 9,260 kg per cow in 2018. Dry cows were housed in group pens on straw 
bedding. Lactating cows were kept in ventilated freestall barns, equipped with full concrete 
floors and high bed cubicles. Cows had ad libitum access to water and were fed a total 
mixed ration consisting of corn silage, alfalfa silage, beet pulp silage, wet distiller’s grains 
with solubles, corn-cob-mix, rapeseed extraction meal, and minerals. All animal related 
events (e.g. calving date, calving ease, clinical diseases, treatments) were entered into the 
herd management software DairyComp 305 (DC305, Valley Agricultural Software, Tulare, 
USA) by responsible farm personnel. First lactating cows gave birth at another farm site, 
thus, only multiparous cows were included in this study. 

SMARTBOW system

The SMARTBOW ear-tag (Smartbow GmbH, Weibern, Austria) contains a 3D-accelerometer 
which collects data from cow head and ear movements that are processed and used for 
continuous automated real-time monitoring. So far, the system has been evaluated for 
activity measurement, rumination monitoring (Borchers et al., 2016; Reiter et al., 2018) and 
localisation (Wolfger et al., 2017). 

For study purposes, the SMARTBOW system was installed in the ‘close-up’ and ‘fresh cow’ 
pen on the farm. Approximately three weeks prior to parturition (i.e. while regrouping into 
the ‘close-up’ pen) the ear-tag based accelerometers were permanently attached to the 
study animals in the middle of the right ear. Three dimensional acceleration data (range 
-2 g to +2 g) of head and/or ear movements of the animals were recorded with a frequency 
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of 10 Hz and sent in real-time to receivers (SMARTBOW WallPoints) installed at a distance 
of approx. 20 m each, throughout the study pens. Receivers were connected with a local 
farm server (SMARTBOW FarmServer), on which data were processed. 

Study design

In total, 500 multiparous cows were enrolled in the study at drying off at approx. six weeks 
prior to parturition and followed up until 70 days in milk (DIM). 

After parturition, study animals were examined daily based on a pre-defined SOP for 
fresh cow monitoring, including measuring of rectal temperature, estimation of rumen 
fill, scoring of manure consistence (Zaaijer, 2001). Examination of the uterus and its 
contents by palpation per rectum and evaluation of vaginal discharge (Sheldon et al., 2009) 
was conducted at 5 DIM and repeated at 8 DIM for cows with pathological discharge at 
5 DIM. All examinations were performed by investigators of the Clinical Unit for Herd 
Health Management in Ruminants from the University of Veterinary Medicine Vienna, 
in cooperation with farm staff after the morning milking (06.00–08.00 am). During 
examinations and sampling procedures cows were fixed in headlocks.

Additionally, body condition was scored at drying off, approx. three weeks before the 
expected calving day (i.e. in the ‘close up’ pen) and at the day of parturition by visual 
observation (Edmonson et al., 1989) and back fat measurement (Schröder & Staufenbiel, 
2006) by use of an ultrasound device (BCF Easy-Scan, BCF Technology Ltd, Bellshill, 
Scotland). Blood samples were collected at drying off, while entering the close up pen, at 
parturition (D0) and on Days 3, 5 and 8 of lactation from a coccygeal vessel using vacuum 
tubes coated with a clot activator for serum collection (Vacuette, 9mL, Greiner Bio-One 
GmbH, Kremsmünster, Austria). Samples were centrifuged and serum was stored at -25 
°C for further analyses. On the day of parturition, serum was tested on farm for total Ca 
concentration with the VetTest 8008 device (IDEXX, Westbrook, Maine, United States of 
America). For ketosis monitoring, the concentration of beta-hydroxybutyrate (BHB) was 
determined by use of a handheld device (FreeStyle Precision Xtra, Abbott GmbH and Co. 
KG, Wiesbaden, Germany). 

Statistical analyses

For statistical analyses, data of animals suffering from health disorders were retrospectively 
matched with data of healthy control animals based on the date of parturition and parity. 
A healthy control animal had no pathological findings and/or diagnoses from 14 days 
before to 14 days after parturition and was only matched with a single diseased animal. 
Data were entered into Excel 2010 worksheets (Microsoft Corp., Redmond, WA, USA) and 
analyses were performed with the software package SPSS (version 24.0, IBM SPSS Inc., 
Munich, Germany). The duration of activity events were tested for normal distribution 
with the Kolmogorov-Smirnov test. To test for an association between the duration of 
activity events of healthy and diseases cows, the Mann-Whitney-U test was performed 
and Spearman´s rho (ρ) correlation coefficients were determined. The level of significance 
was set at P < 0.05 for all statistical analyses.

Results and discussion

So far, data of 156 animals suffering from health disorders and their 156 healthy controls 
are available. Considering the group of animals showing health disorders, 65 (42%) animals 
were diagnosed with one, 41 (26%) with two and 61 (39%) animals with equal or more than 
three disorders. Further information on the number of diagnoses is presented in Table 1. 
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Table 1. Diagnoses obtained in 156 animals suffering from health disorders

Abnormality / Diagnosis Number of 
diagnoses

% of total 
diagnoses

Fever (≥ 39.5°C, single event) 120 35.8

Abnormal vaginal discharge on day five 70 20.9

Ketosis  (BHB ≥ 1.2 mmol/L) 42 12.5

Indigestion 32 9.6

Retained placenta 26 7.8

Metritis 23 6.9

Diarrhea 6 1.8

Mastitis 6 1.8

Milk fever 4 1.2

Downer cow syndrome 4 1.2

Pneumonia 2 0.5

Total 335 100.0

The distribution of health disorders presented in Table 1 is comparable with the results of 
the studies conducted by Stangaferro et al. (2016a, b, c) on using rumination and activity 
data for identifying diseased cows.

As a preliminary result, Figure 1 shows the average rumination time per hour of animals 
suffering from health disorders compared with their corresponding controls from 14 days 
before to 14 days after parturition.

Figure 1. Average rumination time (min per hour) of animals suffering from health disorders 
compared with corresponding healthy cows in early lactation

Even if numerical differences in the average rumination time were observed between 
animals suffering from disorders and their healthy controls, significant differences were 
not detected. Further in-depth analyses of the SMARTBOW data considering combinations 
of the captured parameters are currently in progress. These results will be presented at 
the conference.
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Abstract 

Current grazing systems used on commercial dairy farms in the UK are derived from 
New Zealand and Ireland and high yielding cows tend to under-perform. Previous 
work has shown that allocation of more than one grazing block per grazing bout can 
increase feed intakes and milk production. Bespoke LoRaWAN enabled collars with GPS 
and accelerometer sensors were developed. Accelerometer data (10 Hz) was calibrated 
to cow behaviour using 12 cows on four commercial farms, modelling the magnitude of 
the accelerometer vector on the cow eating activity (grazing or ruminating) using logistic 
regression (P < 0.001, accuracy = 95%) to give the probability of grazing. Collars were fitted 
to six cows on a commercial dairy unit for 18 weeks. GPS and summarised accelerometer 
data were collected every two minutes. Within a daily grazing bout positive changes in 
p(grazing) were accumulated and mapped against grazing activity. Once a threshold value 
for the accumulated positive changes in p(grazing) was exceeded, an elasticated ‘bungee’ 
gate was remotely triggered to give cows access to additional grazing. Drought conditions 
limited the preliminary trail to a one day-time grazing bout. Intakes were measured at 
12 kg DM which is considerably higher than the typical industry figure of around 7 kg. 
Further work will develop the algorithms and the allocated grazing areas to assess if such 
gains in grass intake remain achievable on a wider range of commercial farms and with 
tighter control of the grazing residuals.

Keywords: dairy cattle grazing feed intakes

Introduction

In Britain the average milk yield of dairy cows has increased from 5,200–7,900 litres 
over the past two decades (AHDB, 2019). Current grazing systems used in the UK have 
been transferred from New Zealand and Ireland and are designed for lower yielding 
animals such that cows tend to under-perform at higher milk yields. To counter such 
under-performance cows are either buffer fed whilst at grass or housed through the 
summer period. Both strategies increase production costs and can lead to undesirable 
environmental and social effects. The work reported in this paper consists of results from 
a preliminary field trial that looked to increase grazed grass intakes through monitoring 
animal location and behaviour and allocating additional grazing accordingly. 

Barrett et al. (2001) have shown that cows offered four separate grazing areas over a 24 h 
period have higher intakes (1.48 kg DM day-1) than cows kept in a single paddock throughout. 
Dalley et al. (2001) allocated cows to one or six grazing blocks over a 24 h period. In the first 
two weeks of their trial the cows on multiple allocations gave more milk (1.8 l day-1, P < 0.001). 
Over the full six weeks of the trial, the cows allocated the additional nutrients to reducing 
weight loss with significantly lower rates of weight loss (0.6 cf 1.2 kg body weight day-1, P 
<0.05). Commercial dairy farmers report increased feed intakes when they repeatedly ‘push 
up’ a Total Mixed Ration (TMR) at the feed face throughout the day. We have hypothesised 
that offering cows more than one block of grazing ground during the daytime grazing bout 
will trigger the cows to graze more leading to an increased feed intake. 
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Materials and methods 

Bespoke LoRaWAN (2017) enabled collars fitted with GPS and accelerometer sensors were 
fitted to six cows on a commercial dairy farm in South England and left in place for 18 
weeks. Accelerometer data were collected in three dimensions at 10 Hz from which was 
derived the magnitude of the acceleration vector. A GPS position fix was obtained every 
two minutes. Data were relayed to the cloud through the LoRaWAN network every two 
minutes to enable cow activity to be monitored in near real-time. 

Calibration of accelerometer data to grazing activity. 

In a separate trial 12 cows across four commercial farms were visually observed every 
two minutes over one grazing bout (6-7 hours) and eating activity (grazing or cudding) 
was recorded every two minutes. Where cows were undertaking the same activity at the 
start and end of the two minute window it was assumed they were involved in this activity 
throughout the two minute period and such data points were used in the calibration. 
The visual observations were compared to the magnitude of the acceleration vector to 
determine grazing activity (Figure 1).

The variance of the magnitudes over the two minute window was calculated and a logistic 
regression-based algorithm derived to predict feeding activity (grazing or ruminating) 
using the Minitab18. The derived binary logistic regression model predicted the probability 
of grazing (p(grazing)) (P < 0.001) with a predictive accuracy of 95% (specificity = 91%, 
sensitivity = 98%). 

The pattern and duration of grazing and rumination were used to derive a cow-centred 
threshold to determine the timing for allocation of additional grazing using real-time field 
data as follows. For each of the six cows and at each data point the difference in predicted 
p(grazing) value was determined and positive values summed throughout the grazing bout. 
During an initial training period of three days the summed positive p(grazing) differences 
were compared to a plot of grazing activity and a numerical value was determined which 
represented when the animals started a secondary, low intensity grazing session part way 
through the grazing bout. When the system was deployed the summed positive p(grazing) 
differences were compared to the previously derived threshold value. When the threshold 
was exceeded for four cows a gate opening procedure was triggered. 

The gate opening procedure triggered a LoRaWAN controlled gate opening actuator to 
release an elasticated ‘bungee-gate’ (seven meter width) to give the cows access to new 
grazing. During the daytime grazing bout, the cows were grazed in temporary paddocks 
defined with an electric fence within a larger permanently fenced field (Figure 2). Grazing 
and trial observations were not possible during the first part of the summer due to severe 
drought conditions.

Cows first grazed the field shown on 5 Sept and again on the trial day of 6 Sept. At this time 
the six cows fitted with LoRaWAN collars were part of a group of 58 cows with an average 
yield of 16.3 l day-1 and 239 days in milk. Grass cover (kg DM ha-1) was measured before 
and after grazing each day using a rising plate meter and (AgHub F200, NZ with standard 
regression equation) and grazing areas (ha) from walking the allocated paddocks using an 
iPhone app (GPS Area Measure, Oceanic Software, 2015). 



Precision Livestock Farming ’19      781

Figure 1. Magnitude of accelerometer data during a grazing and a rumination bout for a typical cow. 
Cow was visually observed to graze from 9:00–11:56 and then to ruminate until 13:00

Figure 2. Cow position in allocated grazing. Right-hand box defines initial grazing, left-hand box 
defines additional grazing. Grey line defines automatically opening ‘bungee-gate’, W – water trough. 
Shaded area is grazing allocation on 5 Sept, unshaded 6 Sept. Light grey symbols show average 
location of cows (n = 6) from start of grazing bout (07:30) to time when the ‘bungee-gate’ opened 
(12:00), darker grey symbols show average cow position from 12:00 to end of grazing bout at 14:30

Results and discussion

Total calculated intake per cow during the daytime grazing bout on 6 Sept was 12 kg DM 
of which 5.4 kg (45%) was consumed from the additional grazing areas. 

The data loggers reported cow position for the full 18 weeks of the trial suggesting that 
a LoRaWAN based system can be used to collect data from grazing cows over a grazing 
season on a commercial farm. This overcomes the problems of short transmission 
ranges and limited battery life raised by Shalloo et al. (2018). Grazing behaviour can be 
determined from accelerometer data and, via a suitable algorithm, used to determine 
when a temporary ‘bungee-gate’ should be triggered to allow cows access to additional 
grazing. The initial results show an intake of 12 kg DM which is markedly greater than 
figures of 7-9 kg DM typically achieved on commercial farms (AHDB Dairy Grass+, 2011) 
and reported by Werner et al. (2019). 
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Table 1. Paddock areas, grass covers before and after grazing and calculated grass dry matter 
intakes

Grazing Date
Area Covers at 8:30am Covers at 3:30pm Eaten 

ha kg DM ha-1 kg DM kg DM ha-1 kg DM kg DM

Initial 05-Sep 0.44 1,662 731 1,543 679 52

Additional 05-Sep 0.33 1,879 620 1,557 514 106

Initial 06-Sep 0.33 2,579 869 1,606 541 328

Additional 06-Sep 0.22 2,579 577 1,638 366 210

TOTALS   1.32   2,797   2,100 697

AHDB Grass+ (2011) recommends pasture covers at the start of grazing of 2,600–3,000 kg 
DM ha-1 and target residuals after grazing of 1,500 kg DM ha-1. The initial covers in the 
grazing allocation of 6 Sept were within the target range (Table 1) but the residual covers 
were slightly higher than desired. Further work will be needed on adjusting the areas 
allocated for the initial and additional grazing blocks to ensure the target residual cover is 
achieved whilst maintaining the increased intakes. 
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Abstract

Cow comfort is a basic requirement for health and animal welfare of dairy cows. Farmers 
underestimate many factors, especially the installation of modern barn equipment is often 
neglected. In a research project an easy applicable solution was developed. 202 parameters 
have been collected in each of the 34 dairy farms. In this context we focused on the housing 
conditions and the associated management, using a precision livestock farming tool. The 
tool is also linked to other herd management systems and receives animal-related data from 
them. Through the objective and systematic collection of criteria and indicators in relation to 
behaviour, disposition and metabolism of dairy cows, a standardised root-cause analysis will 
identify weaknesses. With this software all mentioned parameters of each farm were recorded 
and these were compared with each other and processed, then the reference values were 
created. The system independently detects weak points of each animal and offers concrete 
solutions. The biggest weak points in the free stall barns are the insufficient dimensions of the 
cubicles, the barn hygiene and the bedding conditions. As a consequence of these weaknesses, 
the cows are enduring health problems. As an example, at 98% of the farms, more than 89% 
of the cows have lesions at the joints and more than 86% have major cleanliness problems 
at the back. Therefore, the farms regularly have to implement a self-monitoring system to 
improve the barn management. Using the results, uniform evidence-based recommendations 
for optimising the barn environment and management can be established. 

Keywords: cow comfort, animal welfare, farm management, self-monitoring, precision 
dairy farming

Introduction

Cow comfort and animal welfare are important topics for the dairy industry (Barkema et al., 
2015). Cow longevity refers to how long the cow stays in the herd. The modern dairy cow has a 
short longevity, far below their biological potential (Alvåsen, 2018). Longevity is an important 
economic trait in dairy production. Increasing the productive lifetime of dairy production as 
cows must typically reach the second lactation to produce sufficient milk to break even on 
rearing costs. Furthermore, with increased longevity, the mean production of the herd could 
be higher because a large proportion of the culling decisions are based on production and 
because the proportion of mature cows, which generally produce more milk than young cows, 
would be increased (Alvåsen, 2018). To increase the longevity, the farmers have to observe the 
relation between the barn design and the welfare of the cow, because the term ´welfare´ refers 
to the state of an individual in relation to its environment and this can be measured. Both 
issues - failure to cope with the environment and difficulty in coping - are indicators of poor 
welfare. Suffering and poor welfare often emerge conjointly but welfare can be poor without 
suffering and welfare should not be defined solely in terms of subjective experiences (Broom, 
1991). In order to avoid suffering at an early stage and to monitor animal health optimal, 
animal husbandry and industry are increasingly relying on precision livestock farming. 
Quantifying animal-based measures (e.g. prevalence of lameness and injuries, lying time 
and production information), evaluating environmental factors (e.g. barn design and stall 
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dimensions) and determining management practices (e.g. record keeping and management 
training) are proven methods of assessing animal welfare (Morabito et al., 2017). The principal 
reasons of cow elimination are udder diseases, claws diseases and metabolic disorders of the 
cows. These are the most frequently used by the farmers. Major problems like fertility and 
claws diseases have specific reasons, like issues in the management and the barn design, 
which are not inspected and are unlisted in the herd management program. 

Materials and methods 

Study design and data collection

This study presents the results of one part from the project: ‘Animal welfare and economic 
efficiency in the future-oriented dairy farming – an evaluation of various actions and their 
economic impact’. This study is intended to give an overview of the hygienic and technical 
condition of the barns in North East Germany, using a precision livestock farming tool. 
It reflects the modern form of digitisation in animal husbandry. For this study, the most 
important parameters were highlighted to illustrate the impact of management and 
barn design on animal health and welfare. The study took place on 34 dairy farms in 
North East Germany, especially in the three federal states: Mecklenburg-West Pomerania, 
Brandenburg and Schleswig-Holstein. 202 parameters have been collected in 54 barns of 
34 dairy farms. The farms are assorted to the number of milking cows in four groups; 
group 1: up to 300 milking cows, group 2: 301–599 milking cows, group 3: 600–900 milking 
cows, group 4: over 900 milking cows. All farms, except one in Schleswig-Holstein with 
Angler breed and one in Mecklenburg-Vorpommern with Jersey breed, have Holstein-
Friesian breed. All farms were analysed in the period of April to November 2017. The data 
collection was conducted three hours after feeding. In this present study, the cleanliness 
condition of the cows and the injuries at the joints are presented and the associated 
causes such as cubicle contamination, cubicle and barn management, inadequate cubicle 
dimensioning and the insufficient space available for the cows are explained. All these 
parameters were captured with the precision livestock tool ´Cows and More´. This tool is a 
development of an expert system with which it is possible, using animal and behavioural 
criteria, to discover weaknesses in husbandry and management in freestall dairy barns. 
With this software, all mentioned parameters for each farm were recorded and these were 
networked with each other and processed, so that the reference values were created. The 
digital root-cause analysis is based on a comparison of the individual farm with defined 
goals and comparison values of a specific dataset (Landwirtschaftskammer NRW, 2018). 
The recorded actual values were compared with the reference values and the limit values 
and then automatically evaluated in the system. Different evaluation schemes were used 
to assess the cleanliness of the cows and the injuries to the animals. A school grading 
system was used to assess the cleanliness of the cows. An average score of 2.7, which 
describes the baseline target value, should not be exceeded for any region. To describe 
the frequency of injury at the joints, all injuries at the respective detection points were 
summarised with reference to each detection group and stated in percent. The limit values 
for each injury range from 0–15% (Table 2). The individual limits should not be exceeded. 

Statistical analysis

In each of the 54 barns, all specified values were collected in a special data entry group. 
Collectively, there are over 2,100 separate measuring values of all 34 farms for the housing 
conditions and the associated management at the farms. 

Data were analysed by using the IBM SPSS Statistic 25 software package (IBM Deutschland 
GmbH, Ehningen, Germany). The descriptive statistics were analysed using the explorative 
data analysis. The graphs (Figure 1–4) were created by Excel 2016.
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Results and discussion

Cleanliness and injuries at the joint by the cows

If you can detect weak points on the cows, these are signs of an inadequate husbandry 
environment. Table 1 shows the weak points of cleanliness at seven different body regions 
of the cow. In the body regions, tail, tail tassel, ischium and the lower legs, this limit value 
of 2.7 is strongly exceeded. These values are an average value of all 34 farms corresponding 
to 54 barns. In the individual barns, the measured values covered an extensive bandwidth, 
some farms had very clean animals, others had very dirty animals. These poorly cleanliness 
values act as an indicator for management weaknesses as well as inadequate barn and 
box dimensions.

Table 1. Cleanliness of the cows at the 34 farms

Measurement points 
at the cows Average of the 54 barns Target value

Hindquarters

Back

Udder / belly

Tail

Tail tassel

Ischium

Lower leg

2.79

2.65

2.59

3.25

3.95

3.19

3.17

2.7

2.7

2.7

2.7

2.7

2.7

2.7

Another major weakness in the evaluation of cows on the farms is the injuries to the 
joints of cows. Abnormalities to the joints always indicate weak points in the cubicles and 
in the running area. Table 2 shows the measurement points of the lesions at six different 
body regions. The evaluation differentiated the degree of injury, as shown in Table 2. Each 
body region is anatomically different and thus the body regions differ in their robustness. 
Thus, baseline target values range from 0–15%. The baseline target values for the degree 
of injury should not be exceeded. Ekman et al. (2018) state that hock lesions are a common 
problem in modern dairy production. The statement can only be agreed to. The present 
study is pointing in the same direction. Notable are the body regions like the tarsal joints, 
the spine, the withers and the carpal joints which show larger changes in all 54 barns. 
These values are averages of all 34 farms corresponding to 54 barns. In the individual 
barns the measured values covered an extensive bandwidth, some farms had very sick 
animals, others had very agile and healthy animals. These poorly injury values indicate 
big inadequate barn and box dimensions as well as management weaknesses.
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Table 2. Lesions at the joints of the cows at the 34 farms

Measurement points 
at the cows Average of the 54 barns in % Target value in %

Tarsal joint hairless area 32.5 15

Tarsal joint skin free area 1.7 5

Tarsal joint swelling 4.2 5

Tarsal joint open swelling 0.5 0

Knee hairless area 5.2 5

Knee skin free area 1.0 0

Swelling spine 15.5 0

Open swelling spin 0.8 0

Hairless withers 18.9 5

Skin free withers 0.1 0

Swelling withers 4.5 0

Dewlap hairless patch 1.1 2

Carpal joint hairless area 16.8 15

Carpal joint skin free area 0.2 0

Carpal joint swelling 1.9 0

Hygiene of the most important functional areas

In a free-stall barn there are four functional areas which should be designed animal-
friendly. The functional areas are the walking area, feeding area, resting area and the 
milking centre. The hygiene measures in these areas should be carried out very carefully 
and regularly. Tucker et al. (2003) agree with the description of the following study and the 
statement that the lying surface is known to affect dairy cows in several ways, including 
behaviour and leg, claws and udder health. Figure 1 shows the frequency of contamination 
in the cubicles. The graph shows all 53 barns and the corresponding contamination in 
boxes and the faeces placements. One of the 54 barns was excluded as it does not provide a 
free-stall barn for the animals. The baseline target value for normal soiling in the cubicles 
and thus completely acceptable is 10%. Figure 1 shows that in all 53 barns, contamination 
was found three hours after feeding. Only 21 barns had a total contamination in the 
cubicles below 10%. The factor of soiling of the box under the bracket is disturbing. 50 
of 53 barns have lateral soiling in the cubicles. In contrast to centrally placed manure 
deposits which could be detected in 40 barns, this is a significant difference indicating 
problems in box dimensioning. In addition, there is a limit value for manure placement, 
which is 5%. This limit is exceeded in 37 barns for lateral soiling of the barns and in only 
24 stalls for central manure deposits. These results only give an even greater indication 
that the box dimensions in the farms are not adequate. 

Figure 2 shows a big management weakness in the cleanliness of the walking alley and the 
drinking trough. The cleanliness of the passes and the troughs is remarkable and may have 
unpleasant consequences for the cows. The walkways and passes are very slippery due to the 
constant soiling and humidity for the animals and by this high excrement-emergence in the 
walkways, it also comes to the stronger contamination at the tail, tail tassel and lower leg. Cows 
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have great difficulty walking on floors that are too smooth. In conjunction with excessively 
narrow passes, as can be seen in the surveyed farms, with a width of passes of 2.39 m, 2.32 m 
for the feeding course and 2.34 m for the way of the box, the animals slip heavily when walking 
and injuries occur at the protruding joints. In order to eliminate these weak points, farmers 
have to readjust the tool pre-setting of the steady slider and change their daily working routine.

Figure 1. Cleanliness of the walking alleys and the drinking troughs as indicators of severe 
management weakness

Figure 2. The frequency of contamination in the cubicles with different placements

Insufficient organic cover and hollow formation in the cubicles

A further management problem is the maintenance of the boxes in respect to the bedding. 
During the investigation we found three different cubicle types in the barns, the raised boxes, 
the low boxes and the higher deep boxes. 2,722 high bed cubicles, 2,685 low bed cubicles 
and 183 higher deep cubicles have been evaluated. Inadequate box coverage and high hollow 
formation in the low bed boxes have the effect of the cows being placed in the cubicles 
incorrectly, to swelling of the joints and even infections due to a lack of hygiene. Approximately 
41.92% of all high bed cubicles (N = 2,722 boxes) indicated a solid organic cover under 50%. 
That means the cows only lie on a rubber mat and in the excrements. This results in abrasions 
and swellings primarily on the tarsal and carpal joints. Only 759 cubicles had an optimum 
solid organic cover. 63.95% of all low bed cubicles (N = 2,685) indicated intense hollows. This 
value is more than critical. The same fact is shown in the higher deep boxes.
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Figure 3. Hollow formation in the low bed 
cubicles

Figure 4. Organic cover in the high bed cubicles

Insufficient box dimensions

Due to the climate, cows in our latitudes spend at least half of the year in the barn. Even 
during grazing periods, cows come to the barn at least twice a day to be milked. The 
barn is therefore a central place for successful dairy farming (Hulsen, 2012). The barn is 
a complex system. The human being must translate the needs of the cow into building 
plans. The barn combines several issues, such as the barn equipment, the space available, 
the tread conditions and the management. If one of these points has a weakness, it has a 
major impact directly on the animal. Cows lie 10–14 hours a day. Hulsen (2012) is also of 
the opinion, that lying is important for many reasons, because the animal rests, the claws 
recover and can dry off, there is more space in the walking alleys and up to 30% more 
blood flows through the udder. The farmers build the barns according to the conditions of 
the subsidy law, without paying attention to the size and requirements of their animals. 
Table 3 shows these impacts which were found in almost every barn. Table 4 shows the 
large deviations of the cubicle and barn dimensions in comparison to the minimum 
requirements for the breed Deutsche Holsteins. The inadequate dimensions were found in 
newly built and old barns. The biggest problem in the barn construction can be found in 
the total length of the box, the width of the box and the neck tube height. Due to incorrect 
settings in the boxes, the weak points and impairments of the animal shown above occur. 
Also a result of the poor cubicle comfort is that the cows only lie down when they are 
really tired and then remain lying down too long. This makes the cows drink and eat less. 
Physical problems quickly arise, such as thick hocks. 

The boxes that are too narrow and too short, lead to injuries at the spine (see point of 
injuries at the joints). The height of the neck brisket of 1.10 m is responsible for the hairless 
areas and swellings at the withers. The insufficient distance of neck bracket to the level of 
excrement and the length of the boxes are the reasons for the oblique lying in the cubicles 
and the resulting faeces at the side in the cubicles. These are the causes of the weak points 
of the cows listed above.

The additional overcapacities in the individual groups primarily lead to an inadequate 
animal/feeding place relation and sometimes also to a poor animal/cubicle place relation.

This relation, which is presented in Table 3, must be considered in a different way. Many cubicles 
cannot be used due to the dimensions and protruding parts or gates which cover the boxes.
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Table 3. Animal - square conditions of all 54 barns

Animal-square conditions Average of the 54 barns Target value for animal-
square conditions

Animal – cubicle relation 1,04:1 1:1

Animal – feeding fence relation 0,78:1 1:1

Table 4. Deviations of the cubicle and barn dimensions

Measurement points in the 
cubicles and the barn

Average of the 54 
barns in cm Target value in cm

Width of box 109 120

Distance neck bracket to level of excrement 14 165-175

Height of neck brisket 110 130-135

Intensity of faeces level 24 15-20

Height of brisket board 10 13

Length of the bed surface 181 180-195

Total length of wall box 219 260-280

Total length of (half) double box 175 240-260

Width of feeding course 332 400

Width of way of the box 234 300

Width of pass 239 250

Conclusions

The basic are the four pillars of stable building, the cow comfort, working efficiency, 
flexibility and expandability of the barn and durability, as well as cost effectiveness. 
Adapting these factors to the existing herd is not easy, as the present study shows.

It can be concluded that the hygiene management and the monitoring of the cubicles are 
the biggest problem in all the 34 farms analysed. The weak points of the box dimensioning 
as well as the box and barn hygiene and the resulting weak points of the cows’ cleanliness 
and injuries at the joints at the cows, which are at the same time recognition parameters 
of the causes, should be checked and adapted regularly.

Finally, due to the identified weaknesses, a measure plan was developed. This shows how to 
adapt the boxes in the relevant farms and how to improve management in order to ensure 
animal welfare and integrate it into workaday routine. Self-monitoring is indispensable at 
the farms. 
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Abstract

Monitoring individual cow feed intake is important for improving dairy farm efficiency. 
The cost, time and needed maintenance of off-the-shelf systems make them impractical 
for commercial farmers. We developed a system for measurement and estimation of the 
feed intake of all cows in a herd during all the lactation period with the goal to fit farmers’ 
requirements. The feed intake was measured by a system consisting of four principal 
parts: (a) a hanging weighing system (simplified scales hanging on a single load cell), (b) 
a visual cow identification, (c) an automatic cleaning system, and (d) an algorithm for 
feed intake estimation based on a linear mixed effect model including milk yield and 
content, body mass, meal duration and frequency. The system was validated during a two-
month experiment with six scales and 12 cows in a barn modelling a commercial one. The 
validation experiment showed that the system fulfilled the requirement: the three most 
inefficient cows were found by feed mass measuring. In an example of using the feed 
behaviour model two inefficient cows were correctly predicted. The scales were accurate 
within 50 g; the visual cow identification rate was greater than 96% and routine farm 
practices continued as usual, though with delay. The average cost for a feeding station was 
about $1,500. Thus, the system can potentially be used for ranking cows by their efficiency 
in commercial facilities.

Keywords: Individual feed intake monitoring, cow ranking, feed mass measurement 
accuracy, cow efficiency, cow feed behaviour model

Introduction

Cattle feed constitutes more than 60% of farm expenses (Ben Meir et al., 2018). Identifying 
and replacing inefficient cows, and breeding more efficient cows, may improve the 
farm’s financial situation (Halachmi et al., 1998, Herd et al., 2003). Existing feed intake 
measurement systems were designed primarily for research. These systems have complex 
structures and are also labour intensive, usually requiring individual bin feed distribution 
and cleaning. All of these factors make the existing systems impractical for commercial 
farmers. Hence, a less labour-intensive, less costly system designed for commercial farm 
settings should be developed.

Feed intake is typically measured by electronic scales (i.e. direct measurement of feed 
mass). Self-designed scales systems were reported by Halachmi et al. (1998), Bach et al. 
(2004) and Dahlke et al. (2008). Off-the-shelf commercial scale-based systems were used 
by Mendes et al. (2014), Chizzotti et al. (2015) and others. These systems consist of three 
main components: a feed container weighed by an electronic scale (usually with two 
to four load cells); a cow identification system (usually Radio-Frequency Identification 
(RFID)) including chips and antennae (Awad, 2016); and a mechanism to clean the feed 
containers, which is usually done manually.

To measure the feed intake, all the cows in a feeding lane must be recognised simultaneously. 
To replace a high-cost RFID antenna at each feeding station, we suggest using a lower 
cost method, utilising either visual or biometric identification, based on a Red-Green-Blue 
(RGB) camera (Andrew et al., 2016).
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To predict cow behaviour, particularly, feed intake, without actual measuring, mathematical 
models are used. Pastell et al. (2017) recognised feeding using hidden Markov chains. 
Faverdin et al. (2017) used long term and short term effects in the cow body weight 
dynamics. Halachmi et al. (2004) used mixed effect model built on large scale database. To 
improve the accuracy of a model, we used calibration of the models for specific cows by 
the feed behaviour measuring during a short period.

In this study, we developed a measurement system with the needs of commercial dairy 
farms in mind. We defined the following requirements for the system: 30% of the most 
inefficient cows must be found every year before selecting replacement cows; the system 
must be adapted to the farm practices: feed distribution, pushing, and residuals removal. 
The system functionality was similar to existing feed measurement systems on research 
farms, although it included the following improvements: simplified hanging scales with a 
single load cell; a cow identification system based on machine vision; an automatic feed 
cleaning system; and a cow behaviour model integrated in the system.

The hypothesis of this study was: the system developed can rank cows by efficiency.

The goal of this study was to develop and validate a new system to measure individual 
cow feed intake, which would enable dairy producers to rank cows by their efficiency 
under commercial conditions.

Material and methods

Mechanical Design

The scales consisted of a feed container hanging on a single load cell installed on a 
frame above the feeding area, as shown in Figure 1. The frame holding the front part of 
the container allowed passage of a feed distribution wagon. The dimensions of the feed 
container were 1 x 0.65 x 0.45 m. The container could hold up to 65 kg of feed.

The chain holding the feed container provided flexibility to the structure and made it 
possible to turn the container over. It is turned by a 6 m truss lifted by a three-phase 
motor (P0.37kW, Motovario) with a 1:50 gear (B50, Motovario). During the lifting, the feed 
remnants fell freely through the opening front door. The clearance between the lowest 
point of the lifted container and the floor was more than 0.5 m allowing the feeding lane 
below the containers to be cleaned by a feed pusher.

The cameras photographing the cow numbers were installed on arms placed four meters 
above the feeding area on the facility’s structure (Figure 1). Plastic plates 48 x 46 mm with 
white numbers on red backgrounds (Lely, The Netherlands) were placed on the collars on 
each cow. To recognise the cows isolated for feed intake measurement, six digits (0, 2, 4, 5, 
7, 9) were used. To increase the successful recognition rate, four identical digits were put 
on each collar to provide different angles of view when the plates were on both sides of 
the collar.

The scale used a 100 kg load cell with 50 g precision (L6G, Zemic Europe B.V.). The signal 
from the load cell was amplified by a load cell amplifier (HX711, SparkFun Electronics) 
and read by a microcontroller (Uno, Arduino). Three load cells were sampled by a single 
microcontroller connected by the serial protocol to a computer.

Two Internet Protocol (IP) cameras (5 MP, DS-2CD2652F-I, HikVision), connected through a 
switch to a computer, photographed the feeding area.
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Figure 1. Side view of the feed intake measuring system: 1 – cow identification camera, 2 – cowshed 
structure, 3 – electronics box, 4 – load cell, 5 – feed container chain, 6 – lifting cable, 7 – frame, 8 – feed 
containers, 9 – lifting truss, 10 – the axis on which the feed container turns is located at the forward 
edge, 11 – front door opens during lifting

Cow feed behaviour model 

The cow feed behaviour was modelled by a linear mixed model (LMM) (West et al., 2007). 
The LMM formula was constructed by minimising the error in the feed intake prediction. 
The model includes the following parameters.

DMI ~ MealDuration + MealNumber + MY + MilkProtein + BW + 
LactationDay + ratioBW_MY + (MY | CowNo),

(1)

where DMI is dry matter intake, MealDuration is total day feeding duration, MealNumber is 
total day number of meals, MY is milk yield, MilkProtein is average milk protein percentage 
in a day milk yield, BW is average day cow body weight, LactationDay is day in lactation, 
ratio BW_MY is average day ratio BW/MY and CowNo is cow ID number.

The model (defined here as “general model”) was created based on the data for 76 Holstein 
Israeli cows achieved from 2016 until 2018 in the research cowshed in the ARO (Volcani 
centre) described by Halachmi et al. (2004). For each cow the data were recorded for 53 up 
to 267 days in average 141 days, total information from 10,950 cow-days.

Experiment

A prototype was installed on a research farm at the Volcani ARO in a commercial-like 
barn. A part of a facility including six stations located between two facility columns was 
separated. Two groups of six randomly chosen Holstein cows in each group participated 
in the experiment, which lasted 30 days for each group. The following criteria were tested 
in the experiment.

The scale accuracy in measuring a single meal was tested by comparing the mass achieved 
automatically using the feeding stalls, with a measurement of mass performed manually, 
using a reference scale with 10 gr accuracy. The manual measurements were conducted 
before and after cow meals for each feeding stall. This was done 15 times daily, at random 
times during the day, over a period of ten days (150 total samplings).
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Recognising the feedings and measuring their duration were validated manually by 
comparing with images collected by the cameras during 10 days each 5 s. The cow 
identification success rate was validated similarly. To estimate the accuracy, the slope and 
P-value of the regression between the data achieved by the system and the reference was 
calculated using MATLAB (MathWorks).

The convenience of the feed measurement system was analysed according to the ability 
to perform the routine farm practices that the system entails and the time necessary to 
do so. 

In order to rank the individual cows by their efficiency, feed efficiency was defined as the 
ratio between the dry matter intake (DMI) and the mass of the milk yield (MY): efficiency = 
DMI/MY. The daily MY was measured by the AfiMilk (Afikim, Israel) system during milking 
(accurate to 3%). The overall efficiency during the experiment period was calculated as the 
sum of the MY divided by the sum of the DMI for the entire period. To model a realistic 
case, when 30% of cows are chosen for replacement from a herd of 100–150 cows, we 
aimed to find the three most inefficient cows from the experimental group of 12 cows.

To estimate the influence of the accuracy of the feed measurement on the cow ranking, 
we compared the achieved ranking with two extreme cases: the standard error of the 
estimate was added and subtracted from each feed mass measurement.

An example of the ranking prediction by the feed behaviour model was shown. The collected 
data was separated into two parts: modelling part, consisting of the data collected during 
the first two weeks (which was sufficient for the successful prediction, Ben Meir et al., 2018), 
was used for modelling and the validation part, consisting of data collected during the rest 
of the experiment, was used for validation of feed intake prediction and the cow ranking. 
The model was tested in three conditions, representing three possible configurations of the 
feed measuring system. (a) The modelling part of the collected data was not used, and the 
prediction was performed only based on the general model (simulating usage of the general 
model without need of the feed scales). (b) The general model was not used, and the prediction 
was performed only based on the model created from the modelling part (simulating absence 
of the general model and usage only of information achieved by the measuring system). (c) 
The modelling part was added to the general model (simulating current system configuration).

Results and discussion

The slope of the regression between the meal mass measured automatically by the system 
scales and the meal mass measured manually using the reference scale was 1.01 (P = 
0.002). The standard error of the estimate was 50 g for a feeding and assumed as the 
accuracy of the system. This value is higher than that of the commercial systems (10 
g for GrowSafe) and similar to that of self-designed systems (100 g for a system built 
by Halachmi et al., 1998). Nevertheless, in this study we found that this accuracy was 
sufficient to compare cow efficiencies and recognise extremely inefficient cows. 

The primary cause of measurement error was the mechanical structure of the scale, with 
the feed container hanging on a load cell. The flexibility enabled the cows to move and 
rotate the containers, and apply overload on the load cells, changing the transducing 
coefficient. To reduce this effect, improvements need to be made in the way in which the 
containers are attached to the load cells. 

During the cow recognition experiment, 2,235 cow visits were registered manually and 
2,154 automatically by the system. The automatic system missed 81 visits that were 
registered manually, resulting in 96.3% sensitivity. The system detected 54 false visits, 
resulting in 97.5% specificity. The slope of the regression between the feeding duration 
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measured automatically by the system and feeding duration measured manually from the 
videos was 0.965 (P = 0.0003). The sensitivity and specificity were lower than in previous 
studies (Bach et al., 2004; 99.6% and 98.8%).

During the 2,154 visits registered by the system, the cow numbers were successfully 
recognised in 96.4% cases. This rate was lower than the rate provided by RFID (98.8% at 
Bach et al., 2004). Despite the worth accuracy, the advantage of the proposed system is 
using cameras only, without additional devices (photocells in each feeding station); the 
identification rate can be increased further by using machine learning without auxiliary 
equipment, such as collars with numbers.

The convenience for the farm practices was estimated by the number of required actions 
and the time it took for each one, as presented in 0. The time was measured for six feeding 
stations of the feed measurement system and a six-meter-long feeding lane in a standard 
facility. The times listed in the table are the average of measurements made during five 
observations. 

Table 1. Comparison of the average (±STD) time required for standard cowshed practices with and 
without the feed measuring system

Action Without With

Time Required actions Time Required actions

Cleaning feed 
remnants from 
containers

5(±1)s Pushing by pusher 23(±2.4)s
Lifting and lowering 
feed containers by 
operator

4(±3.2)s
Visual observation by 
operator

11(±4.2)s Pushing by pusher

Feed distribution 13(±2.8)s
Driving the distribution 
wagon

26(±8.1)s
Driving the distribution 
wagon with special care

Feed pushing 3(±0.5)s Pushing by pusher

Total 21s 64s

The main goals of the mechanical design of the feed measurement system were adapting 
it to existing farm infrastructure and routines and to minimise human intervention during 
the cleaning process. Unlike other reviewed feed measurement systems, the container of 
the designed system does not stand on the floor. This makes system maintenance easier 
relative to a system standing on the floor. That, in turn, simplifies the feed cleaning process 
by using machinery already used on farms, such as feed alley scrapers and tractors, or 
skid steers with attachments. In addition, the containers can be cleaned automatically 
by turning over, in contrast to the reviewed measurement systems, which require manual 
cleaning inside and around the containers.

The overall efficiency during the experiment for all cows is presented in Figure 2. The error 
bars represent extreme deviation of the scale accuracy added to each feeding. According 
to the overlapping of the error bars, the most inefficient cows are 3,227; 3;540 and 3633. 
The three most efficient cows are the cows 3,516; 3,597 and 3,610.
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Figure 2. Efficiency (DMI/MY) of the cows participated in experiment. Dots with error bar represent 
the measured efficiency, o represent predicted efficiency based on the model in configuration (a), x – 
configuration (b) and * – configuration (c)

The cows ranking based on the feed mass measured by scales and example of the 
rank prediction by different configuration of the feed behaviour model is presented in 
0. Assuming the measured efficiency as a reference, the general model with addition of 
the measured model (configuration (c)) yields the best result with one false recognised 
inefficient cow marked by bold (4) and without false detection for the maximal efficiency. 
Nevertheless, to validate the model in commercial conditions, additional experiment with 
larger number of cows is required.

Table 2. Ranking of the cows based on measuring the feed intake by scales, representing a reference 
for the model, and different configurations of the model. The false detected cows related to groups 
of three with the maximal and minimal efficiency are marked by bold

Measured 1 2 3 4 5 6 7 8 9 10 11 12

Conf. (a) 7 1 2 9 3 4 6 8 5 10 11 12

Conf. (b) 2 3 5 4 1 6 8 7 10 9 12 11

Conf. (c) 3 2 4 5 1 8 7 6 9 10 12 11

A simplified case of cow ranking was presented in the paper to illustrate the efficacy 
of the feed intake measurement system. Practically, to perform a comparison between 
cow efficiency, a number of parameters should be considered (DMI, milk content, etc.). 
Additionally, to use this system for the entire herd, information about feed consumption 
of each cow must be measured, which can be accomplished by two weeks periods for 
each cow (Ben Meir et al., 2018). To apply the mode during the entire lactation period, the 
feed behaviour (feeding length and frequency) is currently measured by collar tags with 
accelerometers (SCR, Nataniya, Israel).

The major elements contributing to the cost of the system (about $1,500) were the quality 
of the load cells and cameras, and the complexity of the parts. In future studies, further 
cost reductions can be achieved by more robust algorithms for cow identification, requiring 
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fewer and/or lower quality cameras, changing the materials used or production methods 
of the feeding containers, etc.

Conclusions

The system described can be used to monitor individual cow feed intake due to its features, 
which are adapted to the needs of commercial farms. Despite the limited accuracy in 
the feed weight measurement and the cow recognition, the advantage of the system 
is in its simplicity, which provides sufficient accuracy for commercial needs. During 
the experiment, decisions about farm management were made based on the system’s 
measurements, which potentially with the help of the feed behaviour model can be 
generalised for the entire barn during the lactation period.

Acknowledgements

This study was support by grants from the Israeli Chief Scientist of Agriculture, projects 
459-451415 (“Kendel”) and the Israel Dairy Board, fund number 459-4490.

References
Andrew, W., Hannuna, S., Campbell, N., and Burghardt, T. (2016). Automatic individual Holstein 

Friesian cattle identification via selective local coat pattern matching in rgb-d imagery. In: Proc. 
ICIP: IEEE International Conference on Image Processing Phoenix, AZ, USA, 484–488.

Awad, A.I. (2016). From classical methods to animal biometrics: A review on cattle identification and 
tracking. Computers and Electronics in Agriculture, 123: 423–435.

Bach, A., Iglesias, C. and Busto, I. (2004). Technical Note: A Computerized System for Monitoring 
Feeding Behavior and Individual Feed Intake of Dairy Cattle. Journal of Dairy Science, 87(12): 4207–
4209. 

Ben Meir, Y.A., Nikbachat, M., Fortnik, Y., Jacoby, S., Levit, H., Adin, G., Cohen Zinder, M., Shabtay, A., 
Gershon, E., Zachut, M., Mabjeesh, S.J., Halachmi, I. and Miron, J. (2018). Eating behavior, milk 
production, rumination, and digestibility characteristics of high- and low-efficiency lactating 
cows fed a low-roughage diet. Journal of Dairy Science, 101(12): 10973–10984.

Chizzotti, M., Valente, E.E.L., Machado, F.S. and Pereira, L.G.R. (2015). Technical note: Validation of a 
system for monitoring individual feeding behavior and individual feed intake in dairy cattle. 
Journal of Dairy Science, 98(5): 3438–3442. 

Dahlke, G., Strohbehn, D.R., Ingle, C. and Beedle, P. (2008). A Feed Intake Monitoring System for Cattle. 
Animal Industry Report AS 654, ASL R2279. 

Halachmi, I., Edan, Y., Maltz, E., Peiper, U.M., Moallem, U. and Brukental, I. (1998). A Real-time Control 
System for Individual Dairy Cow Food Intake. Computers and Electronics in Agriculture, 20(2): 131–
144.

Halachmi, I., Edan, Y., Moallem, U. and Maltz, E. (2004). Predicting Feed Intake of the Individual Dairy 
Cow. Journal of Dairy Science, 87(7): 2254–2267.

Herd, R.M., Archer, J.A. and Arthur, P.F. (2003). Reducing the Cost of Beef Production Through Genetic 
Improvement in Residual Feed Intake: Opportunity and Challenges to Application. Journal of 
Animal Science, 81: 9–17.

Faverdin, P., Charrier, A. and Fischer, A. (2017). Prediction of dry matter intake of lactating dairy cows 
with daily live weight and milk production measurements. In: Proc. ECPLF: 8th European Conference 
on Precision Livestock Farming Nantes, France, 35–44.

Mendes, E.D.M., Carstens, G.E., Tedeschi, L.O., Pinchak, W.E. and Friend, T.H. (2014). Validation of a 
System for Monitoring Feeding Behavior in Beef Cattle. Journal of Animal Science, 89: 2904–2910.

Pastell, M. and Frondelius, L. (2018). A hidden Markov model to estimate the time dairy cows spend 
in feeder based on indoor positioning data. Computers and Electronics in Agriculture, 152: 182–185.



798      Precision Livestock Farming ’19

Associating body condition score and parity with sub-optimal mobility in 
pasture-based dairy cows

A.H. O’Connor1,2, E.A. M. Bokkers2, I.J. M. de Boer2, H. Hogeveen3, R. Sayers1, N. Byrne1, 
E. Ruelle1, and L. Shalloo1

1Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; 2Animal 
Production Systems group, Department of Animal Sciences, Wageningen University & Research, the Netherlands; 
3Business Economics group, Department of Social Sciences, Wageningen University & Research, the Netherlands
Corresponding author: aisling.oconnor@teagasc.ie, +353 (0) 25 42579

Abstract

Sub-optimal mobility in dairy cows can be broadly defined as abnormal gait which causes 
a deviation from the optimal walking pattern of a cow. Sub-optimal mobility is also 
associated with significant economic and environmental consequences, which have yet 
to be extensively researched or quantified in pasture-based systems. However, to quantify 
sub-optimal mobility in terms of its impacts economically and environmentally, and 
indeed to aid in the development of automated detection sensors for sub-optimal mobility, 
a clear understanding of the characteristics of a cow with sub-optimal mobility is required. 
So far, automated detection sensors have been successful for detecting moderate to severe 
forms of sub-optimal mobility. However, there is a need for a better understanding of the 
cow-level traits associated with all forms of sub-optimal mobility, including mild forms, to 
incorporate this into future development of automated detection sensors for sub-optimal 
mobility. Therefore, the aim of our study was to determine the associations between hoof 
disorders (both type and presence), body condition score, and all levels of sub-optimal 
mobility in pasture-based dairy cows using data from a large sample of Irish dairy farms. 
Mobility scores, body condition scores (BCS), claw disorder (presence and severity), and 
parity records were available for 6,927 dairy cows from 52 pasture-based herds. Binomial 
logistic regression analysis was completed to determine the associations between claw 
disorder (presence and severity), BCS, parity and sub-optimal mobility. The output variable 
was sub-optimal mobility (mobility score ≥ 1) and the predictor variables were specific 
claw disorders and their severities, BCS, and parity. Our results indicate that all severities 
of claw disorders, low BCS, and higher parity cows are all associated with an increased risk 
for sub-optimal mobility.

Keywords: lameness, claw disorder, body condition, parity, grass-based system

Introduction

Sub-optimal mobility is often overlooked in pasture-based systems, due to a perception 
that dairy cow mobility issues are far more prevalent in non-pasture-based systems 
(Somers and O’Grady, 2015). However, the incidence of mobility issues has been shown to 
be quite similar in both pasture and non-pasture based systems (Olmos et al., 2009). 

Many studies have already demonstrated the usefulness of automated detection sensors 
for sub-optimal mobility. However, more often than not, cows must already be severely 
sub-optimally mobile in order to be detected using such sensors (Mottram, 2015). In order 
for automated detection sensors to be capable of detecting cows with mild to moderate 
sub-optimal mobility, a clear understanding of a cows optimal gait is required (described 
in detail by (Van Nuffel et al., 2015)). As well as this, cow-level traits associated with sub-
optimal mobility need to be investigated and taken into consideration when developing such 
automated detection sensors for sub-optimal mobility. Although it is well known that claw 
disorders are the most important risk factors for the majority of cases of severe sub-optimal 
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mobility (Murray et al., 1996), less is known about the association with mild and moderate 
forms of claw disorders and sub-optimal mobility. Throughout the literature, studies that 
do address the association between various cow characteristics and mobility issues mainly 
focus on the term lameness. However, lameness is a multifactorial term which is very 
difficult to definitively define (even among experts throughout the field (Green et al., 2002), 
and more often than not refers to quite severe forms of sub-optimal mobility or ‘clinical 
lameness’. Therefore, in this study we use the term optimal and sub-optimal mobility.

The focus of our study is to gain a better understanding of the quality of dairy cow mobility 
and the main factors associated with sub-optimal mobility in pasture-based dairy cows, 
using cow-level attributes. Therefore, besides understanding the association between claw 
disorders and mobility scores, we will also investigate the association between dairy cow 
body condition score (BCS), and parity, and sub-optimal mobility (Lim et al., 2015). We 
define sub-optimal mobility in our study as ‘any abnormality to a cow’s gait which causes 
a deviation from the optimal walking pattern of a cow’. Thus, the severity of sub-optimal 
mobility can vary greatly, from slight deviations from optimal gait to severe immobility 
causing difficulty when walking (Beusker, 2007). Therefore, the objective of our study was 
to characterise sub-optimal mobility by determining their association with cow-level 
attributes, including: the presence, type and severity of claw disorders, BCS and cow parity. 

Materials and methods

Cow Data

An Irish Department of Agriculture Food and the Marine funded study across spring 
calving dairy herds with the objective of collecting animal health data was used as the 
data source. Complete records for mobility score, claw disorders, BCS, and parity were 
available for 6,927 cows from 52 of the herds, and thus only these cows were included in 
our analysis. Average herd size was 163 cows and standard deviation was equal to 111. 
All the farms were operating a spring-calving pasture-based system, whereby over 70% of 
cows calve between January and March (Irish Cattle Breeding Statistics, 2018).

Mobility Score, Claw Disorders and BCS data

Each cow’s mobility score and BCS were recorded by two trained technicians from 
Teagasc, Moorepark. Cows were mobility scored using the UK Agriculture and 
Horticulture Development Board four point scale, (https://dairy.ahdb.org.uk/technical-
information/animal-health-welfare/lameness/husbandry-prevention/mobility-scoring/#.
WXnhULuFOr8) during the 2015 calendar year. The BCS of every cow was assessed using 
both visual and tactile appraisal on a scale of 1–5 with 0.25 increments, as described 
by Edmonson et al. (1989). On a separate herd visit, each cow’s hind legs were lifted for 
identification and scoring of claw disorders by claw-trimming professionals from one 
commercial company (Farm Relief Services (FRS), Roscrea, Co. Tipperary, Ireland. The claw 
disorders were identified using the claw atlas of the International Committee for Animal 
Recording (ICAR), 2015. Two types of claw disorders were recorded by the assessors: 1) 
non-infectious (overgrown claw, whiteline disease, hemorrhage, and sole ulcer) and 2) 
infectious type claw disorders (digital dermatitis). Overgrown claw, sole hemorrhage, and 
whiteline disease were each severity scored using a scale (0 through 3), whereby 0 = not 
affected, 1= mildly affected, 2= moderately affected, and 3 = severely affected. Sole ulcer 
and digital dermatitis were scored as binary traits (i.e. 0 = not affected or 1 = affected). 

Statistical analysis

The associations between the predictor variables (BCS, specific claw disorders (presence 
and severity score), and cow parity) on mobility score (outcome variable) were assessed 
using a forward stepwise regression approach. Binomial logistic regression was used to 
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model nominal outcome variables, in which the log odds of the outcomes are modelled as 
a linear combination of the predictor variables. The outcome variable was mobility score 
(a categorical variable, grouped as optimal mobility (mobility score = 0) or sub-optimal 
mobility (mobility score ≥ 1)). The predictor variables were BCS (a categorical variable, put 
into three groups, which are: BCS < 3.00, BCS = 3.00, and BCS > 3, the presence and severity 
of each claw disorder, and cow parity 1, 2, or ≥ 3.

In the regression analysis, mobility score ≥ 1 was compared to a reference category 
(mobility score 0). For the predictor variables (claw disorder presence and severity, BCS, 
and cow parity) an odds ratio >1 indicates that an increase in the predictor variables 
increases the risk of occurrence of a specific category rather than the occurrence of the 
reference category, whereas an odds ratio < 1 indicates than an increase in the predictor 
variable decreases the risk of occurrence of a specific category rather than the occurrence 
of the reference category. Predicted probabilities for mobility score were used to assess 
model fit by visual comparison with observed data (Gelman et al., 1996). Analyses were 
performed using the R statistical software (R Development Core Team, 2009; function 
‘glm’ for binomial logistic regressions).

Results and discussion

In this study mobility score = 0 refers to a cow with optimal mobility, thus shows no signs 
of deviation from the optimal walking pattern as described by Van Nuffel et al. (2015). 
Therefore, mobility score ≥ 1 (mobility score 1, 2, and 3) refers to a cow with varying 
degrees of sub-optimal mobility, showing different levels of deviation from the optimal 
walking pattern of a cow, ranging from quite mild to very severe forms of sub-optimal 
mobility. Of all the cows, 2,641 had sub-optimal mobility (mobility score ≥ 1), while the 
remaining 4,286 cows had optimal mobility (mobility score = 0). For the cows with sub-
optimal mobility, 58% had some form of an overgrown claw, 57% had some form of sole 
hemorrhage, 57% had some form of whiteline disease, 2.5% had some of sole ulcer, and 5% 
had some form of digital dermatitis. 

The results of our study found that all forms of overgrown claw, sole hemorrhage, and 
whiteline disease have odds ratios greater than 1 (Table 1). These results indicate that all 
forms of overgrown claw, sole hemorrhage, and whiteline disease (mild, moderate and 
severe) increase the risk of occurrence of sub-optimal mobility (mobility score ≥ 0) rather 
than the reference category; optimal mobility (mobility score = 0). Even mild types of these 
claw disorders did increase the risk of occurrence of sub-optimal mobility rather than 
optimal mobility.

Similarly, for the binary scored claw disorders, all severities of both sole ulcer and digital 
dermatitis were also associated with an increased risk of occurrence of sub-optimal 
mobility. It is important to note the limitation of these results whereby cow’s mobility 
score and BCS were recorded on the same day, while claw disorders and their severity 
scores were recorded on a separate farm visit, simply due to time restrictions. 

The odds ratios for BCS were consistently < 1 (Table 1) indicating that cows with a high 
BCS (BCS = 3.00 and BCS > 3.00) are associated with a decreased risk of occurrence of sub-
optimal mobility, compared to cows with a BCS < 3. Cow parity was also included in the 
model as a predictor variable for mobility. The odds ratios for cow parity were > 1 (Table 
1) indicating that (1) parity 2 and ≥ 3 cows are associated with an increased risk of the 
occurrence of sub-optimal mobility, rather than the reference category; optimal mobility 
(compared to parity 1 cows).
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Table 1. Odds ratios and 95% confidence interval for the binomial logistic regression model used to 
predict sub-optimal mobility (n = 6,927) by each claw disorder and body condition score

Risk factor

Reference value MS0

Odds ratio

MS ≥ 1 95% CI

Overgrown claw 1 1.19** (1.08-1.31)

Overgrown claw 2 1.59*** (1.39-1.82)

Overgrown claw 3 4.63*** (3.45-6.30)

Sole hemorrhage 1 1.23*** (1.11-1.35)

Sole hemorrhage 2 1.36*** (1.19-1.56)

Sole hemorrhage 3 1.62*** (1.35-1.95)

Whiteline disease 1 1.17* (1.05-1.29)

Whiteline disease 2 1.38*** (1.19-1.60)

Whiteline disease 3 1.95*** (1.65-2.32)

Sole ulcer 1 3.19*** (1.98-5.32)

Digital dermatitis 1 2.81*** (2.13-3.74)

Parity 2 1.46*** (1.28-1.67)

Parity ≥ 3 2.79*** (2.30-2.89)

BCS = 3 0.67*** (0.61-0.74)

BCS > 3 0.56*** (0.50-0.63)

MS = mobility score; CI = confidence interval
***, **, *, † odds ratio is significantly or tends to be different from 1 (P < 0.001, 0.01, 0.05, 0.10)

Conclusions

From the findings of this study, we conclude that there is an association between claw 
disorders (including both type and severity) and mild, moderate and severe forms of sub-
optimal mobility in dairy cows in pasture-based systems, as well as an association between 
BCS, cow parity and sub-optimal mobility. Mild, moderate, and severely severity scored claw 
disorders, such as overgrown claw, sole hemorrhage, and whiteline disease all increased 
the risk of occurrence of mobility score ≥ 1 versus mobility score 0, whereby low BCS, as 
well as an higher cow parity were also associated with sub-optimal mobility score versus 
optimal mobility score. From this, mobility scoring can be used to identify problem cows, 
i.e. cows with mild forms of claw disorders, relatively earlier. There is also potential for 
technology to be developed in order to accurately measure mobility score of pasture-based 
dairy cows, while keeping in mind the associated cow level traits with sub-optimal mobility.
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Abstract

Increasing the proportion of grass in the diet of the dairy cow is one of the fundamental 
objectives of Irish milk production systems. Significant potential exists to increase 
productivity from pasture by increasing stocking rate and extending grazing season length 
on dairy farms in the north-east region of Ireland. The objective of the experiment was to 
quantify the effect of grazing season (GS) length and stocking rate (SR) on milk production 
and supplementary feed requirements within an intensive spring calving system. In 2017, 
120 spring calving dairy cows were randomly assigned pre-calving based on breed, parity, 
calving date and previous lactation milk yield to one of four grazing systems comprised 
of two grazing season (GS) lengths: average (AGS; 205 days; 15 March to 20 October) and 
extended (EGS; 270 days, 15 February to 20 November) and two SR treatments: medium 
(MSR; 2.5 cows/ha) and high (HSR; 2.9 cows/ha). Neither SR nor GS had a significant effect 
on individual animal performance in terms of milk yield, milk composition, average BW 
or average BCS. Higher SR resulted in significantly increased milk and milk fat plus protein 
production per hectare. As the AGS treatment was indoors for an additional 60 days 
between February and November, significantly more concentrate and silage were required 
during lactation compared with the EGS treatment. 

Introduction

Temperate grazing systems are characterised by seasonal calving, a prolonged grazing 
season (> 275 days) and a primarily pasture diet (Dillon et al., 2005). Such systems, based 
on a cheap feed source, provide pasture based milk producers with a competitive economic 
advantage over other production systems based on high milk output per hectare with 
reduced fixed and variable costs (Finneran et al., 2010). It is also widely acknowledged 
that grass utilisation per hectare is the most important factor influencing operating 
profit on pasture based farms (Shalloo et al., 2004) and that higher stocking rates (SR) are 
a key factor affecting productivity per hectare on pasture-based dairy farms for years 
(Macdonald et al., 2008). Both McCarthy (2011) and Mac Donald (2008) have demonstrated 
that higher SRs result in a reduction in milk production per cow, but an increase in pasture 
utilisation and milk production per hectare. In comparison with other regions of Ireland, 
dairy production systems in the north-east are characterised by lower stocking rates (SR), 
a shorter grazing season and reduced farm profitability (Lapple et al., 2012; Ramsbottom 
et al., 2015). The objective of this study was to quantify the impacts of alternative SR and 
grazing season length combinations on animal and pasture productivity on a wetland soil 
in the northeastern region.

Materials and methods

This study was carried out at Ballyhaise Agricultural College (54° 015’N, 07° 031’W) during 
2017. The experimental site is comprised of a variety of different soil types including 
alluvial, brown earth, gley and brown podzolic soils while the topography ranges from 



804      Precision Livestock Farming ’19

alluvial flatlands to drumlins with steep slopes and U-shaped valleys. In January 2017, 
120 spring calving dairy cows were randomly assigned pre-calving based on breed, parity, 
expected calving date and previous lactation milk yield (where available) to one of four 
grazing systems comprised of two grazing season (GS) lengths: average (AGS; 205 days; 15 
March to 20 October) and extended (EGS; 270 days, 15 February to 20 November) and two SR 
treatments: medium (MSR; 2.5 cows/ha) and high (HSR; 2.9 cows/ha). Each experimental 
group had its own farmlet. While indoors, both AGS groups were fed a grass silage and 
concentrate diet. Weekly milk production was derived from individual milk yields recorded 
at each milking. Milk fat, protein and lactose concentrations were determined once weekly 
from successive morning and evening milk samples while individual body weight (BW) 
and body condition score (BCS) was recorded on a bi-weekly basis. Pre-grazing sward 
height (PreGSH) and post-grazing sward height (PostGSH) were measured using a rising 
plate meter (Jenquip, Feilding, New Zealand). Herbage mass (> 3.5 cm) was measured by 
cutting two quadrat samples per paddock before grazing. Least squares means for GS and 
SR were estimated using linear mixed models. 

Results and discussion

There was no significant interaction between GS and SR on animal performance and so 
the main effects of GS and SR are presented in Table 1. Grazing season length varied from 
209 days for both AGS treatments to 262 and 259 days for the MSR EGS and HSR EGS 
treatments, respectively. Neither SR nor GS had a significant effect on individual animal 
performance in terms of milk yield, milk composition, average BW or average BCS. Higher 
SR resulted in similar individual cow performance and significantly increased milk and 
milk fat plus protein production per hectare. Milk fat plus protein production varied from 
1,132 and 1,136 kg / ha for the low SR average and extended treatments, respectively 
to 1,311 and 1,360 kg / ha for the high SR average and extended grazing treatments, 
respectively. There was no significant effect of SR or GS on grass growth (t/DM/ha) or 
grazed grass utilisation. As both AGS treatments were indoors for an additional 60 days 
between February and November, significantly more concentrate and silage were required 
during lactation compared with the EGS treatments. Both average turnout treatments 
consumed between 2.3–2.5 t silage DM/ha/yr compared to 0.9 and 1.4 t DM/ha/year for 
the respective extended grazing treatments. In addition, the average grazing season length 
treatments required 20% more concentrate than the comparable SR groups. 

In a meta-analysis review of the effects of SR on animal performance McCarthy et al. 
(2011) reported a significant linear decline in individual animal performance as SR 
increased whereas no reduction was evident in the current study albeit within a narrow 
range of SR treatments. Similar to previous studies (O’Donovan et al., 2004; Kennedy 
et al., 2005), there was also no significant difference in herbage utilisation between the 
different grazing treatments in this experiment. Unlike O’Donovan et al. (2004) who found 
that the effects of spring-grazing date interacted with stocking rate for a number of milk 
production variables, no such interactions were observed in the current study over the 
entire lactation. Ultimately, the results suggest that extending the grazing season by 60 
days delivers similar milk production performance to current average grazing season 
length but requires 100 kg less concentrate and 450 kg DM less silage per cow per year. A 
full economic appraisal of the production systems will be undertaken at the end of the 
project incorporating both animal performance and feed cost effects in addition to any 
other differences arising. 
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Table 1. Effect of Stocking Rate (SR) and Grazing Season length (GS) on animal performance and 
feed requirements

Grazing season length Average Extended
s.e.d.

P value

Stocking rate Medium High Medium High SR GS SR*GS

Milk yield (kg/cow) 5,224 5,154 5,056 5,287 113.6 0.47 0.87 0.18

Milk yield (kg/ha) 13,074 14,935 12,636 15,311 300.2 0.001 0.91 0.16

Fat plus protein yield (kg/
cow)

452 452 454 470 10.5 0.45 0.34 0.46

Fat plus protein yield (kg/ha) 1,132 1,311 1,136 1,360 28.3 0.001 0.34 0.41

Grazed grass utilisation (t 
DM/ha)

9.6 10.4 10.7 11.6 0.76 0.27 0.15 0.88

Concentrate fed (t DM/ha) 1.4 1.6 1.1 1.3 0.04 0.001 0.001 0.78

Silage fed (t DM/ha) 2.3 2.5 0.9 1.4 0.12 0.01 0.001 0.22

Conclusion

The results of this study show the potential of both extended grazing and higher SR to 
support increased milk productivity while reducing supplementary feed requirements. 
Increasing SR resulted in similar milk production per cow and significantly increased milk 
output per hectare. 
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Abstract

Increasing stocking rates on Irish dairy farms may result in increased feed supplementation 
and a shortening of the grazing season unless grazing management practices are adapted 
to increase pasture supply during late autumn and early spring. The objective of this 
study was to evaluate the impact of three autumn pasture supply strategies and two farm 
system intensities on the performance of spring calving dairy cows during late lactation. 
The experiment was a randomised block design with a 3 × 2 factorial arrangement of 
treatments. In each year, the six experimental treatments consisted of three whole-farm 
pasture supply (PS) strategies (Low Pasture Supply (LPS; 400 kg DM/ha available at winter 
housing), Standard Pasture Supply (MPS; 600 kg DM/ha available at winter housing) and 
High Pasture Supply (HPS; 800 kg DM/ha available at winter housing)) and two whole 
farm system (FS) intensities (Medium Intensity (MI; 2.75 cows/ha plus 90% pasture diet) 
and High Intensity (HI; 3.25 cows/ha and 80% pasture diet)). There was no difference in 
DHA between the three PS treatments during autumn (15.1 kg DM/cow/d) while mean 
post-grazing height, post-grazing biomass yield and herbage removal increased with 
increasing PS. Despite the significant effect of PS treatment on pre-grazing herbage yield, 
the extended residency time of MPS and HPS treatments resulted in increased herbage 
utilisation per ha and similar herbage utilisation per cow for all treatments. Despite large 
differences in pre-grazing herbage yield in the current study, PS had no significant effect 
on animal performance during autumn. Feed system had no significant effect on pre-
grazing measurements, with the exception of DHA which was higher (P < 0.01) for MI (15.8 
kg DM/cow/d) compared with HI (14.3 kg DM/cow/d). The combination of increased SR 
and increased concentrate supplementation within HI FS resulted in reduced post-grazing 
biomass yields, increased herbage utilisation and increased fat plus protein production 
per cow compared to MI. These results highlight the potential for high intensity grazing 
systems to maintain an extended grazing season by increasing PS during autumn without 
detriment to individual animal performance. 

Keywords: dairy cow, stocking rate, pasture supply, milk production

Introduction

The overall resilience and long term sustainability of the pasture-based dairy industries 
is dependent on increased productivity and improved efficiency of conversion of grazed 
pasture to animal products (Delaby and Horan, 2018). The potential of Irish pasture-based 
dairy farms to expand output can be realised through a variety of changes: increase cow 
numbers and area farmed, intensification of production by increasing cow numbers on 
existing area or increasing productivity per existing cow by increasing both the use of 
and efficiency of available feeds. Stocking rate (SR), defined as the number of animals per 
unit area of land used during a specified defined period of time (cows/hectare), is widely 
acknowledged as the main driver of productivity within grazing systems (McCarthy et al., 
2013). Although the current average mean SR is 1.9 LU per hectare on Irish dairy farms, 
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many dairy farmers are now increasing overall farm SRs to increase milk output post 
milk quotas. Increasing SR places added feed demands on the available land area and can 
result in increased feed supplementation and a shortening of the grazing season length 
unless grazing management practices are adapted (Roche et al., 2017). 

Striking the correct balance between herbage quality and quantity is a key driver in 
pasture-based production systems with pasture supply and pre-grazing herbage yield two 
critical factors that influence animal performance. As grazing systems intensify, grazing 
management strategies including feed budgeting, rotation planning and grazing intensity 
must also be adjusted to optimise the productivity of intensive systems and support the 
increased feed demands of grazing dairy herds (Delaby and Horan, 2018). Altering autumn 
grazing management to increase pasture supply can allow higher SR farms to maintain 
an extended grazing season while continuing to harness the benefits of a predominantly 
pasture-based diet. At the same time, increasing pasture supply via extended rotations during 
autumn may also result in increased sward stem and dead material components (Tunon et 
al., 2015) resulting in reduced sward quality (Beecher et al., 2018) and reduced animal intake 
and performance (Lawrence et al., 2017). In this context, the potential for altered autumn 
grazing management practices both in terms of grass supply, rotation lengths and grazing 
intensities to support high pasture utilisation requires further investigation. The hypothesis 
of this study is that increased pasture supply can be an effective strategy to maintain animal 
performance on a predominantly grazing diet during autumn.

Materials and methods

The experiment was undertaken at the Animal and Grassland Research and Innovation Center, 
Teagasc Moorepark, Ireland (50°7N; 8°16W) in autumn 2017. A total of 140 cows were used. 
It formed part of a larger study designed to examine the biological and economic impact of 
alternative SR and pasture management combinations on animal and pasture performance. 

The experiment was a randomised block design with a 3 × 2 factorial arrangement of 
treatments. In each year, the six experimental treatments consisted of three whole-
farm pasture supply strategies and two whole farm systems (Medium intensity (MI, 2.75 
cows/ha) and High intensity (HI, 3.25 cows/ha). Cows within each breed were randomly 
assigned pre-calving based on expected calving date, parity, and EBI to one of three 
pasture supply treatments: Low Pasture Supply (LPS; 650 kg DM/ha available at calving 
start date), Standard Pasture Supply (MPS; 900 kg DM/ha available at calving start date) 
and High Pasture Supply (HPS; 1,150 kg DM/ha available at calving start date). The LPS 
treatment group was designed to reflect prevailing pasture management practice on Irish 
commercial dairy herds based on national data statistics (Pasturebase Ireland; Hanrahan 
et al., (2017)) while the MPS and HPS treatments represented two incremental increases 
in pasture supply which may be appropriate within intensive dairy production systems. 
In order to achieve the desired differences in pasture availability during autumn, rotation 
length was extended by two days per week from 31 July, 15 August and 31 August for the 
LPS, MPS and HPS, respectively. The differences in pasture supply created were maintained 
through autumn. The FS treatments were designed to reflect medium and high intensity 
grazing systems which are typical on Irish commercial dairy farms during autumn. The MI 
FS corresponded to a moderate overall SR system (2.75 cows/ha) with no supplementary 
feed and a post grazing residual of 4 cm while the HI FS had a higher SR (3.25 cows/ha) 
and was supplemented with 1.8 kg concentrate DM per cow per day, and had a target post 
grazing residual of 3.5 cm. The experimental animals used in this study comprised both 
high Economic Index (EBI) Holstein-Friesian (HF) and Holstein-Friesian Jersey crossbreds 
(JFX) with an average EBI, milk, fertility, calving, beef, maintenance, management, and 
health sub-indices of €173, €59, €63, €41, €-23, €26, €4 and €3 respectively. 
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A total of 48.1 ha of permanent grassland predominantly perennial ryegrass (Lolium perenne) 
was used for the duration of the experiment. Each of the six treatments had a separate 
farmlet of 18 paddocks, with each farmlet balanced for location block, sward species and 
soil type. Each farmlet received an annual chemical nitrogen (N) fertiliser application of 
250 kg N/ha per year. Grazing management was accomplished by weekly monitoring of 
farm pasture supply within each treatment. The MI and HI farm systems were grazed in 
sub-paddocks adjacent to each other (with similar target pre-grazing herbage mass, and 
residency time). Grazing data were collected from all paddocks grazed during each grazing 
rotation in autumn 2017 (1 August to 20 November) using the methods outlined previously 
by Delaby and Peyraud (1998). Weekly milk production was derived from individual cow 
milk yield (kg) recorded at each milking (Dairymaster, Causeway, Co. Kerry, Ireland). Milk 
fat, protein and lactose concentration for each cow was determined from successive pm 
and am milkings using a Milkoscan 203 (Foss Electric DK-3400, Hillerod, Denmark) and 
subsequently, fat, protein, lactose, and MS yields were calculated. 

Statistical Analysis

The effect of pasture supply (PS), farm system (FS), paddock and month on net herbage 
accumulation, chemical composition of herbage, pre-grazing HM, pre and post-grazing 
compressed sward height, daily herbage allowance, daily herbage removal, herbage 
utilisation and concentrate and forage supplementation were analysed using mixed 
models (PROC MIXED; (SAS_Institute, 2010). Paddock was included as random effect in 
the model. The effect of PS, FS, parity, breed, calving date, lactation week, genetic merit, 
and their interactions on milk, fat, protein, lactose and MS yield per cow were analysed 
using mixed models (PROC MIXED; SAS Institute, 2010). Milk, fat, protein, lactose and fat 
plus protein (milk solids; MS) yield were analysed with the effect of PS, FS, block and their 
interactions included in the model.

Results and discussion

Pasture Accumulation, Grazing Characteristics and Dietary Details 

Daily grass growth significantly decreased during autumn (P < 0.001) from 58 kg DM/ha/d 
in September to 42 and 33 kg DM/ha/d in October and November, respectively. There was 
no significant interaction of PS with FS on autumn sward measurements and so only the 
main effects are presented in Table 1. Before grazing, mean paddock pre-grazing height, 
pre-grazing herbage yield and sward density were significantly higher with increased PS (P 
< 0.001). Mean paddock residency time significantly increased with increased PS (P < 0.001) 
averaging 2.3, 2.5 and 3.1 days for LPS, MPS and HPS, respectively. There was no difference 
in DHA between the three PS treatments (15.1 kg DM/cow/d). After grazing, mean post-
grazing height, post-grazing biomass yield and herbage removal increased with increasing 
PS (P < 0.001). Grazing efficiency was higher for LPS compared to both MPS and HPS (P < 
0.001). Similar to DHA, there was no difference in herbage utilisation per cow between the 
PS treatments although the higher PS treatments achieved increased herbage utilisation 
per hectare. There was also no significant effect of FS on pre-grazing measurements, with 
the exception of DHA which was higher (P < 0.01) for MI (15.8 kg DM/cow/d) compared 
with HI (14.3 kg DM/cow/d). As per the experimental design, there was a significant effect 
of FS on post-grazing height (P < 0.01), post-grazing biomass (P < 0.05), grazing efficiency (P 
< 0.05) and herbage utilisation per hectare (P < 0.05). 
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Table 1. The effect of Pasture Supply (PS) and Farm System (FS) on pasture characteristics during 
autumn

  Pasture Supply1 Farm System2

s.e.
Significance3

LPS MPS HPS MI HI PS FS

Pre-grazing swards

Sward height (cm) 10.1ᵃ 10.3ᵃ 12.0ᵇ 10.8 10.8 0.30 *** NS

Herbage yield (kg DM/ha) 1,616ᵃ 1,793ᵃ 2,338ᵇ 1,862 1,970 100.0 *** NS

Sward density (kg DM/cm) 237ᵃ 254ᵃᵇ 271ᵇ 250 258 5.1 ** NS

Average residency (days) 2.3ᵃ 2.5ᵇ 3.1ᶜ 2.6 2.6 0.05 *** NS

Herbage allowance (kg DM/
cow/d)

14.3 15.1 15.8 15.8 14.3 0.38 NS **

Post-grazing swards

Sward height (cm) 3.5ᵃ 3.7ᵃ 3.9ᵇ 3.8 3.6 0.09 *** **

Herbage yield (kg DM/ha) 5ᵃ 49ᵃ 123ᵇ 85 33 14.7 *** *

Grazing efficiency (%) 102ᵃ 98ᵇ 96ᵇ 97 100 0.9 *** *

Herbage removal 
(kg DM/ha) 1,613ᵃ 1,743ᵃ 2,216ᵇ 1,776 1,938 58.6 *** *

(kg DM/cow/d) 14.4 14.3 14.3 14.6 14.0 0.41 NS NS

1Pasture supply (PS): Low (LPS), Medium (MPS), High (HPS); 2Farm system (FS): Medium Intensity (MI), High 
Intensity (HI); 3Significance:†P ≤ 0.10; *P < 0.05; **P < 0.01; ***P < 0.001

There was no significant PS by FS interaction on milk production and composition variables 
and so only the main effects are presented (Table 2). Pasture supply had no significant 
effect on milk production variables although milk protein content tended to increase with 
increased pasture supply. There was also no significant effect of FS on daily milk yield, fat, 
protein and lactose composition during autumn. Feed system had a significant (P < 0.05) 
effect on daily MS yield due to the superior performance of the HI FS treatment.

Table 2. The effect of Pasture Supply (PS) and Farm System (FS) on animal performance during 
autumn

 
Pasture Supply1 Farm System2

s.e.
Significance3

LPS MPS HPS MI HI PS FS

Milk yield (kg/cow/d) 15.6 15.1 15.2 15.1 15.5 0.42 N.S. N.S.

Fat content (g/kg) 55.9 57.5 56.0 56.3 56.6 0.80 N.S. N.S.

Protein content (g/kg) 40.0 41.0 40.6 40.6 40.5 0.28 † N.S.

Lactose content (g/kg) 46.9 46.6 46.8 46.8 46.7 0.18 N.S. N.S.

Fat plus protein yield (kg/
cow/d)

1.46 1.45 1.43 1.42 1.47 0.035 N.S. *

1Pasture supply (PS): Low (LPS), Medium (MPS), High (HPS); 2Farm system (FS): Medium Intensity (MI), High 
Intensity (HI); 3Significance:†P ≤ 0.10; *P < 0.05; **P < 0.01; ***P < 0.001
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The extended experimental time period (15 wk from 1 August to 20 November) provided 
an ideal opportunity to assess the cumulative autumnal effects on milk and pasture 
production. Despite the significant effect of PS treatment on pre-grazing herbage yield, 
the extended residency time of MPS and HPS treatments resulted in increased herbage 
utilisation per ha and similar herbage utilisation per cow for all treatments. Although 
previous studies have associated increasing PS with a decline in animal performance in 
high PS swards (Hennessy et al., 2006; Lawrence et al., 2017), the large differences in pre-
grazing herbage yield in the current study (600 kg of DM/ha difference between treatments) 
had no significant effect on animal performance similar to McEvoy et al. (2009). The 
combination of increased SR and increased concentrate supplementation within the HI FS 
resulted in reduced post-grazing biomass, increased herbage utilisation and increased fat 
plus protein production compared to MI. These results highlight the potential for intensive 
grazing systems to maintain an extended grazing season with MI and HI FS by increasing 
PS during autumn without detriment to individual animal performance. 

Conclusion

Increasing pasture supply via extended autumn rotation lengths resulted in increased 
pre-grazing herbage yields, increased paddock residency times and increased pasture 
removal during autumn. The increased pre-grazing herbage yield arising from higher PS 
had no effect on the late lactation milk production performance of spring calving dairy 
cows. Equally, the results indicate that the combination of reduced post-grazing sward 
heights and increased concentrate supplementation of higher SR grazing systems can 
increase both grazing efficiency and individual animal performance during autumn. 
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Abstract

Methane from ruminal fermentation, termed enteric methane, contributes 40% of the total 
agricultural emissions. Mitigation of methane production could allow for a reduction in the 
impact of livestock on climate change and may improve the public perception towards this 
sector. Milk yield, methane emissions, carbon footprint and dietary costs were measured in 
experimental and commercial farms in different diet conditions: enriched fat diet (linseed 
or canola), high concentrate diet, high level of starch in diet or grazing. Individual milk 
samples were analysed monthly for milk quality and for methane emissions predicted by 
milk spectra analysis. The first results showed that methane emissions per kg of milk can 
vary from 11–20 g. Preliminary comparison between the diets demonstrated that feeding 
with grazed grass was beneficial in terms of feeding costs and environmental impact 
while methane emissions per kg milk were higher. Diets with low fibre content can have 
a beneficial impact to decrease methane emissions but could disturb ruminal function. 
These results will allow us to predict methane emissions and environmental impacts of 
milk production according to the diet composition, dietary costs, lactation stage and milk 
production. From these results, advice about feeding strategies could be given to reach the 
best compromise between environmental and economic objectives. 

Keywords: animal nutrition, methane emissions, ruminal function, dairy sector, 
greenhouse gases

Introduction

Methane emissions from enteric fermentation of livestock are responsible for 40% of 
greenhouse gas (GHG) emissions from the agricultural sector (Gerber et al., 2014). According 
to the literature, several strategies are available to mitigate these emissions (Knapp et al., 
2014; Martin et al., 2010). One of them is the nutritional approach that aims to change 
ruminal fermentation patterns to decrease methane production. In this context, the 
first objective of the Life Dairyclim project was to optimise the feeding strategies during 
the winter (barn feeding) and the summer (grazing and supplementary feeding) and to 
evaluate the impact of these different diets on methane emissions and carbon footprint 
of milk. The tested feeding strategies were selected to be close to the usual rations given 
to dairy cows in Wallonia, Belgium. The zootechnical and economic aspects were also 
investigated.

Material and methods

The trials were conducted during the Life Dairyclim project that began in October 2015.  
The experimental design was the same for all the trials i.e. experimental groups 
receiving concentrate of different composition confronted with groups receiving control 
concentrate. During the first period of the project, 2015-2016, two different concentrate 
compositions were tested at the experimental farm of Sart Tilman (ULg) in Liège (Belgium); 
one being rich in starch (ST), the other one being rich in fat (FAT). In 2016–2017, trials were 
focused on concentrates rich in fat, composed of extruded linseed (Concentrate 1- ELS) 
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and of extruded canola seed (Concentrate 2- CS). These trials were held at the Centre of 
Agronomic Technologies (CTA Belgium). The groups were balanced on the basis of days 
in milk (DIM) and lactation number (LN). During all the trials the cows received a diet 
composed of silages and by-products (total mixed ration = TMR), similar to the diets that 
Walloon farmers usually offer to their dairy herd (Table 1). Concentrates were provided 
at the feeding bin of the robot (ULg) or at the automatic concentrate feeder (CTA) as a 
complement to the TMR. The rations were calculated to ensure the same inputs in Control 
and Test groups and the amount of concentrates to be delivered was calculated on the 
basis of milk yield and days in milk (DIM). The ration differed by the amount of starch or 
fat. Nutritional composition of the diets offered during the different trials are presented 
on Table 2.

Table 1. Rations offered to the cows in 2015 and 2016

2015-2016 2016-2017

% DMI Ration offered 
(ST vs control)

Ration offered 
(Fat vs control)

Ration offered 
(ELS vs control)

Ration offered 
(CS vs control)

Grass silage 29 28 22 27

Maize silage 24 22 26 29

Ensiled beet pulp 9 8 11 14

Brewers 5 5 - -

Cereal crop silage - 11 -

Hay 5 4 - -

Straw 2 2 - -

Concentrate rich in protein 9 9 9 7

Tested concentrate 17 22 21 21

Total DMI 19.5 kg 20.6 kg 24.6 kg 24.1 kg

Abbreviations: DMI: dry matter intake; ST: starch group; ELS:extruded linseed; CS: canola seed

Table 2. Nutritional composition of the different rations

g/kgDM TMR + 
control

TMR 
+ ST

TMR + 
control

TMR 
+ Fat

TMR + 
control

TMR + 
ELS

TMR + 
control

TMR 
+ CS

DM 430 430 437 437 360 360 360 360

CP 149 145 157 155 158 158 149 148

Starch 108 132 112 124 139 151 142 157

Fat 37 37 37 43 36 48 34 47

NDF 352 395 324 386 410 391 413 392

Abbreviations: DM: dry matter; TMR: total mixed ration; ST: starch; ELS: extruded linseed; CS: canola seed; CP: 
crude protein

Trials were performed also on grazing cows. In 2017, two contrasting rations were tested 
regarding enteric methane emissions and carbon footprint of produced milk during 72 d. 
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Therefore, cows receiving a dry ration (DR group) were compared with those whose ration 
was composed of grazed grass (G group). The DR group ration was composed of 12.2 kg DM 
concentrates, 1.7 kg DM straw, 0.7 kg DM molasses and 3.6 kg DM alfalfa pellets while the 
G group grazed day and night. Concentrates (3.5 kg, 16% CP) were allocated in both groups 
to allow passage to the automatic concentrate feeder. In 2018, a gradient of grazed grass 
was tested within three groups: one receiving 100% grazed grass (group 100%), the second 
50% (group 50%) and the third one 0% (group 0%) during 45 d. Concentrates (16% CP) were 
supplied at the automatic concentrate feeder (2 kg.cow-1d-1). The TMR of Group 0 and 50% 
were based on forages (88%). The DMI (dry matter intake) of each group was targeted at 
20 kg DM with an energy input of 20 kVEM. Methane emissions were calculated by two 
methods: the measurements of the CH4 emitted in breath samples using the Guardian® 
inserted in the feeding bin of the robot (Sart Tilman) or in the automatic concentrate 
feeder (CTA) and by predictions based on analysis of the milk spectra (Vanlierde et al., 
2016). The results obtained with the Guardian® are not presented in this publication.

Milk yield and concentrate consumption were recorded on a daily basis.

Carbon footprint of diets was calculated using the LCA methodology with Feedprint® 

model tool (Vellinga et al., 2014). 

Feeding costs were calculated on the basis of purchase invoices. The silage production 
costs were estimated by the software “Dégâts du gibier” developed by Fourrages Mieux 
ASBL. Costs of grazed grass took into consideration the grass yield and inputs to the 
pastures. 

At grazing, grass availability was assessed on the basis of grass height measurements.

Statistical analysis

Data were at first analysed by descriptive statistic methods (proc means and proc univariate 
–SAS 9.3). Proc mixed modelling was used to take into account repeated measurements 
(repeated days/subject animal) and a covariance analysis type AR(1) in 2015–2016 and type 
cs in 2016–2017. The models that most adapted to the trials were chosen on the basis of 
AIC criteria. These procedures were repeated for each trial period: Trial with concentrate 
rich in starch and concentrate rich in fat in 2015–2016 and in 2016–2017 for the trial ELS, 
trial CS and grass experiments in 2017 and 2018. 

Results

The results of the different trials are presented in Table 3, 4, 5 and 6. In 2015–2016, no 
statistical difference was observed. In 2016–2017, methane emissions (g.cow-1.d-1) were 
decreased in ELS and CS compared with control groups. The decrease in methane g.kg 
milk-1 reached more than 10% in ELS group. During the summer trials, different results 
were observed. The comparison between the dry ration and the 100% grazing demonstrated 
lower methane emissions with the DR whatever the chosen unit. In trials held in 2018, 
lower daily methane emissions per cow were observed in the group 0%. The methane 
production per kg milk and per kg ECM showed no difference between the groups.
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Table 3. Results of Trial Starch (ST) and Fat (FAT) conducted in 2015–2016

Control ST Sig Control FAT Sig

MY (kg cow-1.d-1) 28.3 ± 1.5 24.8 ± 1.6 *** 29.3 ± 1.2 30.4 ± 1.2 ns

% Fat 3.6 ± 0.1 3.7 ± 0.1 ns 3.8 ± 0.1 3.7 ± 0.1 ns

% Protein 3.4 ± 0.1 3.4 ± 0.1 ns 3.3 ± 0.0 3.3 ± 0.0 ns

ECM (kg cow-1.d-1) 26.9 ± 1.4 23.7 ± 1.4 *** 28.6 ± 1.2 29.4 ± 1.2 ns

CH4 (g cow-1.d-1) 416 ± 10 424 ± 10 ns 465 ± 7 459 ± 7 ns

CH4 (g kg-1milk) 16.1 ± 1.1 19.3 ± 1.1 ** 17.0 ± 0.8 16.4 ± 0.8 ns

CH4 (g kg-1ECM) 16.7 ± 1.0 19.9 ± 1.0 * 17.4 ± 0.8 16.9 ± 0.8 ns

Concentrate intake 
(kgDM cow-1.d-1)

3.4 ± 1.7 3.4 ± 1.7 ns 5.3 ± 1.7 5.1 ± 1.7 ns

Abbreviations: MY: milk yield; ECM: energy corrected milk. Values are LSmeans ± SE. The statistics results show 
the group effect. ns: not significant; *: p < 0.05; **: < 0.01; ***: p < 0.001

Table 4. Results of Trial with extruded linseed (ELS) and canola seed (CS) conducted in 2016-2017

Control ELS Sig Control CS Sig

MY (kg cow-1.d-1) 34.4 ± 0.5 36.6 ± 0.5 *** 34.8 ± 0.7 36.3 ± 0.7 trend

% Fat 4.0 ± 0.1 3.8 ± 0.1 * 3.8 ± 0.1 3.8 ± 0.1 ns

% Protein 3.7 ± 0.0 3.2 ± 0.0 *** 3.4 ± 0.1 3.3 ± 0.1 ns

ECM (kg cow-1.d-1) 34.4 ± 0.5 35.3 ± 0.5 ns 34.7 ± 0.8 34.9 ± 0.8 ns

CH4 (kg cow-1.d-1) 485 ± 4 462 ± 4 *** 475 ± 7 469 ± 7 ns

CH4 milk (g kg-1milk) 14.6 ± 0.2 12.9 ± 0.2 *** 14.1 ± 0.4 13.1 ± 0.4 *

CH4 ECM (g kg-1ECM) 14.4 ± 0.2 13.4 ± 0.2 *** 14.3 ± 0.4 13.9 ± 0.4 ns

Concentrate intake 
(kgDM cow-1.d-1)

5.0 ± 0.2 4.6 ± 0.2 *** 4.8 ± 0.2 4.8 ± 0.2 ns

Values are LSmeans ± SE. Abbreviations: MY: milk yield; ECM: energy corrected milk. The statistics results indicate 
the group effect. ns: not significant; trend: 0.1; *: p < 0.05; **: p < 0.01; ***: p < 0.001

Table 5. Results of Trial DR. Group DR: received a dry ration and Group G was 100% grazing

Dry Ration Grazing Sig

MY (kg.cow-1.d-1) 36.3 ± 1.4 26.1 ± 1.4 ***

% Fat 3.0 ± 0.1 3.5 ± 0.1 ***

% Protein 3.1 ± 0.0 3.0 ± 0.0 ns

ECM (kg.cow-1.d-1) 31.3 ± 1.2 23.9± 1.2 ***

CH4 (kg.cow-1.d-1) 435 ± 10 451 ± 10 ns

CH4 (g.kg-1milk) 12.3 ± 0.5 18.1 ± 0.5 ***

CH4 ECM (g.kg-1ECM) 14.2 ± 1.0 19.8 ± 1.0 ***

Values are LSmeans ± SE. Statistical values indicate the group effect.. ns: not significant; trend: 0.1; *: p < 0.05; **: p 
< 0.01; ***: p < 0.001
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Table 6. Results of the Trial 0%. 50%. 100% grass

0% grass 50% grass 100% grass Sig 

MY (kg cow-1 d-1) 28.5 ± 1.3 27.2 ± 1.2 25.2 ± 1.3 ns

ECM (kg cow-1 d-1) 27.5 ± 1.5 25.2 ± 1.4 24.2 ± 1.5 ns

% Fat 3.7 ± 0.2 3.8 ± 0.2 3.6 ± 0.2 ns

% Protein 3.2 ± 0.1 3.2 ± 0.1 3.1 ±0.1 ns

CH4 
(kg cow-1 d-1)

475 ± 9a 440 ± 9b 430 ± 9b *

CH4 
(g kg-1milk)

17.7 ± 1.1 17.3 ± 1.1 17.9 ± 1.1 ns

CH4 ECM 
(g.kg-1ECM)

18.3 ± 0.9 17.9 ± 0.9 19.3 ± 0.9 ns

Values are LSmeans ± SE; ns: not significant; *: p < 0.05.

Feeding costs

The impact of the different diets on feeding costs was evaluated. Independently from 
the study’s year, full grazing diets were the cheapest per cow per day or per 100 kg milk 
produced (Table 7).

Table 7. Feeding costs of all the studied diets. Costs are expressed in € per cow and per day or per 
100 kg milk produced

Feeding costs

Per cow.d 
€

Per 100 kg milk 
€

Milk yield 
(kg cow-1.d-1)

2015-2016 Control feed 3.98 14.0 28.3

ST 4.03 16.2 24.8

FAT 4.35 14.3 30.4

2016-2017 Control feed 4.22 11.8 34.6

ELS 4.35 12.2 36.8

Control feed 4.12 12.1 33.9

CS 4.31 11.9 36.0

DR 5.93 16.5 36.3

G 1.98 8.0 26.1

2018 0% 4.73 16.6 28.5

50% 3.36 12.3 27.2

100% 2.19 8.7 25.2

Climate impact of tested diet

The climate impact of each diet was evaluated by checking the carbon footprint total of 
each feedstuff. Values of silages and grazed grass were adapted in relationship with their 
DM. Values were put in correlation with the evaluated control diet. Values are expressed 
per kg milk and kg ECM. 



818      Precision Livestock Farming ’19

Climate impact (g eqCO2) per kg milk and per kg ECM was estimated for all the tested diets. 

The CF of tested compounds were generally higher than control ones. The diet incorporating 
grazed grass had generally a lower CF than the control ones (Table 8).

Table 8. Climate impact (g eqCO2) per kg milk and per kg ECM for all the tested diet

Year of trial Tested diet g eq CO2/kg milk g eq CO2/kg ECM

2015-2016 Control 269 283

ST 308 323

Control 234 274

Fat 256 274

2016-2017 Control 308 312

ELS 315 318

Control 297 307

CS 311 323

DR 498 576

G 356 390

2018 0% 363 377

50% 339 362

100% 322 353

Discussion

Diminution in enteric methane emissions were noted when compounds rich in fat (Fat; 
ELS; CS) were added to the total mixed ration. It must be highlighted that a substantial 
amount has to be given to reach a noticeable effect. The use of these components is to 
be limited to early calving cows. The higher the milk yield, the higher enteric methane 
reduction. At grazing, no effect on methane emissions per cow per day was observed 
possibly because of high grass quality. Conversely, the decrease in milk yield observed for 
full grazing diets induced an increase in methane emissions per kg produced in 2017. This 
observation was not confirmed in 2018. The carbon footprint in relation to the provided 
diet took into consideration only the climate impact and not other environmental 
indicators, like biodiversity index or land use change. Values are dependent on forage 
quality. For example, the dry matter of silages has a huge impact on figures. Use of each 
tested concentrate increased the carbon footprint of the diet while grazing decreased it. 
However, the impact was moderate. The incorporation of concentrate rich in fat induced 
an increase in production costs that was partly attenuated by the higher milk production. 
Grazing was the most beneficial in terms of feeding costs. 

Conclusion

This compilation of trials’ results over several years highlights the difficulty to get a unique 
overview of the effects of introducing new compounds in cows’ diets. Some negative 
effects could counteract the positive effects observed when a change is made. Advisors 
should keep in mind this difficulty. 
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Abstract

Livestock farming represents a complex biological system where farmer has to continuously 
make decisions under many constraints (animal welfare, antimicrobial use, price 
volatility.… ). This work proposes an integrated bioeconomic modelling to highlight the need 
for holistic approaches for PFL technology evaluation. We developed a biological model of 
dairy herd dynamics that simulated herd population, cow reproduction, milk production 
and health on the basis of cow-week events. The cow-week occurrence of diseases was 
based on basic incidences, cow specific risk factors and herd contamination risks. The 
health disorders affect milk production, mortality risk, food needs and reproduction 
performances. This biological model was combined with an economic optimisation model 
which dynamically represents farmer’s input allocation decisions while maximising his 
utility under constraints (welfare, antimicrobial use, cash flow and working time…). 

The results show the added value provided by the holistic modelling approach of the 
biologic and economic processes. Three key characteristics of the model are highlighted: it 
(i) allows a broad range of possible solutions (no a priori), (ii) offers a good equilibrium and 
ponderation within the precision level of the modelling and (iii) has a real optimisation 
tool for the economic modelling. Many models used up to now do not fulfill these criteria, 
and biased conclusions may result from these models. This issue is the most challenging 
for PLF since the questions raised are very specific and focused. For precision livestock 
farming, this kind of approach gathering high level of resolution in the modelling process 
and holistic system approach may be of interest (i) for the algorithm itself as a tool to help 
decision making and event prediction, and (ii) for the economic evaluation of PFL new 
technology (cost and added value of the new technology output). 

Keywords: Animal health economics, bio-economic modelling, mathematical 
programming, mastitis

Introduction

Economic approaches on disease management has been developed to help defining health 
standards and decision rationale. Micro-economics of production diseases is particularly 
challenging from a methodological point of view, especially for cattle production in most of 
livestock systems, due to (i) the high complexity of the production function linked to an open 
production system with high variability and difficulties to measure inputs/outputs, (ii) the long 
to very long time pattern (2 years to start milk production, half turnover of five years), and (iii) 
a series of daily decisions made on various topics by individuals or a small group of farmers. 

Livestock farming represents a complex biological system where farmer has to 
continuously make decisions under many constraints (animal welfare, antimicrobial 
use, price volatility… ). It appears that precision livestock farming and micro-economics 
of farm production have close needs and both require an holistic approach (due to the 
system-based organisation of the process studied), allowing at the same time a very high 
level of modelling resolution, since the question we want to answer is very specific. For 
precision livestock farming, this kind of approach gathering high level of resolution in the 
modelling process and holistic system approach may be of interest (i) for the algorithm 
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for itself as a tool to help decision making and event prediction, and (ii) for the economic 
evaluation of PFL new technology (cost and added value of the new technology output).

For this purpose, considering revenue as the only component of farmer’s utility does 
not seem still acceptable. Moreover, risk aversion, workload and anticipation of market 
changes appear as key criteria to be included. Societal pressure on farming characteristics 
are increasing continuously, and animal welfare or antimicrobial use are key criteria to be 
included in evaluations. 

We aim here to propose a new bio-economic stochastic sequential modelling of dairy 
production to show the added value of multicriteria decision in farming process. 

Material and methods

A bio-economic model was developed to analyse the trade-offs between AMU and farm 
income in dairy cattle production. First, a biologic model defined on a cow-week basis 
and weekly probabilities of events, productions and diseases was implemented using R 
statistical software. This biological component aims at the dynamic representation of a 
dairy herd. It allows to formulate and simulate livestock management scenarios and build 
an input and output matrix for each scenario. The biologic model was then combined with 
an economic optimisation model implemented using General Algebraic Modelling System 
(GAMS) software. The economic model aims at maximising the farmer’s risk-adjusted 
income under budget, working time, AMU and animal welfare constraints.

The bio-economic model was calibrated based on literature review and experts’ opinions. 
The model was run over 10 years and includes sequentially the most common potential 
decision and management strategies by the farmer.

Figure 1. Bio-economic model representation

Economic model overview

The economic model developed is a recursive mean-variance optimisation framework 
which assumes that farmers make their decisions in order to maximise their income while 
minimising the associated risk, under technical, biological, structural and AMU constraints. 
We assume that farmers are risk-minimisers since many studies have demonstrated that 
they are typically risk-averse. This means that they are willing to sacrifice a part of their 
income to avoid facing risk. To incorporate risk-averse behaviour in farmers’ decision 
making, we use a Markowitz-Freund mean-variance objective function. Mathematically, 
the economic model can be formulated as follows (equations 1 - 8): 
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Equation (1) denotes objective function of farmers where E denotes expected values, k 
represents the state of nature which is defined here as the possible level of price; Zk,t 
stands for the income generated per state of nature k in year t, ϕ is the risk aversion 
coefficient, and σ(Zk,t) is the standard-deviation of the income. Equation (2) indicates how 
the income is computed. In this expression, MilkProdl,t denotes the milk of type l sold 
at time t; the type of milk is linked to number of cellules in case mastitis, MilkPricel,k,t 

represents the price of the milk of the type l sold in state of nature k at time t ;NSa,t denotes 
the number of animals of type a (dairy cows, heifers and calves) sold at time t; SalePricea,k,t 
is the price of animals of type a sold in the state of nature k at time t. The sales price of 
the cull cows includes a slaughter premium. ConcQtyco,t indicates the quantity of each type 
of purchased food co (soybean meal, rapeseed meal, wheat, and milk powder) ingested 
at time t; ConcPriceco,k,t stands for the prices of each type of purchased food in the state 
of nature k at time t. Na,t stands for the number of animals of type a at time t; MedQtyF,t 
indicates the quantity of drugs of type F used at time t and Vetv,t indicates veterinary 
interventions of nature v at time t. Equation (3) indicates how to compute the expected 
value of the income, and equation (4) indicates how to compute its standard deviation. 

Biologic model overview 

The biological model aims at the dynamic representation of dairy herd growth. The 
biological model simulated herd’s population, cow reproduction, milk production and 
health on the basis of cow-week events defined by a matrix of probabilities.

We consider in this model the dynamic interaction between livestock production, damage 
and damage control functions. The trio of functions also interact with growth and 
reproduction functions and drives the herd exit functions (culling, death and sell).

It aims to be as exhaustive as possible to represent all the practical cow-related events of 
the farm, including production and diseases.

It included all categories of animals from birth to death or culling and all the physiological 
states of animals (dry, in milk, open, in calf…). The events were defined for each cow and 
each week mechanistically, based on basic incidences, cow specific risk factors and herd 
contamination risks. 

The cow’s diseases included lame, dystocia, milk fever, placental retention, pueperal 
metritis, purulent vaginal discharge, subclinical endométritis, left + right abomasum 
displacement, subclinical ketosis, clinical ketosis and clinical mastitis (with six different 
pathogens); represented the high majority of disorders observed in dairy herds, except 
accident issue (broken leg …). The model also considers calves’ diseases/troubles such as 
bovine viral diarrhea, septicemia, diarrhea, omphalitis, etc.

Culling rules were applied on all cows each week, with a series of criteria including udder 
health, lameness, pregnancy status and milk production, alone and in combination, so as to 
create a set of rules with increasing aggressivity in culling, applied in accordance to the herd 
density (i.e. the number of cows to be culled so as to maintain the herd size). The rules were 
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builds according to the observations made in the field so as to mimic the usual famer behaviour. 

This algorithm structure allows us to precisely formulate and simulate many realistic 
livestock management scenarios and build an input and output matrix for each scenario.

Constraints and scenarios 

Bioeconomic model constraints: The equation (1) will be estimated with the outcomes of the biological 
models and under the following technical, biological, structural and regulatory constraints. 

First, the feeding constraints (Equation 5) were built so as to the sum of forage unit 
requirements (FUR) by animal category a and period p remains lower than or equal to the 
number of forage units available per period p, per crop c and concentrated feed co. 

 ∑a(Na,t × FURa,p) ≤ ∑c (Xc,t × FUc,p) + ∑co (ConcQtyco,p,t × FUco,p,t) (5) 

The feeding system was based on three main components: corn silage, crop such as 
barley or wheat, and nitrogen corrective feed, such as soybean meal. Because the present 
model was herd centered and not farm centered, it was assumed that the quantity of corn 
silage to feed the hard was available each year. Its energetic value changes yearly due to 
weather growing conditions, and these changes have to be compensated by changes in 
concentrated food crops purchase.

Second, the workload constraints were considered as the sum of additional working time 
per strategy of disease management must be lower than a farmer’s consent to work or 
available labour. The constraint labour time was implemented according to a monthly 
smooth rolling function considering monthly farmer’s extra time available for health 
preventive and curative management as a fixed time value per week plus saved time on 
the previous weeks (below the average working time). 

Third, the cash constraint was defined by Equation (6). It indicates that each year the 
available cash from the past year (CASHt-1) and the revenue generated (REVt) are used for 
disease management (DMt), operational expenses (OperCostt), household expenses (HExpt) 
or saved (CASHt). This equation ensures, in part, the "recursivity" of the model. 

 CASHt-1 + REVt = DMt + OperCostt + HExpt + CASHt   (6)

Fourth, the constraint on AMU was built on the standardised exposition of animals to 
antimicrobial indicator ALEA (Animal Level of Exposure to AM). The constraint on ALEA 
was defined as a free constraint for scenarios where no reduction is simulated, and as a 
reduction constraint according to the baseline biological scenario ALEA outcomes.

Biological scenarios: The biological scenarios and the health management farmer’s strategy 
were defined thanks to expert opinion and literature overview. The retained scenarios 
must (i) be in accordance with regulation in France (drug authorised), (ii) match with in 
the field common practices and (iii) have a given efficacy defined thanks to evidence-based 
medicine principles. Because each biological scenario included specific non-medical farm 
practices in addition to drug use, the scenario underlies farmer’s state of mind and drug 
choice as well as overall farm management, leading to consider “health management 
strategy” adopted by farmer instead of biological scenarios alone. The different situations 
proposed here correspond to farmers’ strategies under technical constraints. 

The nine scenarios were defined as a combination of three scenarios representing technical 
strategies related to clinical mastitis management at dry-off (common practices and two 
alternatives) and three scenarios representing animal health management (common, 
deteriorated and adequate practices). Details are reported in Tables 1 and 2.  
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Table 1. Technical scenarios

Description Reference

T1: Common practice
Systematic treatment 
at dry-off

Reference risk  

T2: Alternative practice 
1 at dry-off

Selective antimicrobial 
treatment at dry-off for 
cows > 150 000 scc

Odd ratio for risk of 
clinical mastitis up to 
100 DIM = 2 

(Scherpenzeel et al., 
2014)

T3: Alternative practice 
2 at dry-off

Selective antimicrobial 
treatment at dry-off for 
cows > 150 000 scc and 
an internal teat sealer 
for other cows

The same risk as the 
reference technical 
scenario

(Crispie, Flynn, Ross, 
Hill & Meaney, 2004)

Table 2. Management scenarios definition

Cleanliness 
at dry off Cleanliness of in milk cows Milking 

practices costs Diet practices

M1 “Good” 

management 
scenario

5 kg of 
straw per 
cow per day

- 4 ~ 6 kg of straw per place per day 
- +0.20 min extra time per place. 
- odd ratio = 0.5 for probability of CM 
on 4 first WIM and for second and 
third cases on 8 first WIM

- 1 min extra 
time per cow

- 0.0452 € extra 
cost per cow per 
day

5% of cows 
with risk factor 
for subclinical 
ketosis (change 
in practices 
during dry off) 

M2: 
“common” 
management 
scenario

3 kg of 
straw per 
cow per day

- 3 ~ 5 kg of straw per place per 
day

Reference 
practices 

15% of cows 
with risk factor 
for subclinical 
ketosis (change 
in practices 
during dry off)

M3: 
“deteriorated” 
management 
scenario

no straw

- 1.5 ~ 3 kg of straw per place per day 
- odd ratio= 2 for probability of CM 
on 4 first WIM and for second and 
third cases on 8 first WIM 
- 0.20 min saved time per place.

- 0.5 min saved 
time per cow

50% of cows 
with risk factor 
for subclinical 
ketosis (change 
in practices 
during dry off)

- 30 min saved/
day for a 100 
cows herd.

Calibration 

The biological model developed here deals with quantitative data and facts with scientific 
backing. It is available on request to the authors.
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Results and discussion

The results of nine scenarios are presented here. Details are proposed in Figure 1. 

Simulations show that good management scenarios (S1, S4 et S7) allow to reduce 
antimicrobial treatments while maintaining farmers’ economic profitability. However, 
those scenarios appear to be time-consuming. They are associated with a medium of 60 
hours additional working time per month.

In ‘usual’ management scenarios context, systematic treatment (S2) and selective 
treatment associated to a teat sealant (S8) strategies shows similar mastitis infections and 
economic profitability levels. With the simple selective treatment strategy (S5), farmers’ 
income is deteriorated mainly due to milk quality deterioration.

In bad breeding practices (S3, S6 and S9), systematic treatment makes it possible to secure 
the income of the farmer, with a limited reduction of the risky income (S3).

A-Exposition to antimicrobials (% of change compared to S2)

S1 : T1M1 ; S2 = T1M2 ; S3= T1M3 ; S4 : T2M1 ; S5 = T2M2 ; S6= T2M3 ; S7 : T3 M1 ; S8 = T3M2 ; S9= T3M3

B -Expected utility (€ / year)

S1 : T1M1 ; S2 = T1M2 ; S3= T1M3 ; S4 : T2M1 ; S5 = T2M2 ; S6= T2M3 ; S7 : T3 M1 ; S8 = T3M2 ; S9= T3M3
B – Milk produced / year 

S1 : T1M1 ; S2 = T1M2 ; S3= T1M3 ; S4 : T2M1 ; S5 = T2M2 ; S6= T2M3 ; S7 : T3 M1 ; S8 = T3M2 ; S9= T3M3
L1 : Bulk milk with SCC < 250 000 cells/mL, L2 : Bulk milk with SCC = 250 000-300 000 cells /mL, L3 : Bulk milk with SCC = 
300 000-400 000 cells /mL, L2 : Bulk milk with SCC > 400 000 cells /mL

Figure 2. Results of the models
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Three main empirical results are highlighted here. First, a decrease in the use of 
antimicrobials is possible, with marginal cost that is low to zero, in some situations with 
good health practices. Second, the antimicrobial use reduction is more problematic in 
deteriorated farming conditions and these practice changes represents a significant labour 
investment. Third, the existence of a therapeutic alternative makes it possible to secure 
the income of certain breeders with ‘usual’ health practices. 

The bioeconomic model we propose here go beyond most of the models proposed in 
literature. It is of high interest for PFL for at least three reasons. 

First, the biologic part of the models appears as ‘closed’ in most of the models in literature. 
Closed refers to the fact that they include many a priori: all the fields of possibilities are 
not reachable by the models, limiting thereafter the search of optimal solutions. Typical 
examples in dairy production include culling (with several causes), death and heifer 
availability. The present model is mechanistic and aims to include no exogenous a priori. 
This is a key point for PLF since the prediction of a new event for a cow or of the herd 
characteristic evolution may be biased in cases of partial approach or strong a priori. The 
simulation of the reform in the model is based on the evaluation of the cow’s condition in 
comparison with rules set at the beginning of the model, in three main axes: production 
performances (quantity and quality of the milk), reproduction and health status (including 
lame). Results showed that for scenarios with high clinical mastitis prevalence, culling 
rules for udder health and milk quality (somatic cell counts) are the most applied rules.

Second, the model proposes an algorithm that accurately and realistically represents 
biological and livestock management processes: the algorithm reproduces field situations 
in a very close way, what allows to simulate a large number of scenarios focused on ‘hot 
spots’ of dairy cattle farming.

Last but not least, the present model allows an optimisation process using multicriteria 
consideration. Compared to scenario M2, scenario M1 lead to + 60 h extra labour and the 
scenario M3 30 h less labour per month, including labour time within the optimisation 
process leading to a very different optimal decision. This is of high concern for precision 
farming since reducing labour time is often a key criterion to adopt PLF technology. 

Conclusions

We propose a new bio-economic stochastic sequential modelling of dairy production that 
allows multicriteria decisions to be made in farming process. We showed that this kind of 
approach gathering high level of resolution in the modelling process and holistic system 
focus brings added value for decision making and goes beyond the existing models. These 
kind of methods are currently becoming the standards in economics applied to animal 
health. They add value for PFL by themselves with the algorithm used to help decision 
making and to predict events, and for the economic evaluation of PFL new technology.
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Abstract

Our objective was to examine differences in dairy cow standing and lying behaviour 
patterns across different grazing management plans that varied in pasture supply and 
management intensity. We hypothesized that cows in a higher pressure grazing system, 
with reduced pasture availability and higher competition, would display greater standing 
times and reduced lying behaviour. Ten focal cows were selected from each of three spring 
grazing management plans, balanced for breed, parity and body weight. Treatments 
represented low pressure (LOW; 1,100 kg DM/ha grass available at calving, 2.75 cows/ha 
and 90% pasture diet), moderate pressure (MOD; 900 kg DM/ha grass available at calving, 
2.75 cows/ha and 90% pasture diet), and high pressure (HIGH; 700 kg DM/ha grass available 
at calving, 3.25 cows/ha and 80% pasture diet) grazing plans. Groups were monitored from 
March - May 2018. Daily standing time, lying time, and lying bout and step frequency 
data were collected using accelerometers secured to the rear leg of each cow. Data from 
three, 10 d periods corresponding to the Early, Mid and Late spring grazing season were 
summarised by cow, day, treatment and period, and analysed for differences in behaviour. 
HIGH pressure cows tended to have reduced lying time and greater standing times (P = 
0.07). Grazing period significantly influenced standing and lying time (P = 0.02), with a 
decrease in standing time and increase in lying time from Early to Late spring grazing. 
Additionally, lying bout frequency decreased while step frequency increased over the 
grazing period (P < 0.001).

Keywords: lying behaviour, dairy cows, grazing management

Introduction

Irish pasture-based dairy systems have undergone a shift towards increased herd sizes and 
greater milk production per hectare in recent years due to the elimination of production 
quotas (CSO, 2017). Ensuring efficient pasture management is a key factor in sustaining 
continued growth in the Irish dairy industry, which is based on a cow’s ability to convert 
grass to milk solids with minimal inputs to the system. Thus, much research has focused 
on promoting high quality swards and greater productivity through greater stocking rate 
(SR: the number of cows per unit of land, e.g. cows/ha) (McCarthy et al., 2013, Baudracco 
et al., 2010 and McDonald et al., 2008), and optimum herbage allowance (Stakelum and 
Dillon, 2007, Maher et al., 2003). However, higher intensity grazing systems (those with low 
pasture availability and high stocking rates) may increase the pressure on grazing cows 
to meet daily nutritional requirements. This may impact their productivity and welfare, 
as more time spent grazing to meet energy demands may have a negative effect on daily 
lying time. Lying time is known to be an important, high priority, behaviour in a cow’s daily 
time budget (Krohn and Munksgaard, 1993; Munksgaard et al., 2005) with cows spending 
approximately 9 - 11 hrs/d lying down at pasture (Hernandez-Mendo et al., 2007, O’Driscoll 
et al., 2015). Thus, sufficient lying time is considered an important indicator of good dairy 
cow welfare (Whay et al., 2003). Reduced pasture allowance has been shown to result in 
fewer but longer lying bouts, and a longer latency to lie down after milking, potentially 
indicating feelings of hunger that are driving longer grazing periods (O’Driscoll et al., 
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2015). The objective of this study was to examine differences in dairy cow standing and 
lying behaviour under grazing management plans that varied in pasture availability and 
grazing intensity. We hypothesized that cows under higher grazing pressure, would display 
greater standing times and reduced lying behaviour.

Materials and methods 

Holstein Friesian (HF) and HF × Jersey cows (n = 30) were selected from an existing study 
(n = 144) of the effect of grazing management on dairy production. From each of three 
different treatment groups, 10 focal cows were chosen, balancing for breed, parity and 
body weight. The treatments were:

•	 Low grazing pressure (LOW): 1100 kg DM/ha grass available at spring calving, stocking 
rate of 2.75 cows/ha and a 90:10% pasture: concentrate diet

•	 Moderate grazing pressure (MOD): 900 kg DM/ha grass available at spring calving, stocking 
rate of 2.75 cows/ha and a 90:10% pasture: concentrate diet

•	 High grazing pressure (HIGH): 700 kg DM/ha grass available at spring calving, stocking 
rate of 3.25 cows/ha and a 80:20% pasture: concentrate diet

All cows were enrolled in their treatment groups and turned out to pasture at calving. 
Focal cows in each group were managed in the same manner as all other cows within 
the group. All focal cows were monitored 24 hrs/d for 11 weeks during the spring grazing 
period from March - May 2018, both while at pasture and during periods of housing.

To monitor standing and lying behaviour, an accelerometer leg-band (IceTag; IceRobotics 
Ltd., Edinburgh, Scotland, U.K.) was secured to a rear leg, below the hock, of each focal 
cow at the start of data recording. The IceTags remained in place for the duration of the 
study, removing them only once after approximately six weeks, when data download 
was required. The IceTag accelerometer recorded the daily standing and lying time, step 
frequency and number of lying bouts (number of times a cow lay down for an interval > 4 
min). The IceTags were removed from all cows at the end of the study period. Resulting data 
was downloaded using the IceManager program (IceRobotics Ltd., Edinburgh, Scotland, 
U.K.) in hrs/d for each behaviour, then summarised by cow, treatment and period in SAS 
9.4 (SAS Institute Inc., 2014). 

From the data, three 10 d periods were identified that represented distinct stages of the 2018 
spring grazing season; Early (mean DIM = 30 ± 9, all treatment groups indoors for partial 
days except the Low group), Mid (mean DIM = 69 ± 9, all treatment groups out by day only) 
and Late (mean DIM = 94 ± 9, all groups out full time) spring grazing periods. Summarised 
data for each outcome variable (standing time, lying time, step frequency and number 
of lying bouts) were analysed using a general linear mixed model, using the GLIMMIX 
procedure to determine differences between treatments. Fixed effects were treatment, 
period and the interaction of treatment with period; cow was the random effect and period 
was modelled as a repeated measure with an Autoregressive(1) covariance structure. All 
values were reported as least square means and significance was declared at a level of P < 
0.05. Residuals were examined to ensure all assumptions of normality were met.

Results and discussion

In the current study there was a tendency for cows in the HIGH treatment group to spend 
the most time standing and least time lying down (P = 0.07) whereby HIGH cows lay 
down for 2 hrs/d less than LOW cows (HIGH = 9.1hr/d, LOW = 11.1hr/d). This suggests 
that under more intense grazing management, cows are spending more time grazing in 
order to satisfy their daily nutritional requirements, rather than resting. This is potentially 
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detrimental to dairy cow welfare, as restricted lying time can induce a physiological stress 
response in lactating dairy cows (Fisher et al., 2002). Despite this, there was no observed 
difference in the number of lying bouts across treatments, suggesting that cows in the 
LOW treatment group lay down for a longer duration each time compared with cows in 
the HIGH treatment group. This is contrary to research by O’Driscoll et al. (2015) who 
found cows with higher daily pasture allowances had shorter bouts of lying time than 
cows with lower. However, in the current study, cows were housed indoors for part of each 
day during the early spring period, while the latter looked at cows at pasture full-time, 
which may have influenced the cows’ lying behaviour. 

Cows across all treatments spent significantly less time lying down and more time 
standing during the Early spring grazing period than during Late spring grazing (Early 
= 9.5 hrs lying/cow/d & 14.5 hrs standing/cow/d, Late = 10.8 hrs lying/cow/d & 13.2 hrs 
standing/cow/d, P = 0.02). Cooler and wetter early spring weather may play a role in this 
behaviour, as cows without shelter show longer standing times during poor weather 
conditions (Tucker et al., 2007). Cows also displayed significantly more lying bouts during 
the Early period (Early = 11 bouts/cow/d, Late = 8 bouts/cow/d, P < 0.01), an indicator 
of more restless behaviour than later in the season. These differences in behaviour may 
be due to lower grass growth and availability earlier in the season, that requires longer 
grazing time to meet the energy demands of cows approaching their peak production. In 
seasonal pasture-based systems such as the current study, cows are also in early lactation 
during the Early spring grazing period, which has been associated with reduced lying times 
(Maselyne et al., 2017). In addition, cows spent a greater amount of time in indoor housing 
during the Early period due to adverse weather and so the lower lying time and more lying 
bouts may also suggest discomfort in the indoor housing environment resulting in more 
restless lying behaviour. Similarly, O’Connell et al., (1989), found that pasture-based dairy 
cows displayed more restless behaviour when housed indoors, with 50% fewer cows laying 
down simultaneously overnight compared to when they were at pasture.

The step frequency of each cow was examined as an indicator of activity level while 
standing, and we found no effect of treatment. In contrast, period was significant for step 
frequency, with increased activity shown by all groups during the Mid and Late spring 
periods (Early = 2,415 steps/cow/d, Mid = 3,635 steps/cow/d, Late = 3,811 steps/cow/d, 
P < 0.01). The increase in step frequency may be related to stage of lactation, as cows 
show lower step frequency and lying times in the first month after calving (Maselyne 
et al., 2017). It was speculated that this may be related to udder discomfort caused by 
increasing milk production in the weeks following calving (Osterman and Redbo, 2001) 
or due to greater feeding time to meet nutritional demands (Løvendahl and Munksgaard, 
2016). However, further research is required to understand this pattern of behaviour. 
In conjunction with reduced access to pasture during early spring due to poor weather 
conditions, and therefore less grazing-driven activity, this may explain the significantly 
lower step frequency in Early versus Mid and Late spring grazing periods.

Conclusions

Grazing management treatment tended to influence standing and lying behaviour in 
grazing cows, which lends support to our hypothesis that in the higher pressure system, 
characterised by lower pasture availability and a more intense farm system, cows would 
display reduced lying time and more standing time than the lower pressure system. 
However, period of the grazing season was also found to play a large role in the pattern of 
lying behaviour in grazing dairy cows; potentially due to changes in stage of lactation and 
access to pasture.
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Abstract

Automatic feed intake recording systems are used in growing-finishing pigs to estimate 
individual feed conversion efficiency and to quantify feeding behaviour. Moreover, these 
systems could allow inferring competition for a single feeder space in the form of multiple 
pig occupancy of a feeder during short periods of time. The goal of this study was to use 
automatic image classification to infer single pig and multiple pig occupancy of feeders and 
to contrast the results to those obtained from automatic feeder data. Top-down images of a 
feeder were collected every four seconds for three consecutive days. A total of 652 manually 
classified images were used to train a feed-forward artificial neural network for image 
classification. Over 64,000 images were classified using the trained model and 1,000 randomly 
chosen images from each feeder occupancy outcome (empty, single pig, multiple pigs) were 
selected for validation. Accuracy was 100% for images labelled as empty feeder, 99% for 
image classified as single pig (1% were images with two pigs) and 90% for images classified as 
multiple pigs (10% were single pig). Image timestamps were used to assign 64,000 classified 
images to 276 automatic feeder event data. 95% of feeding records with outlying high weights 
corresponded to a feeder that was occupied by more than one pig at least 24% of the time. 
While in events leading to normal weight records, 90% of the events had more than one pig in 
the feeder for less than 24% of the time. These results indicate a correlation between extreme 
high weight records and multiple pig occupancy of single space feeders, but the correlation 
is not strong enough to accurately classify events based solely on automatic feeding records.

Keywords: automatic feeders, image classification, pigs

Introduction

Automatic feed intake recording systems are used in growing-finishing pigs to estimate 
individual feed conversion efficiency and to quantify feeding behaviour (Lu et al., 2017). For 
instance, the number of visits per day, time of visit, length of visit, amount consumed and 
pig weight (if the feeder is equipped with a scale platform) in each visit are recorded with 
this type of device. However, there are potentially other measures or variables that could 
be recorded or inferred from automatic feeding stations. Of particular interest is the use 
of automatic feeding records to infer competition between pen mates. Competition could 
be detected in single-space automatic feeders through flagging simultaneous occupancy 
of a single space feeder by multiple pigs. Another way to detect competition for feeder 
space at the group level could be by tracking the amount of time that a feeder is empty vs 
occupied, especially during normal feeding hours (daylight hours of the cycle inside the 
barn). Moreover, when the feeder is equipped with a scale, it is not uncommon to observe 
anomalous high or low weights of the visiting pigs, that could flag multiple pig occupancy 
events. However, the use of feeders for the purpose of evaluating competition among pigs 
has not been tested or compared to a reference method. 

Another way in which feeder occupancy could be tracked is through recording video or 
taking pictures of the feeder and then sorting the frames into categories such as: empty 
feeder, feeder occupied by a single pig or feeder occupied by multiple pigs. However, 



832      Precision Livestock Farming ’19

manually classifying pictures or annotating video frame by frame is a tedious task that 
could be automated utilizing a computer algorithm.

The goals of this study were: 1) To implement and test an automatic image classification algorithm 
to detect single pig and multiple pig occupancy of single space feeders and 2) To contrast the 
results obtained with the image classification algorithm to automatic feeder records.

Material and methods

Experimental animals

A total of 12 purebred Yorkshire gilts were housed in a single pen (pen dimension: 4.8 
meters by 2.4 meters). The pen dimensions and stocking rates are typical of the MSU swine 
teaching and research centre and of other commercial growing-finishing facilities in the 
US. Pigs were approximately 84 ± 4 days old and their average weight was 41.3 kg ± 7.67 kg. 

Images collection and pre-processing

Pictures were taken with an Intel® RealSense™ D435 camera using modified Intel® 
RealSense™ SDK 2.0 source code to capture top-down depth images of the feeder area 
approximately every 3.5 seconds for approximately 66 consecutive hours. A total of 64,840 
images were taken and saved in timestamped files. A preliminary test was performed 
comparing the quality of depth images and digital images, and only depth images were 
utilised for this study. After image collection, the region of interest was cropped, resized to 
154 by 49 pixels, and stored for further analysis.

Feeder data

Feeder records were collected using a single-space Feed Intake Recording Equipment 
(FIRE) feeder (Osborne Industries, Inc., Osborne, KS). The FIRE feeder was equipped with a 
weighing scale (ACCU-ARM Weigh Race; Osborne Industries Inc., Osborne, KS) to measure 
the live weight of the pig (or pigs) trying to access the feeder. The data stream produced by 
the FIRE feeder included: 1) the ID of the animal, obtained by reading an RFID tag located 
in the right ear of the pig; 2) the start and end time of the feeding event; 3) the total feed 
consumed during the feeding event; and 4) the weight of the pig during the feeding event. 
The automatic feeder dataset collected data over the 66 hours of the experiment and 
included a total of 276 feeding records. 

Image classification

A two-step prediction protocol was built using two binary classifications models. The first 
model classified images as “empty feeder” or “occupied feeder”, and the second model 
classified images from the occupied feeder category into “single pig occupancy” or “multiple 
pig occupancy”. Both models consisted of a four-layer feed forward neural network (LeCun 
et al., 2015). The first layer had 512 nodes, the second layer had 256 nodes and the third 
layer had 64 nodes. The activation function for the first three layers was ReLU (Rectified 
linear unit). The last layer had two nodes and its activation function was Softmax. 652 
images were manually labelled as “empty feeder” (N = 205), “single pig occupancy” (N = 336) 
or “multiple pig occupancy” (N = 111) to train the models. After the models were trained, 
the remainder of the 64,860 images were classified, and a random sample of 1,000 images 
was extracted for manual classification and validation. All analyses were performed using 
NVIDIA CUDA v9.0 development tools coupled with the tensorflow and keras packages of 
R (Team 2013), enabling fast GPU computing.

Receiver operating characteristics of image classifiers

Accuracy, Specificity and Sensitivity (Parikh et al., 2008) of each model were estimated 
assuming that the “positive” event was to detect exactly one pig in the feeder. Thus, for 
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model 1, the “negative” event was to detect an empty feeder and for model 2, the “negative” 
event was to detect multiple pigs inside the feeder space. Consequently, the formulae for 
receiving operating characteristics in each model were:

SensitivityModel 1 = 
#correctly classified images as occupied feeder

(1)
#images of occupied feeders

SpecificityModel 1 = 
#correctly classified images as empty feeder

(2)
#images of empty feeders

AccuracyModel 1 = 
#correctly classified images

(3)
#images

SensitivityModel 2 = 
#correctly classified images as single pig occupancy

(4)
#images of single pig occupancy

SpecificityModel 2 = 
#correctly classified images as multiple pig occupancy

(5)
#images of multiple pig occupancy

AccuracyModel 3 = 
#correctly classified images as occupied feeder

(6)
#images of occupied feeders

Synchronization of automatic feeding data stream and image data stream

Before the start of the recording experiment, the clocks of the FIRE feeder and the clock of 
the computer used for image recording were manually synchronized to within 1 second 
of each other. After the 66-hour recording experiment, the synchronization of the clocks 
was verified again. Consequently, the timestamp of each image and the timestamps of the 
feeding events could be compared and used for alignment of images to feeding records.

Flagging of outlying weights in automatic feeder data

For each animal in the experiment, an individual growth curve was estimated based 
on previous weight records. A quantile regression (Koenker, 2005) was used to estimate 
quartiles of the growth curves that were robust to outliers. Subsequently, high weight 
outliers with respect to the median growth curve were flagged for weight records that were 
larger than the third quartile of the predicted weight plus three times the inter quartile 
range of the distribution of predicted weights at the days of the trial (Tukey, 1977). All 
statistics were computed individually for each animal in the trial to account for animal-
specific weight growth curves.

Occupancy index of a feeding event

An occupancy index (OI) for each feeding event was computing using images of the feeder 
corresponding to the time-span of the event.

OI = 
# single pig images + 2 × #multiple pig images

(7)
total # of images in the event

In this index it was assumed that multiple pig occupancy always involved two pigs. The 
assumption was validated by manually checking over 200 feeder images with more than 
one pig in it.
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Results and discussion

Receiver operating characteristics of image classifiers

Image classification was extremely fast once models were trained. For instance, using 
GPU computing, almost 65,000 images were classified in approximately 40 seconds. 
Model 1 (classifying images as empty feeders vs occupied feeders) had an Accuracy of 
99% (proportion of correctly classified images), Sensitivity of 99% (proportion of correctly 
classified empty feeders) and Specificity of 98% (proportion of correctly classified occupied 
feeders). Model 2 (classifying images of feeders occupied by a single pig vs feeders occupied 
by multiple pigs) had Accuracy equal to 98.1%, Sensitivity equal to 98.9% and Specificity 
equal to 90%. The lower specificity indicates that 10% of the images of feeders classified 
as occupied by multiple pigs by Model 2 corresponded instead to single pig occupancies.

Feeder occupancy

Estimated feeder occupancy was 85% regardless of the method (image analysis or FIRE 
feeder data). The two methods agreed in detecting overall feeder occupancy (occupied 
vs empty) 96% of the time (Figure 1). This value is only slightly lower than the accuracy, 
specificity and sensitivity of Model 1 for classifying images between empty and occupied 
feeders. Moreover, using image classification we could also detect, although with lower 
specificity (90%), multiple pig occupancy of feeders.

Figure 1. Feeder occupancy over the course of the experiment (horizontal axis), as estimated by: 1) 
FIRE Feeder data stream (Feeder 0/1), 2) Model 1 for image classification (Image 0/1) and 3) Model 1 + 
Model 2 for image classification (Image 0/1/2). A red bar indicates an empty feeder, a grey or black bar 
indicates an occupied feeder, a black bar indicates a feeder occupied by more than one pig 
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Feeder weight records and feeder occupancy

In order to investigate the potential of using the weight records from automatic feeder data 
to detect multiple pig occupancy of the feeder, we selected automatic feeder records that 
were flagged for outlying high weights (22 out of 276 records) and computed an occupancy 
index based on automatically classified images. The average occupancy index for feeding 
events with outlying high weights was 1.21 ± 0.35 while the average occupancy index for 
feeder events with non-extreme weights was 1.06 ± 0.15. Thus, although feeding events 
with extreme weight records tended to coincide with cases where a larger proportion of 
images were classified as multiple feed occupancy, the difference was not strong enough 
to use feeder data as the sole indicator of multiple pigs occupying the feeder space.

Conclusions

Image classification using feed forward deep neural networks can accurately detect 
occupied feeders. Predicting the number of animals in the feeder to detect competition for 
feeder space requires further work to increase beyond the current sensitivity of 90%. Real 
time application of these algorithms using GPU computing is feasible with a processing 
time of less than 1/100 of a second per image. The sole use of extreme weight records from 
automatic feeders to detect multiple pig occupancy does not seem feasible at this point.
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Abstract

The research was conducted to evaluate the effects of environmental enrichment, using 
straw, on the superficial temperature (ST) of sows during prepartum, intrapartum and 
postpartum. Thirty-two sows were used (2nd to 8th birth orders). The animals were distributed 
according to the birth order in two treatments, with each sow being an experimental unit: 
1) Control: sows in conventional farrowing crates without environmental enrichment; 
2) Straw: supply of straw for nest construction as environmental enrichment in the 
conventional farrowing crates. The straw was offered in the crates through a wooden box 
fixed to the bars of the cages, at a height that allowed the animal to pick up the straw with 
the mouth. Surface temperature of the sows was obtained through infrared Thermovisor 
equipment at three moments: approximately six hours prepartum, during the partum and 
one hour postpartum. The mean surface temperature was calculated by the temperature 
of 30 points distributed to represent the overall body surface of the animals. The data were 
analysed using the SAS GLIMMIX procedure and submitted to Pearson’s correlation (P < 
0.05). There was a negative correlation between the birth order and the ST, indicating that 
younger sows presented a higher ST elevation during birth. There was no effect of straw 
supplying on ST in the evaluated periods, however, sows that spent more time on nest 
building presented lower ST. Sows housed in enriched crates showed signs of improvement 
in well-being, reducing the frequency of stereotyped behaviours and showed positive 
effects on the frequency of suckling.

Keywords: nest building, behaviour, birth order, thermography, welfare

Introduction

From the 1960's, pig farms adopted the housing system of sows in farrowing crates, in which 
the objective was to reduce piglet mortality, optimise facility space and facilitate human 
intervention during birth (Perdensen et al., 2013). However, the use of these cages seriously 
compromises the welfare of the sows, due to the restriction of space and movements, 
as well as the lack of materials to build the nest in the prepartum period (Yun & Valros, 
2015). The impossibility of constructing the nest before delivery favours the occurrence of 
stereotyped behaviours and increased stress (Lawrence et al., 1994; Wischner et al., 2009). 

According to Vanheukelom et al. (2012), the farrowing crate differs substantially from the 
natural birthing environment of the sows in two aspects: restriction of movement due 
to lack of space and absence of suitable materials for nest building. Females housed in 
restrictive and sterile systems exhibit strong signs of frustration and restlessness, directing 
characteristic nesting activities to the floor, bars, and equipment of the cages. Therefore, 
the impossibility of building the nest before labour favours the appearance of stereotyped 
behaviour and increased stress (Wischner et al., 2009). 

Consequently, it becomes important to study strategies to provide materials for 
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nest building in farrowing crates, providing the opportunity for the sow to express 
natural maternal behaviour and in this way, improve their welfare. The use of infrared 
thermography consists of a non-invasive tool that can aid in the detection of animal stress 
in different situations (McManus et al., 2016). In this context, the aim of this study was to 
evaluate the effects of environmental enrichment using straw in the prepartum period, on 
the surface temperature and welfare of sows before, during and after birth.

Material and methods

Animals, treatments and facilities

Twenty-two DanBred commercial sows were used and uniformly distributed according 
to birth order (2nd to 8th) in a completely randomized experimental design, with two 
treatments (control and straw) with 16 replicates, in which each sow was considered 
an experimental unit. In the control treatment, the females were kept in cages without 
environmental enrichment. In the straw treatment, 5.0 kg of the substrate (Tifton hay) 
was provided as environmental enrichment in the farrowing crates for the construction 
of the nest. In both treatments, conventional farrowing crates with suspended and fully 
slatted iron floor, spaced 0.016 m, with the following dimensions: 2.20 m long × 0.75 m 
wide corresponding to the area of the sow and 0.45 m wide relative to the escape area for 
the piglets.

Environmental enrichment

The straw was supplied through a wooden box made for this purpose. Each box had two 
openings: one at the top where the substrate was deposited inside and the other at the 
side, facing the sow, allowing the material to be manipulated by the animal. The boxes 
were attached by wires to the bars of the cages at a height that allowed the animal to 
pick up the straw with the mouth during the construction of the nest. Straw was offered 
around 24 hours before the expected date of delivery and taken the next day after giving 
birth.

Surface temperature and duration of nesting behavior

The surface temperature of the female pigs was obtained by the Termovisor Infrared 
Reporter (HT3, Hotec) at three times: approximately six hours before the expected onset 
of labour (determined from the time when the sow started to eject the colostrum), during 
birth and one hour postpartum (Figure 1). The thermography images were evaluated using 
the equipment specific software (IR Reporter V1.0.146), in which the colour spectrum 
reading was converted to surface temperature. The emissivity coefficient used was 0.96 
for the entire body surface of the animal. The mean surface temperature and standard 
deviation of the body area were calculated by averaging 30 points uniformly distributed 
to represent the total body surface of the animals. To measure the duration of nest 
construction, the time of each characteristic nesting behaviour was registered to obtain 
the total duration in the evaluation period.

Figure 1. Surface temperature of the sows before (left image), during (middle image) and after delivery 
(right image)
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Behavioural observations

The behavioural observations were carried out through the use of infrared cameras 
(ALT900W, Alartec) positioned above the farrowing crates, connected directly to a 
digital video recorder (CCTV DVR, Network H.264) and an LCD monitor (L1710, HP). The 
behaviours of 12 sows per treatment were recorded, without interruption (sampling of 
all occurrences), from 12 hours before the onset of labour until the 13th day of lactation. 
Behavioural assessments were divided into three periods (12 hours before delivery, 
during delivery and during 13 days postpartum) and categorised (Table 1) according to 
the behaviours described in adapted ethogram from Hansen et al. (2017). Stereotypies 
considered in ethogram were biting the cage and equipment.

Table 1. Behavioural repertoire before, during and after labour, and change of posture during 
delivery of sows housed in parental cells with or without environmental enrichment

Control Straw SEMa P - value

Number of sows 12 12

12 hours before labour 

Lying on side (%) 16,11 25,44 3,86 0,121

Lying in ventral position (%) 37,97 36,83 2,67 0,765

Sitting (%) 12,72 7,45 1,31 0,015

Standing (%) 5,36 5,00 0,78 0,746

Stereotype (%) 18,49 7,71 0,96 <.0001

Straw ingestion (%) - 0,53 0,20 -

During labour

Lying on side (%) 79,18 88,23 4,66 0,185

Lying in ventral position (%) 10,99 4,05 2,36 0,122

Sitting (%) 4,63 4,03 2,08 0,842

Standing (%) 0,62 0,56 0,36 0,899

Stereotype (%) 1,33 0,68 0,39 0,311

Change of posture , n 38,5 8,10 6,09 0,057

After labour

Lying on side (%) 63,39 63,14 1,48 0,909

Lying in ventral position (%) 14,50 13,31 1,54 0,592

Sitting (%) 2,84 3,05 0,37 0,696

Standing (%) 2,44 2,48 0,34 0,914

Nursing (%) 11,27 11,87 0,18 0,028

Stereotype (%) 2,27 2,22 0,34 0,920

aStandard error of the mean
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Statistical analysis

Statistical analyses were performed using the GLIMMIX procedure from the SAS program 
(SAS 9.4, USA). The effects of the treatments were considered as a fixed effect, whereas 
the orders of paring of the females were used as a random effect. Pearson correlation 
coefficients (r) were used to determine the relationships between surface temperature, 
birth order and nest construction duration.

Results and discussion

There was no effect of straw supply on the surface temperature of the sows before, 
during and after delivery (Table 2). However, the sows housed in straw treatment crates 
showed signs of improvement in welfare, with a reduction in the frequency of stereotyped 
behaviours and a higher frequency of suckling compared to the sows housed in sterile 
cages.

Table 2. Surface temperature of sows (°C) housed in farrowing crates with or without 
environmental enrichment in the prepartum period. SEM

Control Straw SEM P-value

Surface temperature before birth (ºC) 36.08 35.79 0.375 0.591

Surface temperature during birth (ºC) 36.17 36.79 0.423 0.312

Surface temperature after birth (ºC) 36.46 36.46 0.347 0.996

There was a negative correlation between the surface temperature and the birth order of the 
sows (Table 3). This result indicates that multiparous sows, even after experiencing several 
deliveries, tend to present increased stress throughout their reproductive life, possibly due 
to inadequate parturition environment, associating delivery with a negative experience. In 
a study using piglets, Imfeld-Mueller et al. (2011) could conclude that animals were able to 
anticipate a bad experience after having been exposed to it, presenting a higher frequency 
of vocalization and signs of fear than animals that never passed by that negative situation.

Table 3. Correlations between surface temperature, the birth order and duration of nest building

Surface temperature

Prepartum Intrapartum Postpartum

Birth order 

P-value

-0.32

<0.0001

-0.22

0.0095

-0.22

 0.0059

Nest building

P-value

-0.34

0.0005

-0.29

0.0026

-0.35

<0.0001

It was observed a lower surface temperature in sows that presented a longer duration 
of nesting behaviour. Successful nest building feedback causes the sows to stop building 
them. Females may continue to be motivated to build a nest if they do not have feedback 
from a complete nest (Damm et al., 2000a). The lack of nesting conclusion response 
constitutes an acute stress factor, which interferes with maternal hormonal regulation. 
During birth, physiological changes occur, such as increased plasma concentrations of 
opioids (Jarvis et al., 1998), however, the concentrations increase at higher than expected 
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levels if there is acute stress, resulting in inhibition of oxytocin, mediated by opioids 
(Lawrence et al., 1992). It is possible that the lack of feedback from a completed nest has 
increased the secretion of opioids and consequently inhibited oxytocin secretion, leading 
to less calm and behaviours of physiological stress (Pedersen et al., 2003).

The reduction of the superficial temperature of the animals’ skin can represent a response 
to stress, since a peripheral blood flow deviation occurs, directed to the core region and an 
increase in the deep body temperature, being this phenomenon defined as hyperthermia 
induced by stress (Nääs et al., 2014; McManus et al., 2016). Variations related to the 
physiological changes during the stress reaction are evidenced in the auricular pavilion and 
periocular area, where vasoconstriction occurs (Luzi et al., 2007). Measuring temperature 
in these highly vascularized areas has a greater relationship with deep body temperature 
(Soerensen & Pedersen, 2015). In the present study, the superficial temperature obtained 
from the skin of the body as a whole may not have been a parameter representative of the 
changes in the deep body temperature, making it difficult to identify a possible reduction 
of physiological stress with the use of environmental enrichment. In the present study, the 
superficial temperature obtained may not have been a representative parameter of the 
changes in the deep body temperature. 

Conclusions

The supply of straw as environmental enrichment in the farrowing crates did not affect 
the body surface temperature of the sows in the prepartum, intrapartum and postpartum 
periods when compared to the control group. Thus, it was not possible to establish a 
relationship between environmental enrichment and stress reduction through thermal 
evaluation. Although sows housed in enriched crates showed signs of improvement 
in well-being and possibly a reduction in stress, having a stimulus to present the nest 
building behaviour, reducing the frequency of stereotyped behaviours and have positive 
effects on the frequency of suckling during lactation. Measuring the temperature of areas 
such as the eyeball, ears, and snout may be a valid alternative to evaluate if there is a 
relationship between stress, deep body temperature and environmental enrichment. Use 
of infrared thermography allows identifying the temperatures of the hottest and coldest 
surfaces of the pigs and can be a practical tool to analyse facilities and animal welfare.
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Abstract 

Animal welfare remains a very important issue in the livestock sector but monitoring the 
overall animal welfare in an objective and continuous way with one sensor, remains a 
serious challenge. Many methods have been published to monitor abnormal behaviours 
or components related to animal welfare. Monitoring animal welfare based upon objective 
physiological measurements, instead of audio-visual scoring of behaviour, would be a step 
forward. One of the obvious physiological signals related to welfare and stress is heart 
rate. The objective of this research was to measure heart rate (beat per minutes) on pigs 
with technology that has come available at large scale for humans and is developed for 
animals as well. This affordable heart rate monitoring for humans is using the Photo 
Plethysmography (PPG) technology. We have used PPG sensors on pigs to test whether 
it allows getting a reliable heart rate signal. We show results of the sensor against a 
reference measure for heart rate and this for an anesthetized versus a non-anesthetised 
animal. We have tested three different anatomical body positions (ear, leg and tail) and 
give results for each body position of the sensor. In summary, we can conclude that the 
agreement between the cheap PPG-based heart rate technique and a reference sensor goes 
from 91–97 percentage.

Introduction 

Animal welfare remains a very important issue in the livestock sector but monitoring 
animal welfare in an objective and continuous way remains a serious challenge. However, 
stress affects many physiological systems that are controlled by the autonomic nervous 
system, including the cardiovascular system. Monitoring the autonomic nervous system 
activity in farm animals has recently gained considerable interest worldwide. In farm 
animals, the vagal component of the autonomic nervous system plays a key role in 
regulating heart rate (HR) in response to stress (von Holst, 1998; Hopster and Blokhuis, 
1994; Kovács et al., 2014). Variables derived from cardiac activity are becoming increasingly 
important in research of animal health and wellbeing. In general, the variable heart 
rate (HR) can be used to indicate disease, physiological and psychological stress and to 
show individual characteristics of animals such as temperament and coping strategies. 
Electro- and echocardiographic measurements on pigs are also used in research, as pigs 
are excellent models in human cardiovascular disease due to the similarities in heart 
characteristics of humans and pigs (von Borell et al., 2007).

Currently, the heart rate of pigs can be monitored in two different ways: with implantable 
transmitters or with externally mounted non-invasive transmitters. The first method has the 
disadvantage that the implantation of the transmitters needs to be done under complete 
anaesthesia. This means that the pigs need a couple of days of recovery after the procedure. 
Furthermore, complications during the procedure can emerge. For the second method, 
a portable monitor system that can detect and store electrocardiograms (ECG) for later 
detection of inter-beats intervals is commonly used. The equipment can consist of coated 
electrodes mounted around the thorax. The disadvantage is that the signal can be disrupted 
by movement of the electrode belt either by other pigs or the pig itself (von Borell et al., 2007).
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Photoplethysmography (PPG) is a measurement of heart beat rate based on changes in blood 
flow. Unlike Electrocardiogram (ECG), which measures the heart rate by placing electrodes 
on the patient’s chest, PPG is a low cost, simple, non-invasive optical measurement used 
in biomedical field to detect blood volume changes in the microvascular bed of tissue 
through red and infrared lights (Allen, 2007). Regional variations in skin are not the 
only reasons for the difference in signal quality PPG signal artifacts but also the motion 
artifacts are one of the main challenges to use the PPG sensors in practice. Motion artifact 
reduction is the most challenging issue in wearable healthcare sensors including PPG due 
to body movements. Motion artifacts on signals are considered as the relationship between 
motion and noise. This includes voluntary and involuntary movements of the interface 
between the sensor and tissue (Yunjoo Lee et al., 2008). Although sensing components are 
physically changed to decrease motion artifacts, more analysis is needed to determine 
which sensor location is the best for monitoring heart rates in pigs. 

The present paper is presenting a proof-of-concept study with the aim to determine the 
optimal location on the pig body, which gives the best PPG signal quality. Additionally, to 
develop a real-time monitoring algorithm to extract pig’s heart rate from PPG signal and 
to minimize the effect of motion artifacts. 

Materials and methods

Experimental setup and measurements

During the course of this study, all measurements were conducted on a female Göttinger 
Minipig (test pig) under both anesthetized and non-anesthetized conditions. The test 
pig was born on 28.04.2017, had 0.99 m back length (nose to tail), and weight 30.2kg. 
The experiments were conducted in the Institute for Laboratory Animal Science, 
Hannover Medical School, Hannover, Germany. The study and all measurements were 
ethically approved by “Niedersächsisches Landesamt für Verbraucherschutz und 
Lebensmittelsicherheit” (LAVES) (Germany; 33.12-42502-04-16/2374). 

Test on anesthetized pig

During this part of the experiment, the pig was anaesthetized to measure the baseline 
maximum liver function capacity prior to liver resection (LiMAx measurement). These 
baseline measurements are always five days before the operation. To anesthetize the pig 
Zoletil (Tiletamin and Zolazepam, each mg.kg-1 i.m.) and Atropine (0.04-0.08 mg.kg-1 i.m) 
were used. The total duration of this part of the experiment was 60min afterward the 
awakening procedures of the anesthetized pig took place. This time course of 60min was 
divided into three time slots 20min each. For each time slot, the PPG sensor probe was 
placed on three different anatomical locations of the test pig, namely ear, upper tail and 
left back leg (below the knee). These locations of the pig’s body were chosen because of 
their higher cutaneous perfusion and where body fat is low, yet still suitable to place the 
sensor probe in practice.

Test on non-anesthetized pig

After about one hour of applying the awakening procedure on the test pig, the PPG probe 
was placed on the left back leg (below the knee Figure 1). Then the test pig was placed to 
move freely inside a test pin (Figure 1, right photo). 
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Figure 1. The PPG sensor is placed on the left back leg (below the knee) of the non-anesthetized pig 
(left photo) and then the animal is placed to move freely in a pin (right photo) 

Measurements and sensors

PPG signal

A Shimmer Optical Pulse sensing probe (PPG sensor) together with Shimmer GSR+ module 
were used to collect PPG signal from the pig. The PPG signal is acquired at sampling rate 
of 128 Hz. 

Figure 2. Shimmer Optical Pulse sensing probe (PPG sensor) and data-logger

Gold standard (ECG signal) 

As a gold standard for heart rate measurements continuous ECG measurements were 
preformed. The ECG measurements were performed using a portable ECG recorder, BEAM® 
ECG 3-channels Loop/Event recorder (IEM GmbH; Stolberg, Germany). It is an on-body 
portable ECG recorder, with three electrodes to stick on to the skin. The recorded ECG 
signal is automatically transferred from the BEAM® via Bluetooth to a smartphone and is 
forwarded from there to a secure database. The BEAM® recorded the ECG data every 0.6 
seconds.
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Signal processing and heart rate extraction 

Figure 3 is showing the main steps of (pre-) processing methodologies to extract the pig’s 
heart rate from the acquired PPG signals. The proposed algorithm consists of four main 
processing blocks. Each block is explained in detail in the following sections.

Figure 3. Block diagram showing the main processing steps to extract pig’s heart rate from PPG signal

Pre-processing of PPG signals

The PPG signals are often affected by different noise sources such as surrounding lights 
and motion artifacts (in case of non-anesthetized). Therefore, firstly, the trend is removed 
using unobserved components (UC) algorithm (Young, 2011) and then, the signals are 
normalized to zero mean and unit variance (Tang et al., 2016). The normalized signals are 
filtered using a second order Butterworth high pass filter (cut-off frequency of 0.5 Hz) and 
first order Butterworth low pass filter (cut-off frequency of 6 Hz). These cut-off frequencies 
are chosen based on the expected physiological heart rate range.

Wavelet analysis and PPG signal reconstruction

In the biomedical engineering field, Wavelet transform (WT) is often preferred over Fast 
Fourier Transform (FFT) because most of the physiological signals are non-stationary 
which makes WT a viable method. Using WT, the signals in the time domain are mapped 
into the frequency domain in order to preserve both time and frequency information. WT 
is a spectral estimation technique by breaking a general function into an infinite series of 
wavelets (Tang et al., 2016). 

Continuous Wavelet Transform method

For the continuous wavelet transform (CWT) method of spectral decomposition, the kernel 
function is a wavelet that adapts to the frequency of interest. In general, a specific wavelet 
cantered about a given frequency is computed from the mother wavelet by scaling it and 
shifting. In this manner, the length of the wavelet contains the same number of centre (also 
called peak) frequency cycles. For a scale parameter, , and position, , the CWT is given by:

C(s,b,f(t),Ψ(t)) = ∫-∞
∞  f (t)  1 

√s
 Ψ (t) * ( t - b 

s
 ) dt         [1]

The Wavelet analysis is performed by convoluting a signal, f(t), with a prototype function 
called mother wavelet, Ψ(t). As the value of s increases, the wavelet is compressed, its 
spectrum dilates and the peak frequency shifts to a higher value. Conversely, as the 
wavelet is scaled such that it dilates, the value of s decreases, its spectrum is compressed 
and the peak frequency shifts to a lower value. Thus, by varying the scaling factor ‘s’, the 
wavelet family can represent broadband spectra, wherein the spectrum of each wavelet in 
the family maintains a constant ratio between its peak frequency and the corresponding 
bandwidth (Chopra and Marfurt, 2015).

Since the Gaussian function is perfectly local in both time and frequency domains and is 
indefinitely derivable, a derivative of any order n of the Gaussian function may be a Wavelet 
Transform (WT). For cardiac signal characterization we are interested in a first derivative 
Gaussian wavelet function (Sahambi et al., 1997). In this paper, the first derivative Gaussian 
(DOG) Wavelet was used to decouple the cardiogenic (pulsatile) PPG signal using the CWT 
technique. The processing and analysis of the signals are done using custom script written in 
MATLAB (The Math Works, Inc.) based on Signal Processing and Wavelet Analyzer toolboxes.
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Results and discussions

Wavelet decomposition of the PPG signal

Wavelet transform (WT) allows to decompose the signal into a linear combination of 
simpler signals in the time-frequency domain, therefore, provides localization of frequency 
in the time. WT provides multi-resolution analysis of input signal into approximation and 
details respectively approximation coefficients and detail coefficients. 

Figure 4 is showing the pre-processed PPG signal, obtained from the ear of the anesthetized 
pig, in the time-domain, time-frequency spectrogram and the Welch estimate of its power 
spectrum density (PSD). The initial analysis of the signal in the frequency domain has 
shown different components. The PPG signal component within the frequency band 1.66-
2.1Hz in the time-frequency spectrogram (Figure 4, [b]), with a centre frequency of 1.81Hz 
(Figure 4, [c]), is falling within the expected heart rate (HR) range (region of interest) of pigs. 
In general, the PPG signal acquired from the non-anesthetized (free moving) pig has shown 
more artefacts (Figure 5) in comparison with all PPG signals acquired from anesthetized 
pig. 

Figure 4. The pre-processed PPG signal acquired from the ear of the anesthetised pig plotted in 
the time-domain [a], time-frequency spectrogram [b] and the Welch power spectrum density (PSD) 
estimate [c]
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Figure 5. The time-frequency spectrogram (upper graph) and the Welch power spectrum density 
(PSD) estimate (lower graph) of the PPG signal acquired from the non-anesthetize pig, where the PPG 
probe is placed on the left leg

To reconstruct the cardiogenic PPG signals, the CWT was implanted using the built-in 
Matlab function cwtft . The cwtft function returns the continuous wavelet transform 
(CWT) of the PPG signal using a Fourier transform based algorithm. First derivative 
Gaussian (DOG) wavelet and scales corresponding to 0.50 – 15Hz were used. 

Figure 6 is showing the reconstructed cardiogenic PPG signals from anesthetized pig. 

Figure 6. PPG signal (blue) vis wavelet reconstructed signal (red) from pig’s ear (left graph), a zoom-in 
view of the signals(left graph)

Figure 7 is showing the reconstructed cardiogenic signal from the PPG signal obtained 
from the non-anesthetized pig. 
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Figure 7. PPG signal (blue) vis wavelet reconstructed signal (red) from non-anesthetized pig’s leg 

Peak detection and heart rate calculation 

The heartbeat could be estimated by measuring the time between the peak intervals in the 
PPG signal. The proposed algorithm is choosing the tallest peaks of the signal and ignoring 
all peaks in the predefined minimum separation (time interval) threshold. The algorithm 
then repeats the procedure of the tallest peak and iterate until it runs out of considerable 
peaks. Figure is showing an example of the detected peaks from the reconstructed PPG 
signal obtained from the ear of the anesthetized pig. 

The heart rate in bpm was calculated based on the number of detected peaks within a 
sliding time window or an epoch of one minute with 30 second (50%) overlap Figure 8. 

Figure 8. One-minute sliding window with 50% (30 second) overlap to calculate the heart rate (bpm) 
based on the number of detected peaks per time window

The estimated heart rate from the PPG signal are compared with the ground-truth heart 
rate (reference), which is calculated from the gold standard ECG signal. The performance 
of the developed algorithm is then evaluated in terms of the quality of the pulse rate 
estimation, which is assessed using the Absolute Maximum Error (AME), Mean Absolute 
Error (MAR) and the Root Mean Square Error (RMSE) that are given as follows:
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where N is the total number of data points, HRPPG (k) and HRECG (k) are the estimated heart 
rate from the PPG signal and that calculated from the ECG, respectively, at time instant 
k. RMSE is more sensitive to large estimation errors than MAE, so small number of large 
errors results in high RMSE and low MAE. Table 1 is showing the MAE and RMSE values for 
the estimated pulse rate (bpm) from the PPG signal acquired from different body position 
of the test pig using the developed algorithm.

The quality of the estimated pulse rate form the PPG signal was also assessed using the 
signal-to-noise ratio (SNR). The SNR in dB is defined as

SNR =  ∑k=1
N    x (k) 

(∑k=1
N    [x(k) - f(k)]2

   

where x is the original PPG signal and f is the reconstructed cardiogenic signal. SNR compares 
the level of a desired signal (pulsatile cardiogenic signal) to the level of background noise. 
Table 1 is showing the calculated SNR values of the PPG signals obtained from different pig 
body positions (ear, leg and tail) under both anesthetized and non-anesthetized conditions.

Table 1. The Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and SNR of the estimated 
pulse rate (bpm) in comparison to the reference pulse rate calculated from the ECG signals 
obtained from the test pig under both anesthetized and non-anesthetized conditions

Source of the PPG signal ear† leg† tail† leg‡

MAE 2.66 1.75 1.08 3.12

RMSE 3.50 2.27 1.36 3.93

SNR (dB) 19.82 17.53 16.30 10.35

† Anesthetized pig, ‡ Non-anesthetized pig

Figure 9 is showing plots of the estimated pulse rate (bpm) from the PPG signal in relation 
to the reference pulse rate (bpm) measured from ear, leg and tail of the anesthetized pig.

Figure 9. Estimated heart rate from PPG signal vs. heart rate from the gold standard (ECG) measured 
from the anesthetized pig’s ear (a), the tail (b) and the leg (c). The overall heart rate calculated from 
the PPG vs. that calculated from the gold standard ECG (d)
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Conclusions 

In this paper, a PPG sensor system was used to measure heart rate (HR) from a Göttinger 
Minipig under anesthetized and free-moving (non-anesthetized) conditions. The PPG probe 
was placed on three different anatomical body positions, namely ear, leg and tail. The 
pulsatile cardiogenic signals were reconstructed using continuous wavelet transform 
(CWT). The peaks of the pulsatile cardiogenic signal were detected and pulse rate (bpm) 
were estimated from the PPG signals using the developed algorithm. The estimated HR 
from free-moving pig (PPG probe placed on the leg) have shown the highest RMSE and 
MAE (3.93 and 3.12, respectively) and lowest SNR (10.35 dB). The resulted have shown that 
PPG signals obtained from the ear contained the highest SNR (19.82 dB). In general, it was 
possible to reconstruct the pulsatile cardiogenic signals and estimate the pulse rate of the 
pigs from PPG signals obtained from the three different body positions with accuracy level 
between 91-97%. 
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Abstract

In order to improve monitoring and management efficiency of large pig farms, an 
environmental control system for pig farm based on mobile coordinator routing algorithm 
was designed. This system consisted of the remote control terminal, the field controller 
with ARM-LINUX and the wireless networks composed of various devices and sensors. In 
order to realise the systematic management of all kinds of equipment in a pig farm, the 
environmental parameter sensors (such as temperature, humidity), control equipment 
(such as negative pressure fan, hot blast furnace, water valves) and cameras were used to 
constitute wireless networks by ZigBee technology. In order to prolong the nodes lifetime 
of the wireless networks, a clustering routing algorithm with a mobile coordinator was 
proposed. The coordinator node and the field controller were installed on the patrol car 
with battery to overcome the energy shortage. The operation cycle of wireless networks 
in the algorithm is divided into a clustering phase and data transmission phase. In the 
clustering phase, cluster heads (CHs) were selected by an optimal threshold in energy, and 
the wireless networks were constructed nearby. During the data transmission phase, the 
coordinator node moved with the movement of the patrol car, and the coordinator node 
communicated with the nearby cluster head nodes. The transmission distance between 
the coordinator and cluster head node was optimized and shortened based on LEACH 
algorithm. The proposed algorithm reduced the energy consumption rate of cluster heads, 
avoided the premature generation of death nodes in the networks, and improved the 
lifetime and transmission efficiency of the networks.

Keywords: environmental control system, wireless network, mobile coordinator; pig, 
routing algorithm

I. Introduction

At present, the pig industry in China is developing towards the trend of large-scale, and 
the information management of pig  farm is becoming more and more important. The 
environment of traditional pig farms is usually managed by manual mode. The mode 
not only takes up a lot of manpower but also has obvious shortcomings in real-time, 
operability and other aspects. The field equipment generally connects with a processor by 
cable. It will cause pig farm wiring to be complex and more difficult to maintain. So it is 
urgent to design an intelligent control system based on a wireless sensor network to solve 
these problems.

The energy of wireless sensor network (WSN) node is limited, and it is an important factor 
in restricting the development of a wireless sensor network.The energy consumption of 
nodes should therefore be reduced as much as possible. At present, in terms of network 
energy optimization algorithm, a lot of research has been done at home and abroad. For 
example, in the light of the problem of energy consumption caused by uniform clustering, 
a non-uniform clustering algorithm based on energy balance is proposed by Wang 
Yingying. It adds a node density function in the algorithm, it can increase the probability 
that the nodes in the high density area are selected as the cluster heads (CHs), and reduce 
the probability of the nodes in the low density area becoming the CHs. It makes the 
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CHs relatively evenly distributed in the network according to the distribution of nodes. 
Kuilan Pratyay et al. proposed a particle swarm optimisation algorithm based on energy 
efficient clustering. This algorithm is divided into two parts, the routing algorithm and the 
clustering algorithm. The routing algorithm is developed from the efficient particle coding 
scheme and the multi-objective fitness function. The clustering algorithm is proposed 
by considering the load balance and the residual energy of the nodes. Saeid Mottaghi 
et al. proposed an algorithm called Optimizing LEACH clustering algorithm with mobile 
sink and rendezvous nodes. In the algorithm, the rendezvous nodes (RNs) acts as store 
points for the mobile sink (MS). By the movement of the sink, the communication distance 
between nodes is reduced, and the total energy consumption of the network is reduced. 
Banerjee Ritwik et al. proposed an optimal routing algorithm which contains a mobile sink. 
In the algorithm, CHs uses multi-hop mode to communicate with the sink, and the sink 
moved along the predetermined trajectory. It solves the problem of the load balancing 
problem of each cluster and the energy hole caused by the fixed sink. Inspired by those 
algorithms, we proposed an energy optimised routing algorithm with a mobile sink.

In this paper, an environmental control system for a pig farm was designed based on 
embedded technology and wireless sensor networks technology. Based on the system, the 
paper focuses on the routing algorithm in the wireless sensor network. A clustering routing 
algorithm with mobile sink based on LEACH (Low-Energy Adaptive Clustering Hierarchy) 
is proposed. LEACH algorithm adopts the fixed sink, and the CHs may communicate with 
the sink in a long distance, so the CHs will consume a large amount of energy. To address 
this deficiency, through optimising the transmission distance between CHs and sink, 
we introduce a mobile sink to form a new algorithm. This algorithm not only solves the 
problem of excessive energy consumption of CHs but also solves the problem of uneven 
energy consumption of the network. This algorithm guarantees the real-time monitoring 
of the environment of pig farm for a long time. 

Materials and methods

A. Overall design of the system

According to the design requirements, we use wireless sensor network technology, 
embedded technology, and others to design an environment control system for a pig farm 
based on the mobile sink routing algorithm. The system is mainly divided into three parts: 
information acquisition subsystem, field control subsystem and remote control terminal. 
The overall block diagram of the system is shown in Figure 1. 

Figure 1. The overall block diagram of the system

The information collection subsystem is composed of Zigbee wireless sensor nodes 
which are distributed in the pig farm, and the Zigbee node is installed with temperature, 
humidity, ammonia, hydrogen sulfide, carbon dioxide and other sensors, as well as negative 
pressure fan, hot air furnace and other on-site equipment. Various sensors can be used 
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to collect environmental information. Each node transmits the data to the coordinator 
through Zigbee wireless technology. The coordinator then transmits the received data to 
the field control subsystem through RS232 serial. In this control system, the coordinator 
and the field controller are installed on a tracking robot car to achieve the purpose of 
mobile sink in wireless sensor network. At the same time, the car is also equipped with 
audio sensors, cameras and a variety of environmental sensors, and these components 
are directly connected with the field controller. Through the mobile car, on the one hand, 
the environmental monitoring of a large area of the pig farm can be realised, on the other 
hand it can capture the activity of pigs. For example, the audio sensor can detect the 
pig cough, the camera can real-time monitor some key areas (such as the place of sow 
farrowing).

The field control subsystem analyses the received data and feedback of the corresponding 
control information to the terminal equipment node in Zigbee network, and the node 
control of the operation of the device by controlling the relay. We need to transplant a 
database on the tiny6410 platform to achieve the storage of data. Tiny6410 connects to the 
internet by WiFi, and it should build an embedded web server to provide the conditions for 
the remote monitoring.

The remote control terminal is the monitoring and management platform of the pig farm. 
The system uses the B/S management model, users can view the piggery environmental 
information and control the corresponding field equipment to make pigs live in the best 
growing environment by the terminal.

B. Wireless sensor network architecture

The Zigbee wireless network in pig farm using cluster topology along with various sensors, 
negative pressure fan, hot air furnace and other field equipment which are installed 
on the network nodes in each pigpen, according to the need to install a plurality of 
temperature and humidity sensor, audio sensor (for collect pig cough, noise and other 
audio information), camera and ammonia, hydrogen sulfide, carbon dioxide and other 
harmful gas sensors. We also install an automatic feeding trough and drinking water 
equipment (to extract the amount of food, drinking water information) along with a 
vacuum blower, hot stove, mosquito repellent lamp, cooling plate and other equipment 
to control the piggery environment. The above pig control equipment and various sensors 
formed the WSN of pigpen, the wireless sensor network model of the system is shown in 
Figure 2.

Figure 2. The wireless sensor network model of the system
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C. The routing algorithm based on mobile sink

In this paper, a clustering routing algorithm with a mobile sink is proposed, which is called 
CLMS (Clustering Low-energy-algorithm based on Mobile Sink). In the algorithm, the mobile 
sink moves along a predetermined trajectory. The member nodes collect environmental 
data, and transmit the data to the CHs. The CHs wait for the sink to approach, and then 
send the data to the mobile sink. The algorithm was split into several rounds that are 
similar to LEACH, each round start with a setup-phase and continues with a steady-state 
phase. The setup-phase consists of two stages. The first stage is CHs selection. The next 
stage is cluster setup, where the clusters are developed. The second phase is the steady-
state phase in which node data is transmitted to the MS; this phase contains a single stage 
called data transmission.

The energy model of the algorithm: the present study used a basic energy model to 
calculate energy consumption during transmission or receipt of data. In this model, 
energy consumed to transmit l bits of message to a location d meters in distance of:

              (1)

where

                            (2)

TxE  is the energy consumed by the radio electronic circuit for l bit transmission, Efs is the 
energy consumed by the power amplifier on the free space model, and Eamp is the energy 
consumed by the power amplifier in the multi-path model. The total energy consumed to 
transmit and receive data is: 

  Etotal = ETX (1, d) + ERx (1)             (3)

1) Cluster heads (CHs) selection

A node decides to become a CH based on the percentage of existing CHs, the number 
of times that the node has previously been selected as a CH and its level of energy. If 
the energy level of the node is more than or equal to average energy of all nodes, that 
node can potentially participate in CH selection. If the node does not have the required 
conditions to participate in CH selection, it will cause a delay of 1/p in round. The node 
then generates a random number between 0–1. If this number is less than threshold T(n), 
the node will become a CH in this round and the CH label will attach to it. The number of 
cluster heads should be appropriate, and the optimal proportion of CHs is:

                            (4)

Where, N is the number of nodes. It can be seen that the optimal proportion of CHs is only 
related to the number of nodes in the network. The threshold is:

                  (5)
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Where, p is the CHs percentage, r denotes the current round and G is the set of nodes 
that have not been CHs in the last 1/p rounds. E0 is the Initial energy and E' is the current 
energy. At this threshold, each node will be CH within 1/p rounds.

2) Cluster selecting

After the CHs are selected, each CH broadcasts an advertisement message to normal 
nodes (NNs). Each NN decides to which cluster it belongs, and the decision is based on 
the distance between NNs and CHs. The signal strength of the advertisement message 
will determine which CH is closest to an NN. The nearest CH produces the largest signal.

When the nodes are organised into clusters and have received all node information 
messages, each CH creates a schedule based on TDMA protocol. The CH broadcasts a 
message to inform each node when it will transmit data. Determining the schedule for 
the nodes allows the radios to be turned off during the CH allocated time slot, which 
decreases energy consumption in the nodes.

Results and discussion

A. Simulation experiment of the routing algorithm

The simulation model consists of 50 wireless sensor nodes which distributed in the size 
of 100 × 8 meters with two grid area. The wireless signal transmission range is 20 meters, 
after the network established, the traffic generator starts to work. It will send a data packet 
of 50 bytes each time and update every 10 seconds. The initial energy of the node is 10.0J, 
and it is regarded as the death node when the energy is less than 2.0J. 

1) Comparison of energy consumption of each node

Figure 3 shows the energy consumption rate of each node in CLMS and LEACH for a period 
of time. The higher consumption rates among them are CHs. CLMS contains a mobile 
sink, which is moving in the network. Only when the sink is close to the CHs, the CHs will 
communicate with the sink. Compared to LEACH which has a fixed sink, CLMS greatly 
reduces the communication distance, thus reducing the energy consumption of CHs. As 
can be seen from figure, 3rd, 7rd, 16rd and other nodes are CHs, and consume more energy 
than NNs. The energy consumption of NNs in the two algorithms is not very different, 
but the energy consumption of CHs in CLMS is significantly lower than that of LEACH. 
The average energy consumption of nodes under CLMS is 0.014371J/sec, and the average 
energy consumption rate of LEACH is 0.019172J/sec. It is proved that the algorithm is 
optimised for the energy consumption of nodes.

Figure 3. The energy consumption rate Figure 4. The overall energy consumption
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2) Comparison of the total energy consumption 

Figure 4 is the comparison of the overall energy consumption of the network over a period of 
time. Because the CHs can store data and there is MS in CLMS, the average communication 
distance of the network is shorter, so the average energy consumption of the network 
nodes is reduced, and the total energy consumption of the network is reduced to a certain 
extent. From the graph, we can find that CLMS has better performance than LEACH in 
terms of energy consumption. For example, when the network runs to 80 seconds, CLMS 
consumes a total of 58.31J, while LEACH consumes 75.83J. With the time runs, the gap 
between the two gets bigger and bigger. Therefore, the algorithm that was proposed in this 
paper can reduce the energy consumption of the network to a certain extent. 

3) Comparison of the number of survival nodes

Figure 5. Comparison of survival nodes  Figure 6. Monitoring web page

The CHs need to transmit more data in WSN and will consume more energy, and die 
sooner. CLMS shortens the distance of data transmission of CHs and greatly reduces the 
energy consumption of CHs. It can delay the death of the CHs and balance the energy 
consumption of the nodes. As can be seen from Figure 5, the death nodes in LEACH are 
concentrated between 250th seconds to 600th seconds, and the death nodes in CLMS are 
concentrated between 450th seconds to 700th seconds. The first and the last death node in 
CLMS are later. It can be proven that CLMS has a good effect on the life of the nodes, and 
the energy consumption of the network nodes is more balanced.

B. Test of environmental monitoring system

The sink in CLMS can move so the coordinator and the tiny6410 should be mounted on 
a tracking robot car, and they can then move in the pig farm by car. The ZigBee wireless 
network is up and running and the sensor nodes start working. Sensor nodes send the 
collected data to tiny6410 and users can see the environmental information on the remote 
browser through the internet, including temperature, humidity, CO2 concentration, 
hydrogen concentration, etc. It can control the on-site equipment automatically in the pig 
farm. The results verify the feasibility of the monitoring system and the remote monitoring 
web page as shown in Figure 6.

Summary

This paper proposed an environment control system for a pig farm based on mobile sink 
routing algorithm. We focus on the routing algorithm of the wireless sensor networks. 
By movement of the sink, the transmission distance between the sink and the CH is 
shortened. It not only reduces the energy consumption of the CH, but it also balances the 
energy consumption of the network. The results of the simulation show that the algorithm 
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reduces the energy consumption of the CHs, extends the lifetime of the sensor nodes and 
the entire wireless sensor network, so that the environment control system can work for 
a longer time. The control system can realise the monitoring and management of the pig 
farm effectively. 
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Abstract

GrassQ is an ICT-Agri Era-Net funded EU project aimed at developing and combining 
precision grass measurement systems into a web based decision platform to aid precision 
grassland management. Novel and conventional systems of measuring grass yield and 
quality were developed and refined in Ireland, Denmark, Finland and Switzerland. The 
measurement parameters were compressed sward height (CSH, mm), herbage mass (HM, 
kg DM ha-1), dry matter (DM, g kg-1) and crude protein (CP, g kg-1). A protocol was developed 
for the rising plate meter (RPM), for grass measurement optimisation. Initial evaluation 
indicates mean CSH can be predicted to ± 5% SE using 35 samples ha-1. Region, sward 
and seasonal specific HM prediction models are being developed to further increase the 
accuracies of the RPM (R2 > 0.7). A preliminary lab based near infrared spectroscopy (NIRS) 
fresh grass quality calibration was developed with positive results (R2 > 0.94 and R2 > 0.90, 
for DM and CP). An alternative technology of multispectral sensing was carried out using 
a range of airborne methods including an Unmanned Aircraft System (or Drone) and data 
from the EU Sentinel 2 satellite were also acquired. Grass biomass was estimated at a 
reasonable level by processing Sentinel-2 and Drone multispectral data using partial least 
square regression (PLSR) and at a moderate level using stepwise multilinear regression 
(MLR). In Finland, estimations for grass silage swards using Random Forest (RF) analysis 
with 3D features and based on point cloud and image spectral features, indicated R2 values 
similar to those obtained in Ireland. The prototype GrassQ web platform using data from 
the aforementioned models, is now operational and currently under evaluation. 

Keywords: grass measurement, herbage mass.

Introduction

Grazed grass is the primary feed source for the Irish dairy and beef industries, due to 
the suitability of the temperate Irish climate for growing grass. This has resulted in Irish 
dairy production being amongst the lowest cost production systems in the world (Dillon 
et al., 2008). In contrast to this, global grass based systems are in decline, with a 30% 
decrease in Europe alone (Huyghe et al., 2014), as a result of the increased output and 
feeding efficiencies that can be achieved from feed lot based systems. Shalloo et al. (2005) 
identified how grazing systems have the potential to achieve higher outputs in a financially 
sustainable manner, but are hindered by the reduced control of herbage availability and 
quality. Available herbage is defined as herbage mass (HM) (kg DM ha-1), which is the dry 
weight yield of grass per hectare. Optimal grass allocation to the herd is integral to precision 
grassland management. Excess allocation leads to wastage and quality derogation and 
insufficient allocation leads to a decline in animal performance and pasture damage. 
Accurate HM estimation is essential in optimising grass utilisation and allocation, thereby 
increasing profit margins (French et al., 2015). A number of different methodologies exist 
by which grass quantity and quality parameters are estimated. These methodologies need 
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to generate accurate measures, be robust, easy and quick to conduct and compatible with 
new technologies. This study examines two different approaches to grass measurement 
using the very different techniques, which may be described as ground-based and remote 
sensing techniques. 

Traditional ground based techniques include a rising plate meter (RPM) which is an 
established method of predicting HM by measuring compressed sward height (CSH) and 
is considered to be a rapid, non-destructive and effective means of estimating available 
herbage (O’Donovan et al., 2002; Sanderson et al., 2001). More recently, the Grasshopper 
(TrueNorth Technologies Ltd.) an automated CSH measurement tool, has been developed 
based on the conventional RPM concept. There is scope for increasing the precision of 
this system. It is reasonable to assume that increasing sampling area and resolution will, 
in turn, increase precision, but this further increases sampling time and cost. Grassland 
management currently makes up 13% of annual labour allocation on Irish dairy farms 
(Deming et al., in press). The spatial and temporal variation in HM can be significant within 
grassland swards (Bailey et al., 2000) and this can also have a direct effect on pasture 
allocation and utilisation. Therefore, the first objective of the study was to develop 
a grass CSH measurement protocol that would optimise accuracy while minimising 
measurement time. The second objective was to improve the overall precision of the RPM 
with regard to modelling the HM estimation, so that it can be incorporated into a precision 
grass measurement system to optimise decision management platforms. However, it 
is also necessary to have accurate estimates of the chemical constituents and quality 
parameters of the grass. While Near Infrared Spectroscopy (NIRS) is a well-established 
method of determining these parameters in dried and milled forages, limited research 
has been conducted on the application of NIRS to predict un-dried fresh grass quality. 
Thus, a further aim of this study was to investigate the potential of NIRS to predict quality 
parameters, dry matter (DM, g kg-1) and crude protein (CP, g kg-1DM), in fresh un-dried 
grass. Finally, an alternative technology of multispectral sensing was carried out using a 
range of airborne methods including an Unmanned Aircraft System (or Drone) and data 
from the EU Sentinel 2 satellite were also acquired. Spectral models were developed from 
all data sets to enable grass quality and quantity prediction. Knowledge of all of these 
parameters would enable more precise allocation of quality herbage to grazing livestock. 

Materials and methods

Sampling and measurements were conducted at the Teagasc Animal & Grassland Research 
Innovation Centre at Moorepark, Fermoy, Co. Cork, Ireland. Perennial ryegrass cultivar trial 
plots (5*1.2 m) were selected for analysis. The plots (N = 64) were arranged in a randomised 
complete block design, with a 16*4 factorial arrangement. The trial consisted of four 
treatment groups in accordance to the rate of nitrogen fertilizer applied, with each group 
consisting of four replicates. Treatment groups had 0 kg ha-1, 119 kg ha-1, 244 kg ha-1, and 
480 kg ha-1 of nitrogen applied respectively, per plot on a weekly basis. 

A blanket sampling scheme was devised to best estimate the ‘True mean’ CSH within each 
plot. To minimise the effects of bias and double sampling, the authors designed a custom 
built sampling grid reference rig (Fermoy Engineering Services). The rig design enabled the 
maximum practical amount of samples (N = 39) to be taken within each individual plot 
without double sampling and to within a point tolerance of ±10 mm. The CSH samples were 
taken weekly on each of the 16 plots. Measurements were taken using the Grasshopper 
RPM. Directly after the CSH measurements, plot cuts were taken and weighed to determine 
herbage yield. Sub samples were taken for NIRS analysis in the lab and for further reference 
analyses for DM and CP. The CSH measurements (n = 16,692) and plot cuts (n = 432) were 
taken over 27 dates between March - October 2017. Recorded data were automatically 
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uploaded and saved onto the user’s Smartphone (Apple iPhone 5S, IOS, Apple Inc.), using 
the Grasshopper Smartphone application (Grasshopper 1.2). Data recorded in the field was 
later downloaded onto a PC for processing and analysis. To investigate optimum sampling 
rates, all data gathered from each of the 16 plots harvested per sampling date were pooled 
to simulate a small paddock (area = 96 m2), with prominent sward heterogeneity, resulting 
from the variation of applied nitrogen between the plot groups. Retrospective sample 
reduction analysis was carried out using Microsoft Excel (2010). A randomization function 
was employed to simulate reducing sampling rates incrementally in a random stratified 
manner. Random stratified sampling was selected as a suitable sampling strategy, as it 
is considered an effective means of capturing information on variances within a sample 
area in an unbiased and spatially balanced manner (Webster & Lark, 2012) and has been 
utilised by similar studies in this area (Hutchinson et al., 2016; Jordan et al., 2003). 

All CSH data gathered from the grass plot cuts over the grazing seasons (to identify the 
seasonal effect), was cross referenced with wet chemistry analysis and metrological data, 
and used in the formulation of conceptual HM prediction models. Prediction modelling 
is on-going and includes basic linear, logarithmic and multi-linear models to predict HM 
using all data gathered and also seasonal regression models relating CSH to HM. Those 
conceptual outcomes are being scaled up and trialled on grazed paddocks currently and 
it is planned to test the refined models on different grass species in different regions 
throughout Ireland, Switzerland and Denmark in the coming months. 

Perennial ryegrass samples (n = 1,366) collected from plots and grazed paddocks on an on-
going basis, over two grazing seasons (as described above) were scanned using a FOSS 6500 
spectrometer at 2 nm intervals in the range of 1,100 nm – 2,500 nm and absorption was 
recorded as log 1/Reflectance. Reference analyses were carried out (as above) for DM and 
CP and combined with the spectral data. A validation set (n = 205) was selected randomly 
and maintained separate from the original dataset. The remaining data were used to 
derive multiple prediction calibrations, by means of partial least squares regression using 
WinISI chemometric modelling software.

Two Remote Sensing technologies were assessed in GrassQ at the Irish test-site; Spaceborne 
Sentinel-2 and the more compact Sequoia Multispectral sensor which was attached to 
an Unmanned Aircraft System (or Drone). Data were collected at the Moorepark grass 
test-site (Fermoy, Co Cork, Ireland) over the course of 18 months – at varying intervals to 
match dates when grass-sample cutting and subsequent laboratory analysis was carried 
out. Overall, five sets of ground based samples were used to develop prediction models 
of grass biomass using the multispectral imagery (Sentinel-2, Drone). Prior to spectral 
modelling, geomatic and radiometric corrections were performed on spectral data sets. 
All pre-processing and statistical analyses for partial least square regression (PLSR) were 
performed using Unscambler software (version X10.4.1; CAMO software, Woodbridge, 
NJ, USA). MLR was carried out using SPSS v. 21 (SPSS Inc.). Drone multispectral datasets 
were trasformed to surface reflectance images whilst Sentinel-2 images were downloaded 
as ‘Level 2A Products’ which had been atmospherically corrected. Twenty spectral 
indices which had been reported as practical indices for assessing vegetation quality 
parameters in published literature were selected for spectral prediction of measured 
grass biomass. Calculated indices were: Normalized Difference Vegetation Index (NDVI), 
Modified Chlorophyll Absorption Ratio (MCAR), Modified Non-Linear Index (MNLI), Green 
Normalized Difference Vegetation Index (GNDVI), Soil Adjusted Vegetation Index (SAVI), 
Leaf Chlorophyll Index (LCI), Modified Triangle Vegetation Index (MTVI) , MERIS Terrestrial 
Chlorophyll Index (MTCI), Nitrogen Reflectance index (NRI), Red-edge Chlorophyll Index 
(CI-RedEdge), Green Chlorophyll Index (CI-Green), Non Linear Index (NLI). Partial least 
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square regression is commonly used for developing spectral prediction in agricultural land 
uses (Cho et al., 2007; Li et al., 2014). Multilinear regression (MLR) has been also reported as 
reliable a method for spectral based estimation of plant attributes (Park et al., 1997; Cheng 
et al., 2015).

Results and discussion 

Recorded CSH ranged from 134 mm in mid-summer to 53 mm in late autumn; with an 
annual mean of 88 mm. Mean annual CV of CSH was 16% and ranged from 14% in autumn 
to 19% in early spring. The decaying exponential relationship between sample rate and 
standard error (SE) in estimating the ‘true mean’ CSH within the combined plot area (480 
m2) is illustrated in Figure 1. From this graph it can be seen that sampling rates can be 
reduced from 425 samples to eight, while still maintaining SE of mean CSH below 5%. This 
indicates that a considerable reduction in sampling rate, cost and time may be possible 
with a minor decrease in precision.

Figure 1. Simulated reduced sample rates plotted against standard error of mean CSH estimates, 
averaged across data collected for all 27 weeks

Initial evaluation by extrapolating these figures indicates mean CSH can be predicted to ± 
10% SE using 189 samples ha-1. Considering the time it would take to sample to this level of 
accuracy, it may not be economically feasible for carrying out day-to-day measurements. 
Further analysis is being conducted on full-sized grazed paddocks to optimise the 
sampling rate to a practical level to enable accurate management decisions to be made 
while simultaneously keeping measurement time to a minimum. 

When the average actual recorded HM data for plot cuts were compared to the estimated 
HM figures derived from both preliminary linear and logarithmic equations (formulated 
as part of this study), along with the estimations made using the PastureBase Ireland 
(PBI) model, the PBI model resulted in the highest estimated error in comparison to 
the conceptual logarithmic model (Figure 2). PBI is a grassland management decision 
support tool developed by Hanrahan et al. (2017), which utilises a HM prediction model 
developed by Defrance et al. (2004). Model error varied considerably from month to month 
for all models, this indicates that the derivation of season specific models may increase 
prediction accuracy. 
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Figure 2. Average HM estimations from each model compared to HM actually recorded in Moorepark’s 
Grassland Laboratory for each plot cut date 

Regarding the application of NIRS to predict un-dried fresh grass quality, a range of 
spectral treatments were investigated and calibrations were ranked in order of the highest 
coefficient of determination (R2) and lowest standard error of cross validation (SECV). The 
best performing calibrations (R2 > 0.93, SECV < 9.40 g kg-1 and R2 > 0.89, SECV < 13.1 g kg-1DM 
for DM and CP, respectively) were selected for further expansion and validation. Results 
indicate that it is possible to accurately predict fresh grass quality using NIRS. This work 
is reported in detail elsewhere in these Proceedings. 

Regarding the Remote sensing technologies, the results indicated that grass biomass 
can be estimated at a reasonable level by processing Sentinel-2 and Drone multispectral 
data using PLSR and at a moderate level using stepwise MLR. Red-edge, NIR and green 
wavelengths were identified as important for multispectral quantification of grass 
biomass. MCAR, MTVI and MNLI highly affected the biomass predictability of the drone 
multispectral data. Band 11 (centred at 1,610 nm) and band 12 (centred at 2,190 nm) 
considerably affected the biomass estimation of the Sentinel 2 model. 

Conclusions 

A framework and protocol for grass measurement optimisation has been identified, where 
the goal is to mitigate HM losses due to poor utilisation, while simultaneously maintaining 
labour costs at a minimum. An optimum level of accuracy where this goal may be 
achieved was estimated to be within the region of 5 - 10%. Potential for the development 
of an alternative more precise model to predict HM was evident. Potential justification for 
the development of independent seasonal models was also observed. It was possible to 
accurately predict the DM and CP composition of fresh grass using NIRS, without the need 
for laboratory pre-treatments. An NIRS fresh grass quality prediction equation would aid 
grass and feed management decisions and be highly beneficial to researchers, advisors 
and farmers. Regarding Remote Sensing technologies, grass biomass can be estimated at 
a reasonable level by processing Sentinel-2 and Drone multispectral data using PLSR and 
at a moderate level using stepwise MLR. The prototype GrassQ web platform combining 
all of the data from the aforementioned models is now operational and currently under 
evaluation. The developed prediction models included in GrassQ will be validated in 
2019 and comparative analysis will be carried out on each measurement system. It is 
envisaged that GrassQ will highlight the benefits of targeted real-time precision grassland 
management.
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Abstract

The total production of livestock in South Korea reached about 17 billion USD in 2016, 
which was about 44%, of the total agricultural production. Duck industry, which is one of 
the fast-growing industries, occupied 6th in the livestock industry in 2017. However, most 
of the duck houses are conventional facilities, which have been converted from plastic 
greenhouses. The conventional facilities are vulnerable to control humidity, which is a 
very important factor directly related to disease, because of low insulation properties. The 
moisture generation from the litter of a duck house is one of the main factors affecting 
internal humidity. However, there is no previous study for quantitatively analysing the 
amount of moisture generation. In addition, there were few researches on environmental 
control of duck houses combining ICT technology. Therefore, the objective of this 
study is to analyse the internal environment of the domestic duck house and evaluate 
the moisture generation from the litter. For the two types of duck houses, which are 
mechanically ventilated and naturally ventilation duck houses, environmental conditions 
inside and outside of duck houses are monitored. Inside duck houses are monitored 
for air temperature, humidity, and ventilation rates were observed and for outside air 
temperature, humidity, wind velocity, rainfall, and solar radiation were observed. Based on 
monitored data, problems relating to environmental control were analysed. In addition, 
the experimental chamber was produced for observing moisture generation from the 
litter according to air temperature, humidity, wind velocity near litter, and water contents 
of the litter. The statistical analysis was conducted for deriving the regression equation.

Keywords: duck house, environmental control, environmental monitoring, litter

Introduction

The total production of livestock in South Korea reached about 17 billion USD in 2016, 
which was about 44% of the total agricultural production. Duck industry, which is one of 
the fast-growing industries, occupied 6th in the livestock industry of South Korea in 2017. 
However, most of the duck houses are conventional facilities, which have been converted 
from plastic greenhouses. The conventional facilities are vulnerable to control humidity, 
which is a very important factor directly related to disease, because of low insulation 
properties. The moisture generation from the litter of a duck house is one of the main 
factors affecting internal humidity. However, there is no previous study for quantitatively 
analysing the amount of moisture generation. In addition, there were few researches on 
environmental control of duck houses combining ICT technology. Therefore, the objective 
of this study is to analyse the internal environment of the domestic duck house and 
evaluate the moisture generation from the litter.
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Material and methods

Experimental duck house

The experiments were conducted at two types of duck houses with naturally and 
mechanically ventilated systems which are located in Sinbuk-myeon, Yeongam-gun, 
Jeollanam-do Province (126°64´E, 34°89´N). 

Figure 1. The experimental site in which the naturally and mechanically ventilated duck houses were 
located 

The naturally ventilated duck house was 10 m in width, 70 m in length, 2.0 m in eave 
height, and 3.5 m in ridge height. The mechanically ventilated duck house was 12 m in 
width, 45 m in length, 2.9 m in eave height, and 3.8 m in ridge height. The naturally and 
mechanically ventilated duck houses were fundamentally made of 0.15 mm plastic film 
and 100 mm thick EPS panel. There are two winch curtain openings (1.0 m × 70 m) at the 
side wall of naturally ventilated duck house. There are six slot openings (0.3 m × 0.5 m), 
two 50 inch fans and 30 inch fans for mechanical ventilation in mechanically ventilated 
duck house. In these two duck houses, litter is continuously used as the bedding material 
without replacement. The breeding period is 40 - 45 days. 

Figure 2. Schematic information of the target duck houses
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Monitoring data of internal and external environments of the experimental duck houses

The environments in a duck house such as air temperature, humidity, and so on are 
related to the growth rate of the ducks and the quality of the products. Therefore, it is 
very important to properly control the internal environment of duck houses. The internal 
air temperature and relative humidity of duck houses were observed at intervals of 
one second using air temperature and relative humidity sensors (HTX 75c, Dotech Inc.) 
which error range of air temperature and relative humidity are ± 0.3 ºC and 2.0%. The 15 
and 12 sensors were installed at height of 1.5 m inside the naturally and mechanically 
ventilated duck houses, respectively. A potable weather station (WatchDog 2900ET, 
Spectrum Technologies) was installed on the roof of the control room for monitoring 
outside environments such as the wind direction, wind speed, relative humidity and air 
temperature at intervals of 10 minutes. The measured data at June 2018 and February 
2019 were used for seasonal analysis.

Figure 3. Top view of naturally and mechanically ventilated duck houses and sensor locations for 
monitoring internal air temperature and relative humidity

Airflow rate at the mechanically ventilated duck house is one of the major factors for 
maintaining optimal environment. When controlling internal environment for growing 
ducks, it is essential to monitor airflow rate of the mechanically ventilated duck house. Air 
flow rate of the mechanically ventilated duck house was observed using electrometer and 
AC clamp sensors. The airflow rates were estimated using the amount of electric current 
when fans were operated.
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Figure 4. Diagram to monitor the amount of electric current using electrometer and AC clamp sensors 
when fans were operated

The field experiments were conducted to measure the actual overall ventilation rate 
of the mechanically ventilated duck house. The airflow meters were manufactured in-
house according to the size of fans. The actual airflows of fans were observed using micro 
manometer (DP-CALC, TSI) according to the opening configuration and the control level 
of fans.

Lab experiments for observing moisture generation from the litter

Lab experiments were conducted to quantify the evaporation rate of water from the 
litter samples according to wind velocity (1.5, 2.0, 2.5 m/s), air temperature (15, 25, 35 ºC), 
relative humidity (40, 60 80%), water contents (10, 35, 60%). The air temperature and 
relative humidity were controlled with the temperature and humidity controlled chamber. 
The lab experiment was conducted following the method of previous study (Dunlop et al., 
2015). The experimental procedure is shown in the Figure 6.
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Figure 5. Field experiment for measuring actual airflow rate according to pressure load by opening 
configurations

Figure 6. Experimental procedure for quantifying the evaporation rate of water from the litter samples

Results and discussion

Analysis of monitoring data

In June, air temperatures inside the naturally and mechanically ventilated duck houses 
were maintained close to the proper air temperature (Rural Development Administration 
of South Korea, 2016). However, air temperature inside the mechanically ventilated 
duck house was lower than 20 ºC at nighttime. Additionally, the air temperature in a 
mechanically ventilated duck house was always lower than outside air temperature. 
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As environmental variables were fluctuated at naturally ventilated duck houses, the 
homogeneity of environments in mechanically ventilated duck houses was higher than 
those in naturally ventilated duck houses. 

Figure 7. The result of analysing monitoring data (red line: external environments)

The airflow rates were monitored using electrometer and AC clamp sensors. The 50 inch 
fans were operated at daytime for cooling the air temperature inside a mechanically 
ventilated duck house. The 30 inch fans were controlled stepwise to meet the proper air 
temperature. The air exchange rate of a mechanically ventilated duck house was a little 
low as the range of 0.1 - 0.6 min-1.

Figure 8. The result of monitoring ventilation rate of the mechanically ventilated duck house

Analysis of observing moisture generation from the litter

The regression analyses were conducted to estimate evaporation rate of litter from 
environmental variables. As a result of regression analysis, regression equation was 
derived as follows. The accuracy of estimating evaporation rate of litter was reasonable 
because the determination coefficient was calculated as 0.76. Additionally, each 
environmental variable was verified to be independent because variance inflation factor 
of all environmental variables was lower than 10.
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Water generation= -1.31 + 0.25 × Air temperature - 0.20 × Relative humidity + 10.86 × 
Water contents + 7.74 × velocity

Table 1. Regression analysis for estimating evaporation rate of litter from environmental variables 
(air temperature, relative humidity, water contents, velocity)

Multiple R 0.76 Adjusted R 0.71

F-statistic 16.27 p-value 3.29 x 10-6

Estimate Std. Error t value Pr (>|t|)

(Intercept) -11.31 4.65 -2.43 0.02415 *

Air temperature 0.25 0.07 3.79 0.00108 **

Relative humidity -0.20 0.04 -4.53 0.00018 ***

Water contents 10.86 2.29 4.74 0.00011 ***

Velocity 7.74 1.89 4.10 0.00051 ***

Signif. codes : *** 0.001 ** 0.01 * 0.05

In order to improve the accuracy of multiple regression equation, partial vapor pressure which is 
directly related to water evaporation was applied instead of relative humidity. As the determination 
coefficient was calculated as 0.77, the accuracy of regression model was slightly improved.

Water generation = -21.4 + 0.525 × Air temperature - 3.48 × 10-3 × Partial vapor pressure + 
10.9 × Water contents + 7.75 × velocity

Table 2. Regression analysis for estimating evaporation rate of litter from environmental variables 
(air temperature, partial vapor pressure, water contents, velocity)

Multiple R 0.77 Adjusted R 0.72

F-statistic 17.31 p-value 2.03 x 10-6

Estimate Std. Error t value Pr (>|t|)

(Intercept) -2.14 x 101 4.21 -5.07 5.08 x 10-5 ***

Air temperature -5.25 x 10-1 1.06 x 10-1 4.96 6.65 x 10-5 ***

Partial vapor pressure -3.48 x 10-3 7.33 x 10-4 -4.75 0.000109 ***

Water contents 1.09 x 101 2.24 4.86 8.43 x 10-5 ***

Velocity 7.75 1.84 4.20 0.000399 ***

Signif. codes : *** 0.001 ** 0.01 * 0.05

Conclusions

In this study, environmental conditions inside and outside of duck houses were monitored for 
the two types of duck houses which are mechanically ventilated and naturally ventilated duck 
houses. Inside duck houses, air temperature, humidity, and ventilation rate were observed and 
for outside air temperature, humidity, wind velocity, rainfall, and solar radiation were observed. 
Based on monitored data, problems related to environmental control were analysed. In addition, 
the experimental chamber was produced for observing moisture generation from the litter 
according to air temperature, humidity, wind velocity near litter, and water contents of the litter. 
Finally, the regression equations were derived to estimate the evaporations from litter.
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Abstract

In confined poultry buildings, the thermal insulation performance of building construction 
can have positive impacts on the housing comfortable temperature environment. The roof 
and consequently the ceiling as the main part of poultry house building envelope receives 
the most radiant heat under high solar insolation. Stronger convection heat transfer 
between roof inner surface and air increased temperature variations along vertical 
directions in houses, and higher temperature occurs near the roof of poultry house, 
resulting in heat stress for the birds near the ceiling. Heat stress has resulted in significant 
economic losses in large-scale egg productions due to the decrease of egg production rate, 
the increase of hen mortality and the cost of thermal environment control. Experiments 
were conducted in two poultry houses with different roof types, to determine the effects 
of roof insulation on thermal environment and egg production rate in hot weather. Results 
showed that: Temperature and relative humidity fluctuations in experimental house were 
smaller than that in control house, and temperature in control house was 2.3 ºC higher 
than that in experimental house; The level of heat stress in control house was higher than 
that in the experimental house. The normal level of temperature and humid in the former 
was lower by 15.7% compared with that in the latter; The average egg production rates in 
control poultry house and experimental house were 92.5% and 94.0%, respectively, and 
the average egg weight in control house was 1.9 g less than that in experimental house.

Keywords: radiation, temperature, humidity, heat stress, cooling load, laying performance, 
mortality

Introduction

Birds are usually kept in insolated structures constructed by people (Olgun et al., 2007) and 
the basic aim in poultry production is to obtain the yield in a desirable level at the lowest 
cost as in other husbandry fields (Ndukwu et al., 2015). Maintaining adequate environment 
for the hens is essential to ensuring the hen’s well-being, maximum productivity, and 
efficient feed utilization (Zheng et al., 2018). Karaman, et al. (2012) mentioned that heat 
loss through structural elements via conduction, convection, and radiation or heat gains 
should be kept at desirable levels to provide optimum climate environmental conditions 
in poultry houses. Researchers revealed significant insulation problems in animal housing 
especially over roofs developed a finite difference solution, considering conduction, 
storage, sensible heat production, and solar heat transfer effects for a non-ventilated 
structure (Albright et al., 1974). Results indicate a significant effect due to solar energy in 
increasing inside temperature and in producing an earlier daily peak inside temperature. 
Webster A B et al. (2000) indicated that if there are variations of temperature according 
to different locations within the layers closed house, then birds will consume lesser or 
greater amounts of nutrients than required, hence, egg size will differ greatly; Abbas, et al. 
(2011) was concluded that fluctuation of the temperature inside the closed poultry house 
will affect the performance of laying hens. But there is little-published information on the 
interior thermal environment of different construction materials closed layer houses in 
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relation to flock production characteristics. This experiment was carried out to observe the 
impacts of different construction materials on thermal environment conditions of closed 
layer houses and in relation to production performance characteristics, temperature and 
hen performance was monitored.

Material and methods

Experimental layer houses

The layer houses are oriented along East-West direction and are 90 m × 12 m × 3.5 m 
(Length × Width × Height), located in Chengdu (104°20'E,30°29'N), Sichuan Province in 
China, and the maximum distance from the floor to the roof is 4.5 m, with a capability 
of hosting up to 30,000 laying hens. The houses held five rows of “H” batteries with four 
tiers of cages per battery. The house A wall used 370 mm plaster bricks and roof used 200 
mm aerated concrete. For wall and ceiling construction, 100 mm and 200 mm mineral 
cotton sandwich colour steel shelf was used in the house B. Two commercial laying hen 
houses used concrete floors. Ten exhaust fans with a diameter of 1.40 m are installed on 
the opposite gable wall in each house. Ventilation practices were tried to be kept at same 
levels in poultry houses during the research period. The two poultry houses wet-pads are 
10 m × 0.10 m × 3.0 m (Length × Thickness × Height) in gable wall and 2 m × 0.10 m × 2.0 
m (Length × Thickness × Height) in each sidewall end. Rectangular inlets were distributed 
on sidewalls, with dimensions of 0.50 m × 0.30 m × 0.30 m (Width × Height × Thickness) 
and the installation height of 2.85 m. The main characteristics of the two houses are listed 
in Table 1.

Table 1. Characteristics of the two commercial poultry houses

Descriptive parameter House A House B

House length × width (m) 90 × 12 × 3.5 90 × 12 × 3.5 

Sidewall and ridge height (m) 3.5/4.5 3.5/4.5

House orientation E-W E-W

Wall area (m2) and coefficient (w/(m2·K)) 1,095/1.49 1,095/0.73

Roof area (m2) and coefficient (w/(m2·K)) 679/0.86 679/0.41

Floor area (m2) and coefficient (w/(m2·K)) 1,080/0.46 1,080/0.41

Number of tiers and row of cages 4 tiers/4 rows 4 tiers/4 rows

The actual number of birds (n) 28,965 28,895

Birds age begin and end (week) 19-22/39-42 19-22/39-42

Ventilation type Mechanical Mechanical

Manure collection method Belts Belts

 Type of inlets Flap baffles Flap baffles
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Temperature and relative humidity monitoring

Temperature and relative humidity in the two poultry houses and outside environment 
were measured with portable temperature and humidity data loggers (HOBO Pro Series 
Temp/RH logger, Onset, Bourne, MA, US), with a range of -40-70 ºC and an accuracy of 
0.2 ºC for air temperature, a range of 0-100% and an accuracy of 3% for relative humidity. 
The temperature and humidity data were collected during summer and winter period, 
from 1–28 July 2017, 1–28 December 2017 and measured at 30 testing locations in house A 
and house B. They were positioned on each cage row as shown in Figure 1. For each house, 
the sensors were distributed to three groups, ten loggers were 22 m from the row front 
ends, ten sensors were at the row centers and the remaining loggers were 24 m from the 
rows ends. These loggers were considered to represent Front, Middle, and Rear areas of 
the house, respectively. Each temperature and relative humidity data loggers were fixed 
to the side of the second and fourth tiers cages at the breadth height of the hens counting 
from the bottom with a height of 1.05 m (Lower) and 2.25 m (Upper), respectively. The air 
temperature and relative humidity which were measured in each of experimental days 
were was considered as a replicate. 

Figure 1. Schematic view of the temperature and humidity testing sensors along vertical and 
horizontal directions in the poultry house. Front, Middle, and Rear sensors were 22 m, 44 m, and 88 
m away from the gable wall without fans, respectively. Lower and Upper sensors were at the height 
of	1.05	m	and	2.25	m,	respectively.	•	Temperature	and	humidity	testing	sensors	locations	in	house	A	
and B

Layer performance monitoring

To analyse effects of thermal environment conditions on poultry performance, the 
following data were collected at 19 - 22 weeks (1–28 July) and 39 - 42 weeks (1–28 December) 
in production cycle: the number of layers at start and end, feed consumption per day, 
body weight, mortality per day, egg production, egg weight, broken egg, dirty egg and soft 
eggshell. Hy-Line W-36 have housed six birds per cage. All the eggs were weighted and 
the 15 birds were weighted per row randomly at the end week, and feed consumption, 
mortality, egg production, broken egg, dirty egg and soft eggshell were recorded data per 
day.

Statistical Analyses

The average, maximum, and minimum values and standard deviation (STD) of air 
temperature and relative humidity at each testing location were measured in this 
experiment. Data obtained from the experiment were analysed by analysis of variance 
using Origin 9.0 (Origin Lab, Northampton, MA, US), and the significant differences 
between means were assessed using Least Significance Difference (LSD).
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Results and discussion

Temperature and relative humidity in two poultry houses

The mean outdoor and indoor air temperatures, relative humidity in poultry house A 
and house B were 28.1±0.84 ºC, 26.1±0.18 ºC, 24.5±0.41 ºC and 83.5±2.61%, 68.8±2.62%, 
72.3±1.84% in summer, and 0.3±0.51 ºC, 12.6 ±1.13 ºC, 16.3±0.92 ºC and 37.5±3.34%, 
58.1±2.54%, 59.3±2.26% in winter, respectively. Diurnal variation of outdoor and poultry 
house A and B air temperature and relative humidity in summer and winter were shown 
in Figure 2. Two poultry houses indoor air temperature and relative humidity had a parallel 
trend with outdoor temperature and relative humidity. The indoor air temperature ranged 
from 23.9–27.8 ºC in summer and 8.1–12.7 ºC in winter in poultry house A and ranged 
from 22.2–24.4 ºC in summer and 13.7 ºC to 16.4 ºC in winter in poultry house B, while the 
mean outside temperature ranged from 26.2–30.6 ºC in summer and -3.1–7.0 ºC in winter. 
The highest mean indoor temperatures were observed at 10:00 in the two poultry houses. 
Wang Y et al. (2017) reported than the optimum temperature and relative humidity for 
caged poultry should be ranged as 13-27 ºC and 60-65%. The results showed that in poultry 
house B provided homogenous air environment than the poultry house A in the summer 
and winter, the maximum fluctuation in average air temperature in consecutive 30 days 
was reduced to 2.0 ºC in summer and 2.7 ºC in winter.
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Figure 2. Diurnal variation of the air temperature and relative humidity in outside and poultry house 
A and B in period. (a) Diurnal variation of air temperature and relative humidity in summer in outside 
and poultry house A and B; (b) Diurnal variation of air temperature and relative humidity in winter 
in outdoor and poultry house A and B

Temperature and relative humidity in two poultry houses

Laying performance and mortality variations were related to variations of inner 
temperature and relative humidity in the poultry houses, which are presented in Table 2. 
Comparisons of the recorded showed that egg weights were a significant difference in the 
different poultry house in summer and winter, and egg weight in the poultry house A was 
larger in the poultry house B in winter. No significant difference in mortality, broken egg, 
dirty egg and soft eggshell were found among the two poultry houses in this research. A 
significantly increased bird body weight at 19–22 weeks and 39–42 weeks were obtained 
in the two houses. Also, significantly increased feed consumption were recorded at 19–
22 weeks and 39–42 weeks. Compared with the egg production, egg productions were 
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higher in the poultry house B than poultry house A (81.8% and 96.9% vs 79.3% and 96.3%). 
Similarly, the feed consumptions were statistically significant between the two different 
construction materials poultry houses and were significant between the two types 
construction materials poultry houses. Also, the feed consumptions were lower in the 
poultry house B than poultry house A (110.2% vs 113.2%) in winter. The results were in line 
with Webster A B et al. (2000) that correlations of average temperatures with performance 
data recorded at the same sites show that egg weight variation within the house was 
significantly associated with in-house variation of temperature and the relationship was 
negative, indicating that egg weights were lower in areas with higher temperatures and 
larger variation of temperature in different places within the closed layers house would 
lead to marked variation in feed consumption and hen birds will consume lesser or greater 
amounts of nutrients than required, hence, egg size differs greatly.

Table 2. The productive performance of layer in the two different construction materials closed 
layer houses

Time Parameters House A House B LS

Summer

(19-22 
weeks)

Mortality (%/day) 0.01±0.36 0.01±0.40 NS

Feed consumption (g/bird/day) 94.2±1.12 93.6±1.09 **

Egg production % 79.3±0.89 81.8±0.54 **

Egg weight (g) 49.2±1.7 50.2±1.6 *

Broken eggs (%/day) 0.46±0.18 0.47±0.09 NS

Dirty eggs (%/day) 0.13±0.97 0.13±0.88 NS

Soft eggshell (%/day) 0.03±0.29 0.02±0.48 NS

Body weight at 19 weeks (g) 1,403.4±7.8 1,484.8±3.3 *

Body weight at 22weeks (g) 1,620.9±3.8 1,669.9±4.1 *

Winter

(39-42 
weeks)

Mortality (%/day) 0.02±0.76 0.01±0.55 NS

Feed consumption (g/bird/day) 113.2±1.97 110.2±1.82 **

Egg production % 92.5±0.28 94.0±0.43 **

Egg weight (g) 61.7±1.5 59.9±1.1 *

Broken eggs (%/day) 0.51±0.27 0.57±0.03 NS

Dirty eggs (%/day) 0.17±0.38 0.16±0.26 NS

Soft eggshell (%/day) 0.03±0.99 0.03±0.56 NS

Body weight at 39 weeks (g) 1,800±2.2 1,810±7.2 *

Body weight at 46 weeks (g) 1,817±3.1 1,822±5.8 *

* means a significant difference in P < 0.05 level; ** means the highly significant difference in P < 0.01 level; NS 
means no significant difference.

Conclusions

In this study, the effect of different construction materials on the inner thermal environment 
was researched and impact on the poultry performance was evaluated. Temperature and 
humidity fluctuations in experimental house were smaller than that in control house, and 
temperature in control house was 2.3 ºC higher than that in experimental house. The level 
of heat stress in control house was higher than that in experimental house in summer, and 
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the normal level of temperature and humid in the former was lower by 15.7% compared 
with that in the latter; The average egg production rates in control poultry house and 
experimental house were 92.5% and 94.0%, respectively, and the average egg weight in 
control house was 1.9 g less than that in experimental house.
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Abstract

Particulate matter within broiler houses deteriorates indoor air quality and causes various 
health problems in both farmers and broilers. To introduce a proper dust control strategy, 
the dust concentration and the mechanisms of dust generation according to a complicated 
combination of environmental variables should be understood. In this work, long-term 
dust monitoring in mechanically and naturally ventilated broiler houses was carried out 
to determine the key factors affecting dust generation. The micro-climatic factors, such 
as air temperature and humidity, outdoor weather conditions, age of broilers, activity of 
broilers, water contents of bedding materials, and ventilation rate, were simultaneously 
measured to conduct statistical analyses. The ventilation rate of each broiler house 
was numerically computed using a computational fluid dynamics model. From the 
observations, relatively high dust concentrations were obviously measured when broiler 
farmers entered the facility; this was due to the increase in the broiler activity, especially in 
the autumn and winter seasons when a minimum ventilation rate was generally adopted. 
Those dust concentration values easily exceeded the occupational exposure limits per 
their size fractions. Based on statistical analysis, the activity of broilers was found to be a 
key factor for dust generation in both experimental broiler houses; however, controlling 
the humidity level may be a practical method to control the generation of the larger 
fractions, such as inhalable dust, when considering the field-applicability of each variable. 

Keywords: broiler, inhalable dust, monitoring, respirable dust

Introduction

Over the past several years, many researchers have expressed their concerns about the 
poor working conditions in livestock facilities (Cambra-Lopez et al., 2010). Broiler farmers 
are exposed to substantially higher levels of dust, NH3, and odorous matters. Among the 
pollutants, dust is strongly relevant to the deterioration of the health of broiler farmers 
and animals (Takai et al., 1998). From dose-response and epidemiological studies, it 
has been proven that livestock farmers have a high prevalence of coughing, wheezing, 
allergic and non-allergic rhinitis, declined lung function, ODTS, bronchitis, and asthma 
when compared to individuals working in other industries (Basinas et al., 2012). Dust can 
also cause various respiratory symptoms and increase the mortality rate for animals (Al 
Homidan et al., 1996). 

Kwon et al. (2016) reported that the dust concentration inside livestock houses are governed 
by various factors such as the species, age of animals, rearing density, feeding and breeding 
management, ventilation (seasonal changes), temperature and humidity. Many studies 
within the fields of livestock industry have shown a single correlation between pollutant 
matter and environmental factors. Banhazi et al. (2008) conducted comprehensive studies 
that statistically investigated various factors related to dust in order to determine the key 
factors for the generation of airborne pollutants inside pig houses. Although their studies 
considered many factors, such as the facility type, rearing stage, hygiene status, and 
micro-climatic factors, they were based on short-term and broad observations made at 
each experimental farm. In addition, a quantitative approach for the ventilation rate was 
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not included in their studies. Quantitative evaluation of the ventilation rate of livestock 
houses is very challenging due to the difficulty of controlling and measuring the invisible 
airflow patterns. Here, the application of a numerical model such as computational fluid 
dynamics (CFD) technique with a tracer gas decay method can be a kind of solution to 
quantitatively evaluate the ventilation rate of agricultural facilities. 

In this study, intensive and long-term monitoring of the aerial dust, including the total 
suspended particulate (TSP), PM10, inhalable and respirable dusts, was conducted in 
mechanically- and naturally-ventilated broiler houses, which are the commercial types of 
broiler houses found in South Korea. To ensure a comprehensive approach, various factors, 
such as the air temperature, humidity, ventilation rate, age of broilers, working activities 
of broiler farmers, and water content levels of bedding materials, were simultaneously 
measured. The CFD technique was adopted to quantitatively calculate the ventilation rate 
of the experimental broiler houses using the TGD method. From the experimental and 
numerical data, we attempted to determine the key factors affecting dust generation in 
broiler houses using a multiple regression statistical model.

Material and methods

Experimental broiler houses

Experimental farms are located in Jeongeup City, South Korea. The size of the mechanically-
ventilated (MV) broiler house was 15.0 m wide, 85.0 m long, 3.2 m high at the eaves, and 
6.3 m high at the ridge (Figure 1). 14 tunnel exhaust fans with a capacity of 26,500 CMH 
for each fan and plate openings with a length of 24.45 m and a height of 1.58 m were 
located at both side walls near the main entrance door. Meanwhile, three-side exhaust 
fans (33,000 CMH for each fan) and a number of baffles (1.25 m long and 0.43 m high) 
used for cross ventilation in the winter season. 30,000 heads of broilers were raised in 
the facility, resulting in a rearing density of 23.53 heads m-2. In the case of the naturally-
ventilated (NV) broiler house, the facility used a combination of natural ventilation with 
winch curtain openings and mechanical ventilation with eight exhaust fans during the 
summer season. However, mechanical ventilation with eight exhaust fans and a number 
of pipe inlets was adopted during the winter season and during the early rearing stages 
of the broilers. The size of the NV broiler house was 11.0 m wide, 85.5 m long, 1.5 m high 
at the eaves, and 4.5 m high at the ridge (Figure 2). Four exhaust fans (6,020 CMH for each 
fan) were installed at both the front and back side walls to achieve additional ventilation. 
For ventilation operation during the winter season, 90 PVC pipe inlets with a diameter of 
0.1 m and a length of 1.95 m were installed along the slope beneath the roof. Twenty five 
thousand heads of broilers (rearing density of 26.58 heads m-2) were raised in this facility.

Figure 1. Schematic diagram of experimental mechanically ventilated broiler house



880      Precision Livestock Farming ’19

Figure 2. Schematic diagram of experimental naturally ventilated broiler house

Experimental monitoring of aerial dust in broiler houses

The experiment was regularly conducted according to the rearing stage of broilers 
(e.g. ages of 1, 2, and 4 weeks) for 13 months. The pre-weighed polytetrafluoroethylene 
membrane filters (SKC Inc., USA) were inserted in a three-stage polystyrene cassette (SKC 
Inc.) for TSP, while PM10 was sampled in a PEM sampler (SKC Inc., 10 µm sampling cut-off 
diameter). The flow rates for the TSP and PM10 were 2 and 4 l min-1 for 8 h, respectively. 
Dust sampling instruments were installed at a height of 1.5 m. Concentration of the TSP 
and PM10 were calculated with the gravimetric method. 

Figure 3. Sampling locations for dust and micro-climatic factors

The concentrations of inhalable and respirable dusts were measured using an aerosol 
spectrometer (Model 1.109; GRIMM Inc.) at the average respiratory heights of the broilers 
and farmers, respectively. The concentration of occupational dust was measured according 
to two experimental situations: when the status of the broilers was very calm (“stable” 
status) and when the broilers showed active and vigorous movement due to the work 
activity of the farmers (“active” status). Thus, the activity of broilers was defined as a 
nominal variable. Data were continuously recorded for 5-10 minutes and averaged. 

Experimental monitoring and numerical computation of environmental variables

Air temperature and humidity were measured at seven points per each facility using 
thermocouples (Omega Engineering Inc., USA) and HOBO sensors (UX100-003; Onset Computer 
Co., USA). A portable weather station (WatchDog 2700; Spectrum Tech, Inc., USA) was installed 
to measure the outdoor weather condition. Every data was acquired every 1 sec. Measured 
wind condition data were especially useful in constructing the boundary conditions for the 
CFD model in order to evaluate the natural ventilation rate of the NV broiler house. The flow 
rates of the exhaust fans of the MV and NV broiler houses were measured using an airflow 
meter (our own manufactured) and a manometer (TSI-5815; TSI, USA). A portable camera (HD-
3000; Microsoft, USA) was installed near the entrance door to record the status and movement 
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of the broilers and farmers in each broiler house. The water contents of the bedding materials 
were also investigated through KS F2306 test methods. To evaluate the ventilation rates of 
both broiler house under actual wind environmental conditions and ventilation operation 
strategies, CFD simulation model with TGD method was adopted. 

Results and discussions

Measured concentration of inhalable at height of worker’s respiratory intake

Here, we only discussed the results of the inhalable dust considering the limited length 
of the paper; details of results of TSP, PM10 and respirable dust will be discussed in 
our preparing paper. The measured results of the inhalable dust at height of worker’s 
respiratory intake (Table 1 and 2) were typically lower than results obtained at the 
broiler’s height in both broiler houses: 56.9-89.7% for the MV broiler house and 39.3 - 
90.9% for the NV broiler house. The lower values at this height might be explained by the 
sedimentation rate of particulates with large AED due to the force of gravity. From the 
one-way ANOVA tests and their post-hoc tests, which were used to investigate the effect of 
seasonal changes on the inhalable dust measured, the rank of winter>autumn>summer 
were found for the ages of 1 (p-value = 0.047) and 2 weeks (p-value = 0.060) in the MV 
broiler house,. However, the order of autumn>winter>summer was found for the age of 
4 weeks (p-value = 0.002). The experiment was carried out with 22-day-old broilers in the 
winter season, 27–day-old broilers in the autumn, and 26- and 27- day-old broilers for 
the summer season. Relatively small quantities of particulates can be generated from 
immature broilers. It can be empirically estimated that if the winter experiment was 
conducted with identical conditions to the other seasons, the rank of the concentration 
distribution might be winter>autumn>summer, as presented in previous studies. In 
comparison with the occupational exposure limit of inhalable dust with respect to the 
respiratory health of broiler farmers (Donham et al., 2000), it was noted that the partially-
measured concentrations of inhalable dust exceeded 2.4 mg m-3 during the autumn and 
winter seasons when a limited ventilation rate was adopted. In particular, most measured 
concentrations of inhalable dust exceeded the recommended level in the cold season. 
Excesses of 182, 108, and 143% were observed at the ages of 1, 2, and 4 weeks during the 
winter season in the MV broiler house, while excesses of 160 and 292% were observed at 
the ages of 1 and 4 weeks in the NV broiler house during identical periods. 

Table 1. Mean inhalable concentrations at the average height of the worker’s respiratory intake in 
MV and NV broiler houses (unit: mg m-3)

Date Sept-Oct 2013 (Autumn) Dec 2013 (Winter)

Broiler’s age 1 week 2 weeks 4 weeks 1 week 2 weeks 4 weeks

MV 2.360.61 1.690.14 0.60 4.370.78 2.590.32 3.420.18

NV 1.840.04 1.110.06 8.861.07 3.830.37 1.570.21 7.001.01

Date Jun.-Jul. 2014 (Summer) Aug.-Sept. 2014 (Summer)

Broiler’s age 1 week 2 weeks 4 weeks 1 week 2 weeks 4 weeks

MV 0.760.30 1.940.30 0.400.12 2.020.28 0.980.22 1.650.25

NV 1.200.18 1.510.06 0.480.12 1.680.40 1.880.65 1.840.48
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Table 2. Mean respirable concentrations at the average height of the worker’s respiratory intake in 
MV and NV broiler houses (unit: mg m-3)

Date Sept.-Oct. 2013 (Autumn) Dec. 2013 (Winter)

Broiler’s age 1 week 2 weeks 4 weeks 1 week 2 weeks 4 weeks

MV 0.210.04 0.150.01 0.650.04 0.510.04 0.530.07 0.630.03

NV 0.250.00 0.080.01 0.960.16 0.590.05 0.330.02 0.760.04

Date Jun.-Jul. 2014 (Summer) Aug.-Sept. 2014 (Summer)

Broiler’s age 1 week 2 weeks 4 weeks 1 week 2 weeks 4 weeks

MV 0.110.03 0.220.03 0.110.01 0.330.02 0.120.01 0.150.03

NV 0.150.01 0.200.00 0.160.02 0.170.02 0.170.05 0.200.05

Measured concentration of inhalable according to broiler’s activity

As mentioned above, we only here discussed the results of the inhalable dust considering 
the limited length of the paper. Figures 4 shows example results of the inhalable dust 
measured in the MV broiler house according to the measurement location and activities 
of the broilers. When famers entered the facility, the rapid motion of flapping wings by the 
herd of broilers was generally observed. Consequently, the working activities of the farmers 
can lead to a dustier environment than what is observed in an ordinary environment. 
For example, when broilers were 22 days old in the MV facility during the winter season 
(Figure 4 (a)), the concentration of inhalable dust (mean value = 24.25 mg m-3) was found 
to be 4.69 times higher compared to the broiler’s stable status at the broiler’s height; this 
is 655% more than the recommended level for animals. In the case of the measurement 
results at the worker’s respiratory intake, a value that was 2.50 times higher (mean value = 
9.87 mg m-3) was observed. This was also 411% more than the recommended occupational 
exposure limit for broiler farmers. 

Figure 4. Results of inhalable dust measured in (a) December 2013 and (b) September 2014 in the MV 
broiler house according to the increased broiler activity

Identification of key factors for generation of inhalable dust

Parts of the results will be discussed considering the limited length of the paper. First, 
we carried out correlation analyses and multi-collinearity test then, broiler’s age, CFD-
computed ventilation rate, outdoor absolute humidity level, indoor air temperature, 
indoor absolute humidity level, water content level of the bedding materials, and activity 
status of the broilers(nominal factor) were finally selected as the independent variables. 
Table 3 shows the final results of the regression analyses for inhalable dust measured 
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at the heights of the worker’s respiratory intake in the MV broiler house. From the multi 
regression analysis, the variable of the water content level of the bedding materials was 
excluded through the backward elimination process (p-value = 0.766). From the normality 
test for residuals of the regression model using the Shapiro-Wilk test, the regression model 
did not satisfy the prerequisite of a normal distribution (p-value = 0.003). Therefore, log-
transformation was carried out. As shown in Table 3, the activity of broilers, indoor absolute 
humidity, and ventilation rate were found to be significant factors toward the generation of 
inhalable dust. This indirectly indicated that the work activities of farmers in the facility, 
when minimum ventilation was used in the dry and cold season, could generate high 
concentrations of airborne dust in the MV broiler house. If we consider that the activity 
status of the broilers is not a controllable factor, temporal management of the ventilation 
rate and humidity conditions might be helpful to reduce the dust concentration. However, 
increasing the ventilation rate can cause unfavorable thermal conditions in the AOZ, and 
increasing the indoor humidity is strongly related with the proliferation of microorganisms. 
Therefore, determining proper control ranges for these two variables, which consider the 
stability and suitability of the environmental factors, should take precedence. 

Table 3. Results of multiple regression of inhalable dust measured at the worker’s respiratory height 
in MV broiler house

Inhalable dust
Multiple R2 0.64 Adjusted R2 0.54

F-statistic 6.35 p-value 0.001

Coefficient Standard error t-value Pr (>)

(intercept) 0.60 3.13 0.19 0.851

Age of broilers (days) 0.05 0.04 1.20 0.244

Ventilation rate (AER min-1) -1.02 0.38 -2.66 0.016*

Indoor air temperature (ºC) 0.07 0.10 0.72 0.481

Indoor A.H. (kg kg-da-1) -156.65 49.34 -3.18 0.005**

Broiler activity* 0.87 0.24 3.68 0.002**

Significance: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
A.H. refers to absolute humidity
* Broiler activity is a binominal factor (‘0’ refers to stable conditions of the broilers while ‘1’ refers to active 
conditions due to the working activities).

Based on the corrected models, the linear regression equation derived for the inhalable 
dust at worker’s respiratory height in the MV broiler house is given below.

log (Inhalable dust (worker^' s respiratory height)) = 0.595 + 0.047 ∙ age of animals - 1.021 
∙ ventilation rate + 0.069 ∙ indoor air temperature - 156.645 ∙ indoor absolute humidity + 
0.873 ∙ broiler activity

For example, based on the derived equation and experimental conditions for October 
2013, where the broiler’s age was 27 days, the ventilation rate was 0.07 AER min-1, the air 
temperature was 23.67 , and the relative humidity was 74.43%, only a 1.4% decrease in the 
inhalable dust at the worker’s respiratory height can be estimated when the ventilation 
rate was temporarily increased by 10% when the broiler farmers entered the facility. 
Meanwhile, a 13.7% decrease occurred for the case when the indoor relative humidity 
level was increased by 5% under identical conditions. These observations indirectly 
indicated that controlling the humidity level inside the facility would be more influential 
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than adjusting the ventilation level when considering the effectiveness of dust reduction 
and the effects on the thermal conditions of the AOZ due to the increase in the ventilation 
rate, especially in the cold season. 

Conclusions

From the observations and discussions, relatively high dust concentrations were obviously 
measured when broiler farmers entered the facility; this was due to the increase in the 
broiler activity, especially in the autumn and winter seasons when a minimum ventilation 
rate was generally adopted. Those dust concentration values easily exceeded the 
occupational exposure limits per their size fractions. Based on statistical analysis, the 
activity of broilers was found to be a key factor for dust generation in both experimental 
broiler houses; however, controlling the humidity level may be a practical method to 
control the generation of the larger fractions, such as inhalable dust, when considering 
the field-applicability of each variable.
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Abstract

The continuous genetic selection for performance traits resulted in a considerable 
enhancement of daily feed consumption, leading to alterations in growth mechanisms 
and development. These developments were not accompanied by the necessary increases 
in the size of the cardiovascular and respiratory systems, nor sufficient enhancements of 
their functional efficiency. This has resulted in a relatively low capability for maintaining 
adequate dynamic steady-state mechanisms in the body that should balance energy 
expenditure under extreme environmental conditions. Thus, modern broilers have an 
elevated metabolic rate and consequently elevated internal heat production that leads 
to insufficient maintenance of dynamic steady-state of thermoregulation processes, 
resulting in enhancement of body temperature fluctuations. 

Today in most commercial chicken houses there are temperature and humidity sensors 
that provide mean values of the surrounding area. However, no direct measurement is 
being done on the growing broiler thermal statues.

As a result, feedback mechanisms controlling the chicken-house climate might not 
respond according to the broilers thermal statues. 

Due to that fact we have developed a prototype of a new system which measures the 
broiler temperature in a production house.

Keyword: broiler body temperature, invasive body temperature logger, low-cost infrared 
camera, commercial broiler-house sensor, features characterising body temperature

Introduction

Recent decades have seen significant development in the genetic selection of meat-type 
broiler chickens (Zuidhof et al., 2014) for fast growth rate and high meat yield, resulting 
in elevated internal (metabolic) heat production (Sandercock et al., 2006). However, such 
growth and development isn’t supported by the necessary alometric increases in the size 
of the cardiovascular and respiratory systems (Havenstein et al., 2003), leading to rather 
low capability to maintain adequate dynamic steady-state mechanisms in the body, that 
should balance energy expenditure and body water balance under extreme environmental 
conditions (Yahav, 2009).

Thermal stress is caused by adverse combinations of temperature, relative humidity, and 
air ventilation in the micro-climate surrounding the broiler. Moreover, even in temperate-
climate, broiler production is negatively affected by heat, due to higher growth rate, which 
causes more heat generation by broilers (Sandercock et al., 1995). 

In order to provide the appropriate micro-climate, a modern broiler-house are equipped 
with insulated roof, walls and floor and with climate control system, which includes 
ventilation, heating, cooling and lighting. All are controlled by sensors distributed in the 
broiler-house space providing measurement of the environment around the broilers. As 
a result, broiler-house climate control system might not respond to the actual needs of 
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the broiler, affecting their performance and consequently reducing the broiler-house 
efficiency (Naas et al., 2010).

Noninvasive IR technique is widely used for the body temperature (BT) estimation for 
animals (McCafferty et al., 2015). The correlation between the broiler core BT and the outer 
temperature measured by an IR camera was achieved by Giloh et al. (Giloh et al., 2012) for 
more than 80% of broilers in experimental broiler-house. However, all these studies used 
high-quality IR cameras, which is impractical for commercial applications.

The objective of this study was to develop a prototype of a new system which measures the 
broiler temperature in a production house. The system designed to achieve automaticity 
thermal images without human intervention.

Materials and methods

System design

A prototype of a broiler BT measuring system was designed and built. The prototype 
included a photographing space with a feed cone tray connected to a feeder line tube. 
The feeder had a single entrance orientated parallel to the IR camera’s lens and to a RFID 
antenna (Figure 1).

Figure 1. An early system prototype (left side) operating at the ARO’s experimental broiler-house 
(right-side) before implementing in commercial broiler-houses. 1- Thermal cameras, 2- RFID antenna, 
3- System’s entrance, 4- Feeder

The IR cameras were located inside the box with appropriate distance and orientation 
towards the broiler head. Two types of low-cost IR cameras were tested in this experiment: 
FlirOne (60 × 80 pixels resolution, ±3°C accuracy) and the Lepton, (60 × 80 pixels resolution, 
±5°C accuracy) both made by FLIR Systems, Inc. 

Since both cameras had a temperature drift, they were calibrated by a thermistor sensor 
PT100 (Din 1/5) with emissivity 0.96 and located 7 cm from the cameras. The calibrating 
thermistor temperature was measured by a microcontroller (Uno, Arduino), calibration 
was calculated for each frame. The broilers were recognised by the RFID tags (APT12, 
BioMark Inc., USA), antenna and reader (HPR Plus, BioMark Inc., USA).

Animal experiment design: 

The experiment was conducted at the ARO research experimental farm (Volcani centre, 
ARO). The experiment was performed on 30 male broilers (Cobb 500) chicks all implanted 
with RFID tags into the neck (Figure 2). 
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Figure 2. RFID tags were implanted in the upper side of neck

At age 14 days, 15 birds were randomly selected and implanted with temperature loggers 
(SL53T-A, Signatrol Ltd, UK, ±0.14°C accuracy) into the abdominal cavity. From age 14 days, 
onward data on feeder visiting and broiler temperature was recorded. At each feeding 
event, the RFID recorded the broiler number, visit time and visit duration of the head 
inside the cage. At each visit, the cameras captured and saved images during 20 seconds, 
totally 40 images (2Hz frequency). 

IR images processing

The pictures were taken while broilers were moving or still. It is assumed that if the broiler 
was still and the image was sharp, the image represented its actual face temperature. 
Nevertheless, if the broiler were moving, the cameras caught a smoothed image, which 
was equivalent to the numerical averaging operation decreasing the maximal temperature 
value. Hence, among all the images with the needed head location and orientation, the 
image with the highest BTIR was assumed to be a sharp, and the BTIR at this image was 
selected as a represented BTIR during that meal. The data from the IR cameras, RFID and 
the temperature loggers was synchronized, comparing between the core body temperature 
(BTcore) monitored by the temperature loggers and body temperature (BT) predicted by 
a model based on images from the IR cameras (BTIR). Altogether, data about 1,220 meals 
was collected.

Modeling

Image features were applied in order to predict BT. Outliers temperature were filtered-
out by applying moving average and median filtering. In order to calculate hot spots in 
the facial area an average of 3, 10, 30, 50, 100, and 300 hottest pixels for each feeding 
event were recorded. The temperature measured by the thermocouple and broiler age was 
recorded as well. A Feature Number (FN) was applied to quantify hot spots in the image. To 
prevent regression overestimation and to find significant features, lasso regression model 
with tenfold cross-validation (Hastie et al., 2008) was developed. The calculations were 
performed on MATLAB (MathWorks 2018b). 

At the validation model phase, 90% of the data were used to build the model and 10% were 
used for the model validation in a tenfold cross-validation technique. The advantage of 
this method is that all observations are used for both training and validation, and each 
observation is used for validation exactly once.
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Results and discussion

The relation between the implanted temperature logger (BTcore) and the thermal camera 
(BTIR) predicted by a Lasso model for FlirOne and Lepton cameras are presented in Figure 3. 
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Figure 3. Camera Validation. Body temperature (BTcore) measured by implanted temperature loggers 
in the chicken abdominal cavity vs infrared thermography temperature (BTIR) monitored by FlirOne 
(dots) and Lepton (circles) cameras

Both lasso and single-dimensional regression models based on data from both cameras had 
presented a significant correlation with P-value < 0.001. However, R2 values calculated for 
the single-dimensional regression were lower compared to the ones calculated by applying 
the lasso regression. The highest R2 value and the minimal error between predicted BTcore 
and the BTIR was achieved for lasso regression and Lepton camera (R2 = 0.74; Table 1). 

Table 1. Model Validation. A camera based temperature vs reference body temperature (BT) 
measured by implanted temperature loggers in the chicken abdominal cavity

Model Correlation [R2] Standard error of 
the estimate [ºC] Slope Bias [ºC]

Flir One – lasso regression 0.70 0.29 1.006 -0.26

Lepton – lasso regression 0.74 0.27 1.01 -0.41

Flir One – single 
dimensional regression

0.5 0.38 0.45 23.2

Lepton – single dimensional 
regression

0.57 0.35 0.56 19.6

Conclusions

In this study, we have designed and validated a new system that enables monitoring and 
measurement broilers BT. Data (temperature loggers as well as thermal IR images) were 
collected automatically, with no human interference in the monitoring process. The system 
applied a relatively low-cost camera. Results suggest the potential of integrating IR camera 
monitoring animal individual temperature into the chicken house climate control loop.
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Abstract

Consistent individual variation in animal behaviour has been identified as a major 
source of between-animal variability, affecting activity, immune responses, and health 
status. Despite these insights, laying hens are usually observed at the group-level with 
little consideration to individual differences in behaviour and their consequences. In a 
large-scale explorative study, the movement and location patterns of laying hens in a 
semi-commercial system was recorded by means of a RFID tracking system within four 
different areas (indoor, exterior winter-garden, yard and free range areas). Our methods 
allowed for characterisations of spatio-temporal patterns based on movements between 
areas as well as identifying non-random social associations based on co-occurrence at 
specific sites. We found that the laying hens developed a pronounced social network of 
differentiated individual associations that linked with spatio-temporal activity patterns. 
To characterise hens based on the level of similarity of ranging patterns, dissimilarity 
matrices were generated by Dynamic Time Warping. Cluster analysis suggests a small 
set of 4 - 5 distinct activity patterns with ranging patterns that were consistent over 
time and varied more between hens than within hens. Interestingly, similarity in daily 
activity patterns was highly correlated with social associations and closely associated 
birds became more similar with increasing age. To our knowledge, this is the first study 
linking animals’ social niches with temporal activity patterns. The observed patterns and 
novel relationships identified revealed exciting opportunities to understand the complex 
behaviours of commercial laying hens and the observed variation in animal health, 
welfare, and productivity.

Keywords: laying hen, range use, social structure, RFID

Introduction

Most livestock species, including poultry, are understood to have social networks and 
consistent behavioural tendencies across time, though the vast majority of research has 
been performed using small groups of animals e.g. less than 20. While these conditions 
may be relevant for poultry within natural settings or small flocks where social groups are 
typically between 20–40 animals, the group sizes of commercial poultry within modern non-
cage systems can range between one and 80,000. In particular, laying hens in small groups 
(e.g. less than 100 animals) can retain the identities of conspecifics (Guhl, 1953) and will have 
a relatively rigid hierarchical social structure (Guhl, 1953; Craig et al., 1969; Dawkins, 1995; 
D’eath & Stone, 1999). As the size of the group increases, it becomes increasingly difficult for 
hens to recognise and retain the identity of conspecifics and their position in the hierarchy. 
In turn, hens will adopt an alternative social structure where less overall aggression is seen 
with certain hens adopting defensive postures for certain key resources e.g. initial access 
to the feeder when fresh feed is provided (reviewed by Croney and Newberry, 2007). Given 
the scale of resources (e.g. outdoor access and multi-tier aviaries) that laying hens are often 
provided, it is important to understand how hens use and interact with these environments 
to ensure health, welfare and productivity are optimised. 
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Although other livestock species (e.g. cattle, swine) have made dramatic advances in 
the area of Precision Livestock Farming, laying hens have unique conditions including 
relatively smaller body size and higher stocking densities which require novel approaches. 
Our group has been developing tracking technology, protocols and statistical methods 
in order to assess the behavioural dynamics of these large commercial poultry flocks. 
The current manuscript is a continuation of our initial effort to apply novel behavioural 
metrics (Rufener et al., 2018) to assess social networks over 25 weeks within a commercial 
flock.

Methods 

Our study utilised four side-by-side pens within a commercial barn. A pen contained 
355 Brown Nick laying hens and three connected outside areas: a winter-garden, stone 
yard, and a grass-covered pasture area. Each pen area was outfitted with radio frequency 
identification antennae that allowed tracking of animals within the three outside areas 
and, by default, the house interior. When the barn was populated (18 weeks of age), 110 
hens from each pen (i.e. approximately 1/3) were selected in a standardised manner and 
given a transponder, which, when in proximity to the antennae, registered that animal’s 
presence. Each focal animal’s location within the key areas, including the time and date 
of movement between two areas, was recorded by the system and stored on a dedicated 
computer. Approximately 120 days of data were collected with all irregular events (e.g. 
vaccinations) that occurred being written in a barn journal by the producer. Due to a 
combination of factors including poor weather and behavioural testing as part of a related 
project, hens were provided access to all areas on only 72 days of the observation period. 
Hens were given access to the winter garden on all days per company policy.

To characterise hens based on the level of similarity of ranging patterns, dissimilarity 
matrices were generated by Dynamic Time Warping using the 72 days of collected data 
and cluster analysis applied to determine groups of hens with consistent movement 
patterns. To assess social network cohesion, for each transition of a hen between two 
areas, we identified all other hens that performed the same transition within five seconds 
and generated a daily grouping metric for each hen. We then assessed the stability of that 
grouping over the duration of the study.

Results and discussion

Our methods allowed for characterisations of spatio-temporal patterns based on 
movements between areas as well as identifying non-random social associations based 
on co-occurrence at specific sites. Examination of Dynamic Time Warping pairwise 
comparisons for variation within hens versus all other hens across time found within 
hen variation to be consistently lower, suggesting hens were more similar to themselves 
across time than to other hens (Figure 1). In other words, accounting for hen individuality 
is a critical source of behavioural variation as individual hens appeared to maintain time-
dependent movement patterns despite flock-level changes over time which likely resulted 
from age-dependent changes and shared external factors e.g. disturbances.
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Figure 1. For each pen, the raw Dynamic Time Warping distances of pairwise comparisons are smaller 
for within hen comparison (blue, each hen compared to its own) than between hen comparisons 
(yellow, hen x compared to all other hens across time)

The daily means of all pairwise Dynamic Time Warping distances of all hens for each day 
manifested a clear downward trend over time despite some obvious outlier days (Figure 2). 
Typically, these large outliers were associated with a management protocol that restricted 
access to one of the locations for a period of time.

Figure 2. Daily mean of all pairwise Dynamic Time Warping distances of all hens for each day
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We also found that laying hens developed a pronounced social network of differentiated 
individual associations that linked with spatio-temporal activity patterns. Interestingly, 
similarity in daily activity patterns was highly correlated with social associations and 
closely associated birds became more similar with increasing age.

Conclusions

To our knowledge, this is the first study linking animals’ social niches with temporal 
activity patterns. The observed patterns and novel relationships identified revealed 
exciting opportunities to understand the complex behaviours of commercial laying hens 
and the observed variation in animal health, welfare and productivity.
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Abstract

Many animals live in highly structured groups. Individual differences in the number and 
identity of social contacts define the social network structure. Most domesticated animals 
belong to such species. The composition of groups can be disturbed by grouping animals 
according to age or production stage, which can in turn induce stress. We investigated 
whether the preference of two animals to stay together depends on their sociality or on 
the composition of the group. We observed 158 dairy cows in six pens during 17 weeks. 
The precise positions of the cows were monitored with positional loggers 24/7 in stable 
groups and during the formation of new groups. In stable groups, the sociality of a cow 
was maintained over the entire observation period. When introducing foreign individuals 
into well-established social groups, the sociality of individual cows was maintained 
independently of the group; this sociality was therefore not necessarily defined by the 
time spent in the group. During the formation of new groups, newly introduced cows 
dynamically interacted with resident ones, forming a few strong short-lasting contacts 
between newcomers and resident cows. However, most long-lasting interactions occurred 
between resident group members. Our study reveals that in a species that spontaneously 
lives in large social groups, such as cattle, each animal has its own sociality independent 
of group. However, when it comes to establishing strong relationships between newcomers 
and resident animals, more than two weeks is needed. 

Keywords: Precision Livestock Farming, RTLS, animal behaviour, social network, cattle

Introduction

Many animals are gregarious. Within a group, animals vary in their readiness to interact 
with others and their affinities to specific partners. Such a complexity can be represented 
by social networks where the individuals and the whole group can be characterised by 
a number of statistics (Krause et al., 2007; Wey et al., 2008). For instance, an individual 
can be characterised by the number of its immediate neighbours, the strength of its 
relations with these neighbours, the number of individuals its neighbours are connected 
to (clustering coefficient), and so on. Such statistics can also be calculated at group level 
to characterise the network as such. The structure of social networks is likely to have high 
impact on fitness, both impacting on cooperation between animals, information transfer, 
reproductive success of specific individuals, and also disease transmission (Krause et al., 
2007; Wey et al., 2008).

Domesticated animals mostly belong to gregarious species that spontaneously live 
in structured groups. Cattle represent a common type of large domesticated animals 
with a high sociality. Groups of cows are formed thanks to dominance/subordination 
relationships and to preferential relationships (Reinhardt & Reinhardt, 1981; Bouissou et 
al., 2001; Stoye et al., 2012). When two cows are mixed together for the first time, they 
exchange aggressive interactions (fights, butts), but once the dominance/subordination 
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relationship is established (i.e. only one gives butts to the other, but not vice-versa) then 
the frequency of aggressions declines dramatically and the hierarchy remains stable 
(Bouissou et al., 2001). Preferential relationships are also observed, whereby animals stay 
close to each other, synchronize their activities (e.g. eating, walking, resting), and exchange 
mild interactions such as sniffing and allo-grooming (Gibbons et al., 2010). 

Under farm conditions, the groups are shaped by humans and animals can be moved 
from one group to another according to their sex, age or production stage (e.g. cows in 
milk vs dry cows), no matter their social preferences. Previous studies showed that mixing 
animals can be stressful, inducing a dysregulation of the corticotropic axis and a decrease 
in growth or milk production (Hasegawa et al., 1997; Mounier et al., 2005). This is likely 
to be due to aggressive interactions between animals that do not know each other. In 
addition, the social buffering properties of the group – by which animal stress is reduced 
by the presence of group mates – is diminished (Mounier et al., 2006). We suspect that such 
effects of mixing animals result from the whole social network being disturbed.

We used a Real Time Locating System (RTLS) to record the position of each individual cow 
housed in a free stall at every second 24/7 for 17 weeks. The underlying assumption is 
that cows spending time together interact socially. Using these high-resolution data, we 
were able to build dynamic interacting networks between cows. We analysed the sociality 
of cows in stable group, then we followed the introduction and removal of individuals 
between groups. We focus our study on two levels of sociality persistence: in an individual 
moving from one social group to another, and in a group experiencing the introduction of 
many newcomers.

Material and methods

The observations were performed at the INRA Herbipole farm (UE1414, France). There 
were on average 158 cows in the barn per week, 75% Holstein and 25% Montbeliard cows. 
They were housed in six pens with a maximum of 28 cows per pen. Each pen consists of 
a feeding area on one side and two rows of 14 cubicles (1.25 m × 2.53 m) on the other side 
(Figure 1). 

Figure 1. Barn composed of six pens, each with a capacity of accommodating 28 cows
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All observations were done under the routine management of the farm. We first observed 
the dynamics of two stable groups of cows in Pen 4 (18 cows) and Pen 5 (17 cows). The 
cows knew each other for at least one year, except five heifers in each pen that had been 
introduced one month before the observations. Both groups remained stable throughout 
the 17 weeks of observation, except that a cow was introduced in Pen 4 on Week 13 and 
another removed on Week 15. Then we observed unstable groups, with cows moved from 
Pens two or three to Pen 1. Finally, we analysed how the social network changes in a 
specific Pen 2 when, after a period of three weeks of stability, nine cows were removed and 
eight cows (from different pens) were moved in. This pen was observed from one week 
before, to two weeks after, this reshuffling.

We recorded the position of the cows with the CowView system (GEA, Germany). Each cow 
was equipped with a tag on its neck collar. Every second, the tag emits radio waves within 
the ultra-wideband area, which are detected by antennae within the barn. The accuracy 
of the position is on average 50 cm in the whole barn. We applied a rolling median filter of 
three consecutive positions to remove outliers and minimise the noise. Because of missing 
data, due e.g. to physical blockage of the signal from time to time, we focused on cows 
that were detected for at least 2/3 of a day (i.e. 16 h) for at least 2/3 of the total time (i.e. 
80 days). This resulted in the collection of data for 158 cows out of the 188 that stayed in 
the barn.

We considered that two cows were in contact with each other when the distance between 
their tags was 1.25 m or less for at least 10 minutes of a day when they were outside the 
cubicle area. We defined the sociality of a cow during a given day as the number of other 
cows she was in contact with. We also calculated the average sociality of a cow over a 
week. To study social networks, we looked at all dyadic contacts of cows within a pen, 
measuring the total time two cows have been close to each other; in this case we used a 
threshold of 25 minutes to consider that cows were in contact with each other. 

Results

The sociality of cows varies within a group. In Pens 4 and 5 that were stable along the 
observations, some cows contacted up to 14 other cows during a single day whereas 
other cows contacted one or even no partner. This characteristic seems stable across 
days. We divided artificially cows from each pen in three equal groups according to their 
sociality across the 17 weeks of observations: high vs moderate vs low sociality. In each 
pen, the three groups were statistically different along the 17 weeks: respectively for high, 
moderate, and low sociality cows, 5.89 ± 0.44, 4.35 ± 0.34 and 1.85 ± 0.60 contacts per day 
in Pen 4 (F = 127.1, P < 0.0001) and 3.67 ± 0.34, 2.94 ± 0.23, and 2.19 ± 0.44 contacts in Pen 
5 (F = 25.14, P < 0.0001), with binary differences between groups also significant (P < 0.01).

Five cows were introduced in Pen 1 on Day 18, one from Pen 2 and four from Pen 3. 
These cows remained in the same sociality class (relative to the pen) from before to after 
introduction in Pen 1, suggesting that sociality is a trait that depends essentially on the 
individual and not the group.

When Pen 2 was reshuffled, the average duration of contacts between resident cows did 
not change significantly (from 106 ± 29.8 s on the week before the reshuffling, to 94.5 ± 28.4 
s one week later and 74.5 ± 29.3 s the week after, P > 0.05). However, these contacts were 
not necessarily between the same cows (no correlation between dyadic contacts before 
and two weeks after the reshuffling). After their introduction, the new cows had strong 
contacts with the resident cows; however, with whom the contacts were established 
changed from one day to another. As a consequence, when averaged over a week, the 
dyadic contacts between resident and newcomer cows were still scarce two weeks after 
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the replacement (Figure 2). At the same time, the strength of the social network within the 
pen deceased: on average 2,400 s of contacts between pairs of cows before the reshuffling 
to 2,080 s during the first week after reshuffling and 1,750 s the week after.

Figure 2. Network within Pen 2 before and after the replacement of nine resident cows by eight 
newcomers. Lvis, contacts between animals that lasted 25 min/d or more; Lfrac, proportion of Lvis over 
all contacts whatever their duration; Lhigh, the longest duration of contact between two cows

Conclusion

With a simple RTLS device we were able to characterise cows according to their sociality, 
that is their readiness to get close to – and probably interact with – other cows from their 
group. This characteristic seems stable over time, at least for the 17 weeks of observation 
of our study, and to depend more on the individual than the group it is in.

Groups of cows also seem to form a whole entity characterised by a network defined by 
dyadic connections between cows. This network is disturbed when cows are replaced by 
newcomer cows: not only does it take more than two weeks for the newcomers to mix with 
the resident cows, but also the network between the former resident cows is weakened.

RTLS can be used to study the social behaviour of cattle. It can also be used to monitor 
disturbances due to mixing, such mixings occurring frequently in farming. The cohesion 
of social groups is essential to encourage cooperation between animals and reduce stress 
(see introduction). RTLS could be used by farmers to ensure the proper functioning of 
groups of animals, identifying animals which have difficulties to get in contact with others 
and whose welfare is likely at risk or identifying groups where the social cohesion is poor. 
It could thus help the management of social groups by farmers. 
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Abstract

Israel is a major global migration route for many species of fish-eating birds, such as 
pelicans and cormorants. This migration carries high costs for aquaculture in fish 
predation and the spread of disease in the fish ponds. The aim of this study was to develop 
a computerised automatic system to detect and deter fish-eating birds from fish ponds.

We developed a system that detects pelicans and sends a small boat to deter them. 
The system comprises a radio-controlled boat (1 m long), a stationary video camera, a 
computer, and a detection algorithm. The camera (Dahua camera, DH-IPC-HFW4830E-S) 
was connected to the computer via an Ethernet cable to collect video sequences of a focal 
pond. The detection algorithm is based on a convolutional neural network, and classifies 
different regions as containing pelicans, or not. Data were recorded over the three months 
before the migration season. The data contained videos of between two and 50 pelicans 
per video. The size of the test fish pond was 105 m2 with a maximum range of 600 m to the 
pelicans as they floated.

The detection complexity varies according to air clarity, cloud cover, and target proximity. 
Pelicans were detected on clear days, cloudy days, and with different distances to the 
camera. The detection accuracy was 98%. The accuracy was calculated based on a dataset 
that was built for this project. The system is currently being tested and is on the way to 
become fully automatic.

Keywords: fish farming, birds detection, birds deterrence, deep learning, ResNet, 
automated birds deterrence

Introduction

Migrating fish-eating birds are giving the aquaculture industry a hard time, as they stop 
at fish ponds during migration, and eat many fish. This has become a worldwide problem 
(Stickley & Andrews, 1989). The cost of this phenomenon in the Spring Valley of Israel is 
approximately 3M shekels per year. The cost comprises the fish that were consumed by 
the birds and the efforts made by the deterrence teams. These teams are trying to deter 
the birds in multiple ways such as: driving fast trucks along the pond, scaring the birds 
with loud noises such as horns, shooting dummy bullets in the air, and at night using 
bright flashlights and lasers.

None of the above methods are quite successful, as the birds get accustomed to these 
disturbances. However, as the birds become more exhausted and hungrier, they are more 
willing to take risks in spite of the deterrence efforts. This factor further reduces the ability 
of the teams to deter the birds.

The best deterrence method at present is to send a boat towards them. As the boat 
approaches, the birds fly away to avoid a collision. It is a challenge to deter hungry birds, 
but a fast boat that heads towards them will manage to deter them nevertheless. The birds 
don’t get accustomed to the boat, because every time it comes from a different direction.
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In this work a system was developed that detects and deters birds by sending a boat 
towards them. The spatial detection is done with a deep learning classifier, while the exact 
location of the birds isn’t crucial as the birds fly away when the boat is approx. 15 meters 
from them.

Materials and methods

Data collection

The data collection was done with a camera installed in a test fish pond, in the north of 
Israel. The camera was connected to a computer, constantly imaging the pond. The exact 
time when the pelicans and cormorants landed in the pond was documented. The videos 
were later analysed, and long videos were cut to shorter videos of about 40 minutes each, 
containing the birds swimming in the water. The next stage of the process was saving 
images every 10 seconds, to create a dataset of different images. In this process a dataset 
of 990 images of 2,380 × 180 pixels was made, containing images of the birds swimming in 
the water in different lighting conditions, and at different times of the day. A sample image 
is presented in Figure 1.

Figure 1. An image taken from the test fish pond

Birds detection and data labeling

In order to detect birds in the pond, every image was divided into 40 by 40 pixel sections, 
then every section was labeled into class 1 or 0; class 1 meaning a section with birds and 
class 2 a section without birds.

This sectioning and labeling was performed for all of the 990 images mentioned above 
with PYTHON code that was written especially for this task. A section was labeled class 1 
if there were any birds appearing in it.

Birds may appear differently, depending on their distance from the camera and orientation; 
Figure 2(d)-(f) contains birds. They may appear as small white colour stains for instance 
Figure 2(d), or as a white homogenous area Figure 2(e), or as actual birds Figure 2(f).

Images without birds may contain objects like floaters Figure 2(a) and (b), or may contain 
no objects at all, Figure 2(c).

Images (c) and (d) in Figure 2 are very alike, other than the two pelicans appearing as little 
white stains. Images (a) and (f) in Figure 2 resemble each other, even though they belong 
to different classes.

a b c d e f

Figure 2. 40 × 40 sections; (a) - (c) are sections without birds; (d) - (f) are sections containing birds
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In the labeling process 22K labeled 40 × 40 pixel sections were made, 11K for each class.

Classification algorithm

A well-trained deep learning classifier requires a lot of training images. Thus the 22K 
labeled dataset was divided into 15,400 training images, 3,300 validation images, and 
3,300 test images. The classifier was then trained with the training set, while using the 
validation set to inspect the training process, making sure the network was converging. 
The classifier was based on ResNet architecture (He et al., 2016), and contained residual 
blocks to extract features from the images.

The system

As mentioned, the system comprised a boat, a camera, and a detection algorithm. The 
boat worked with ARDUPILOT software and a PIXHAWK processor that was controlled via 
PYTHON scripts. The system detected the birds, and sent the boat to deter them.

A classified image can be seen in Figure 3, where the birds are surrounded with green 
squares, which are the small sections classified as class 1.

Figure 3. Detected birds in the test fish pond, in two different images

Results and discussion

The classifier was trained on the train set, and obtained 98% accuracy on the test set.

It classified the test images in different lighting conditions and with different distances 
of the birds from the camera. The classifier didn’t classify the floaters as pelicans, even 
though they might have somewhat similar features as the birds. Figure 3 represents two 
examples of classified images, where the sections classified as birds are marked in green.

Conclusions

Birds can be detected in the images from the test fish pond, with good accuracy. The birds 
can be detected at different distances from the camera, up to 600 m. The classifier was 
robust to scene changes, such as different lighting conditions and varying numbers of 
birds. Thus, it can be used for the deterrence system.

With further training the accuracy may be increased, so the system will detect birds in 
different fish ponds, without additional training of the classifier.
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Abstract

Individual data on activity of broilers is valuable for breeding programmes, as activity 
may serve as proxy for multiple health, welfare and performance indicators. However, 
in current husbandry systems, broilers are often kept in large groups, which makes it 
difficult to identify and monitor them at the individual level. Sensor technologies, such 
as ultra-wideband (UWB) tracking systems, might offer solutions. This paper investigated 
the recorded distances of an UWB tracking system that was applied to broilers, as a first 
step in assessing the potential of an UWB tracking system for studying individual levels 
of activity in broilers housed in groups. To this end, the distances moved as recorded by 
the UWB system were compared to distances recorded on video, using Kinovea video 
tracking software. There was a moderately strong positive correlation between the output 
of the UWB system and video tracking, although some under- and over- estimations were 
observed. Even though the recorded distances from the UWB system may not completely 
match the true distances moved, the UWB system appears to be well-suited for studying 
differences in activity between individual broilers when measured with the same system 
settings. 

Keywords: tracking, broilers, activity, ultra-wideband

Introduction

Animals are kept in large groups in husbandry systems, which makes it difficult to 
identify and monitor individual animals. Still, there is an interest in quantifying individual 
behaviours of group-housed animals to study the link between individual behaviour and 
performance in more detail. Broilers are an example of a livestock species for which data 
on individual behaviour could prove to be valuable. Commercial selection of broilers has 
resulted in fast growth (Zuidhof et al., 2014). At the same time, broilers may show different 
activity levels. For example, Weeks et al. (2000) found that broilers between 39–49 days 
of age spent on average 76 - 86% of the time lying, depending on whether the birds were 
sound or showed varying degrees of lameness. Additionally, with increasing age of broilers, 
decreases in activity are seen (e.g. Weeks et al., 2000; Tickle et al., 2018). The relationship 
between individual level of activity and leg health, welfare and performance is valuable 
for broiler breeders. This requires detailed information on activity of individual broilers. 
Sensor technologies may aid in obtaining this information. In this study, an ultra-wideband 
(UWB) tracking system was implemented and its suitability for individual tracking of 
broiler activity was investigated. The main objective was to validate the recorded distances 
moved of the UWB system, by comparing these to distances recorded on video, where it 
was assumed that the distances recorded on video were the true distances moved by the 
broilers.
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Material and methods

Population

Data were collected at a broiler farm, under control of Cobb Europe. In total, 24 male 
broilers from two genetic crosses were housed in a pen with a size of 6.4 m2 with feed and 
water provided ad libitum. These birds were taken from a larger group, selecting the lowest 
and highest body weights. From each cross, three heavyweight and three lightweight birds 
were selected for UWB tracking. The average weight of the light birds was 0.42 kg, while the 
heavy birds weighed on average 0.63 kg, as measured on day 15 of life. These six broilers 
per cross were fitted with an UWB tag and were tracked with the UWB system. 

Ultra-wideband tracking system

A Ubisense UWB system with Series 7,000 sensors and compact tags (Ubisense Limited, 
Chesterton, United Kingdom) was used, in combination with TrackLab software (Noldus 
Information Technology, Wageningen, the Netherlands). Broilers were fitted with a 
Ubisense tag with a size of around 3.5 × 3.5 cm and a weight of around 25 grams on their 
backs, using elastic bands around their wing base. Every 6.91 seconds, these tags sent 
out a signal. Four Ubisense beacons, which could receive these signals, were placed in a 
square above the broilers’ pen. Using the time of arrival of the signal, the location of the 
tags could be determined. The 12 broilers were tracked from day 15 to day 33 of life (n = 19 
days), for approximately one hour each day, at different times. This one-hour sample per 
day was deemed sufficient as the main interest here was validating UWB recordings and 
not studying individual activity patterns over time. The resulting UWB output used in this 
study was the total distance moved in meters per individual per tracking session.

Video analysis

Video recordings were made from above the pen, at the same time as the UWB recordings 
were made. A Zavio B6210 2MP (Zavio Inc., Hsinchu City, Taiwan) video camera was used 
and the recordings were analysed using Kinovea video analysis software version 0.8.25 
(http://www.kinovea.org/). Using Kinovea, individual broilers could be tracked throughout 
the pen to assess the moving distance. The length of one side of the octagonal pen was 
used for calibration. Manual corrections were applied when necessary, for example, when 
the bird was flapping its wings or was very close to other birds. The output used here was 
the total distance moved in meters per individual per session.

Statistical analysis

For one bird, no data were available for day 29–33, resulting in a total of 223 samples 
of recorded distances from both the UWB system and video tracking. Statistics were 
performed using R version 3.5.2 (R Core Team, 2018). The correlation between the distance 
moved, per individual and per session, as recorded with the UWB system and using video 
tracking was studied using a repeated measures correlation (package rmcorr; Bakdash & 
Marusich, 2018) and a Pearson correlation. The level of statistical significance was set at 
0.05. Reported results are rounded to two decimals.

Results and discussion

The data were not normally distributed. However, when comparing square root-
transformed data and untransformed data, the results were very similar. Therefore, the 
untransformed data and results are presented here. The repeated measures correlation 
was used to correct for the repeated measures on the same individuals and tags. However, 
the results of the Pearson and repeated measures correlation were virtually the same, so 
only the results of the Pearson correlation are reported here. A moderately strong positive 
correlation between video tracking and UWB tracking was found (Pearson correlation, r 
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= 0.71 (95%-CI: 0.64-0.77), df = 221, P < 0.001; Figure 1). This correlation indicates that the 
UWB system can provide reliable information on distances moved by broilers. However, 
it does appear that when broilers move less, the distance moved according to the UWB 
system is generally an overestimation of the distance determined by video analysis (Figure 
1). Furthermore, it appears that the UWB system underestimates the distance moved 
when broilers move more (Figure 1). This may be the result of the implemented sampling 
rate of 6.91 seconds. With each sample that is received, there can be some noise, i.e. the 
triangulation-based location of the tag may deviate slightly from the actual location. 
Consequently, if an animal moves very little, this noise can make up a relatively large 
part of the total registered distance, which could explain the overestimation by the UWB 
system. Alternatively, if an animal is very active, some of the movement of the animal 
between samples might be missed by the system. However, a previous study in which 
different sampling rates were compared for agreement between distances moved with the 
UWB system and on video indicated that the sampling rate used in the current study was 
the best fit for the current implementation (personal communication Hijink, 2018). 

Figure 1. Plot of the correlation between the distances found with the UWB system and the distances 
found in video observations using Kinovea. The grey area represents the 95% confidence interval of 
the correlation

It is currently being investigated whether the UWB system is capable of detecting 
differences in level of activity over time between individual broilers of four crosses and of 
different weights. Preliminary results indicate that the UWB system can detect decreases 
in activity over time and that birds with a lower weight at about 14 days of age are on 
average more active than heavier birds, but further analysis is required to confirm these 
findings. 

Conclusions

This paper showed the first step in investigating the potential of an UWB tracking system 
to study individual levels of activity in broilers. The main focus was on validation of the 
distances recorded by the UWB system. There was a moderately strong positive correlation 
between the recorded distances from the UWB system and from video. Although the 
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distances that are recorded with the UWB system may not fully match the distance moved 
in reality, likely due to the implemented sampling rate, the UWB system appears to be 
well-suited for studying activity differences between individual broilers when measured 
with the same system settings. Longitudinal information on activity can provide insight 
into what the activity levels of individuals can indicate about leg health, welfare and 
performance, but further research into this relationship is required.
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Abstract

In traditional farming systems, management methods relied on observing and intuitive 
decision-making by the farmer. This is increasingly difficult as animal numbers have 
increased and farmer’s available time has decreased. But animal localization and 
monitoring systems are being developed that can support or replace direct visual 
observations. One such system is the SMARTBOW (Weibern, Austria) ear tag incorporating 
a 3-axis accelerometer and battery, with the claimed advantage of compactness and long 
battery life. The ear tag measures cow head and ear movement during, e.g. grazing. This 
monitoring and measuring system can capture an activity budget for the individual cow 
over the 24 h day. This ear tag has been implemented on commercial farms where cows 
are housed indoors, but research is required for its deployment on animals in pasture-
based systems. Such work is on-going in Ireland and Minnesota, USA. The system was 
installed at Teagasc Moorepark in March 2017. Behavioural data of cows (grazing times) 
were collected by visual observation, as the reference method, and by deployment of the 
SMARTBOW ear tag. Specific algorithms were developed for cow behaviour measurement 
within a pasture-based system. Subsequently, a study was conducted to evaluate the 
SMARTBOW ear tag, including the newly developed algorithms, using RumiWatch as the 
reference standard. The SMARTBOW and RumiWatch systems recorded grazing times 
for 778 h at the Teagasc Moorepark location. Agreement between the SMARTBOW and 
RumiWatch for grazing behaviour was strong, with a Pearson correlation of 0.91 and a 
Spearman rank correlation of 0.84. 

Keywords: accelerometer, ear tag, validation, grazing

Introduction

New technologies are rapidly becoming available which can allow measurement 
and exploitation of biological variation to improve resource efficiency. Some of these 
technologies can be applied to improve efficiencies in pasture-based systems. However, 
the market potential for technology in pasture-based systems is relatively small and time 
is required to stimulate innovation in technology to capture and exploit the variation in 
pasture production and utilization. Because grazing is arguably the cheapest source of 
ruminant livestock feed, it is furthermore perceived by consumers as being natural and 
welfare friendly. The field of Precision Livestock Farming has already had a big impact in 
intensive dairy production, and the approach has the potential to bring tools to grazing 
management that will improve production efficiency as well as animal health and welfare.

With increasing scale on farms, and declining available labour, there is a requirement for 
technologies that assist farmers in their day-to-day management. Animal management 
involves ensuring the health and welfare of the animals; reacting to certain events in the 
animal reproductive cycle and improving efficiency in feed provision for conversion into an 
animal product, such as milk or meat. Especially in a pasture-based system, the balance 
between the feed offered and the herd demand needs to be optimised to maximise grass 
utilisation while simultaneously ensuring that animals are well fed. Shortage in labour 
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and time to observe animals makes it difficult for farmers to monitor all animals intensely. 
Automated monitoring for quantifying physiological and behavioural parameters, 
e.g. oestrus, somatic cell count and feeding behaviour, can give an insight into overall 
health status, important animal events as well as helping with feeding management. For 
continuous monitoring of these physiological and behavioural parameters, sensor-based 
easy-to-use tools need to be developed.

One of the best indicators of health and welfare of dairy cows is feeding behaviour. A study 
by Bareille et al. (2003) showed that feed intake was influenced by a number of different 
diseases such as milk fever, ketosis or hoof lesions. There is a benefit to detect emerging 
diseases earlier by monitoring the feeding behaviour of dairy cows automatically. Feeding 
behaviour can also be used to optimise grassland management decisions with a focus on 
increasing animal intake and reducing grass residuals. It is of key importance to measure, 
manage and allocate accurately the feed available and offered to the cows, in order to 
optimise farm efficiency and profitability. The estimation of feed intake based on behavioural 
parameters, such as feeding time or bite frequency, provides valuable information that 
can be used to manage cows. One approach previously used to determine feed intake was 
the IGER animal recording system (Mezzalira et al., 2014). This consisted of a noseband 
sensor that measured jaw movement by electrical resistance (Rutter et al., 1997). It could 
identify and measure grazing and rumination. However, the maximum recording period 
of this system was 24 hours, and the analysis of the data via the “Graze software” was very 
laborious (Rutter, 2000). Furthermore, the distribution and commercial support for this 
technology has ceased in recent years. But a new technology, the RumiWatch System may 
have the potential to improve data capture and replace the IGER animal recording system. 
However, this is an expensive system that may be more suitable for research rather than 
for everyday use on-farm. An ear tag accelerometer system (SMARTBOW GmbH, Weibern, 
Austria) is being developed for grazing behaviour. This ear tag is easy to attach and is not 
expensive. The objectives of this study were to develop a grazing algorithm for an ear tag 
and to validate the ear tag for grazing behaviour.

Materials and methods

This study was conducted at the Teagasc, Animal & Grassland Research and Innovation 
Centre in Moorepark, Fermoy, Co. Cork, Ireland and also with the grazing dairy cow herd 
at the University of Minnesota, USA. While the Irish part of the study is reported here, the 
similarly designed US part of the study is reported at the 2019 ADSA conference. 

Ear tag description

The SMARTBOW ear tag can monitor estrus and rumination using acceleration data 
captured from the ear and head movements. The hypothesis is that the ear tag can also 
classify data into grazing and non-grazing behaviours. 

Development of a grazing algorithm for the SMARTBOW ear tag 

During May and June of 2017, ear tags were attached to grazing cows and three observers 
visually recorded behaviours for a total of 150 hours. The observational data from Ireland 
and additional data from Minnesota were used to create a master dataset. Two-thirds 
of the data were used for training the data and developing a grazing algorithm and the 
remainder were used for testing the ear tags’ grazing algorithm. 

To validate the developed SMARTBOW ear tag grazing algorithm, a halter with an integrated 
noseband pressure sensor (RumiWatch, Itin and Hoch GmbH, Liestal, Switzerland) was 
used. 
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RumiWatch halter and noseband

The RumiWatch comprised of a 3-axis accelerometer which recorded acceleration patterns 
and a noseband pressure sensor which detected jaw movements according to chewing 
activities. A study by Werner et al. (2018) showed that the RumiWatch halter and noseband 
can accurately record the grazing behaviour of a dairy cow with 92% accuracy.

Validation of grazing behaviour 

During September of 2018, cow behaviour data were collected by the SMARTBOW ear tag 
and RumiWatch halter system from 15 Holstein Friesian cows in Ireland. The SMARTBOW 
ear tag and RumiWatch halter data were compared for number of grazing minutes per 
hour. 

Experimental management 

Cows were selected according to similarity in breed, lactation number and days in milk 
(DIM). These were Holstein Friesian multiparous cows (3, 4, 5 lactations) with an average 
DIM of 206 at the start of the study. Cows were milked twice daily and average daily milk 
yield per cow was 25.4 kg. Cows were milked in a Lely Astronaut A4 milking robot and 
received 3 kg/day of concentrates, during the milking process. 

The grass offered to cows was of the ryegrass (Lolium perenne) variety. It had an average dry 
matter of 19%. Grass height was measured using a Grasshopper rising plate meter (True 
North Technologies). Average pre-entry and post exit (of cows) grass heights were 10 cm 
and 4 cm, respectively. Paddocks into which cow entered for grazing had average herbage 
mass of 1,330 kg DM ha-1. A 4-way grazing system was operated, where cows were allocated 
a new grazing area every 6 h. This was put in place to assist cow-flow to the milking unit, 
as cows had to pass through the robot in order to gain access to the new pasture on each 
occasion. Thus, cows had the opportunity to be milked when passing through the robot 
yard and milking frequency could be maintained at twice per day. 

All 15 cows were fitted with a SMARTBOW ear tag and a RumiWatch halter, including the 
noseband pressure sensor, for eight days, starting on 18 September and remained on the 
cows until 26 September. An adjustment period of 24 h was allowed before experimental 
data collection. Cows were monitored closely during this period to ensure that cows had 
adapted to the ear tag and halter before proper data collection. Cows were also monitored 
closely over the duration of the data collection period to ensure that the halter and 
noseband, in particular, were not having any adverse effects on the cows. Complete sets of 
data were obtained from 9 of the 15 cows. Extra cows had been used on the trial to allow 
for equipment issues for the cows or gaps in data capture. Mean air temperature was 
12.4 ºC and a total of 25 mm of rain/precipitation was recorded over the eight day period.

Data analysis

The data were downloaded from the ear tag and halter to a tablet. All RumiWatch data 
were converted using the RumiWatch converter 7.4.13, into 1 h summaries. The converted 
data were then analysed. A random number generator was used to select three different 
time periods from the overall dataset of 778 h, for which data would be analysed. The time 
periods selected were 150 h, 248 h and 778 h. A 2-sided paired t-test was used to compare 
the percentage of time for grazing behaviours recorded by the SMARTBOW ear tag and 
RumiWatch halter. Pearson correlations and Spearman rank correlations evaluated 
associations between the SMARTBOW ear tag and RumiWatch halter for grazing behaviour. 
Grazing behaviour recorded by both systems was profiled over a 24 h period. Pearson and 
Spearman rank correlations were again calculated for the more intense grazing periods.
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Results and discussion

Percentage of time (±SD) and 95% confidence intervals for grazing or no grazing during 
the overall time period recorded of 778 h, as captured by SMARTBOW and RumiWatch are 
shown in Table 1. The proportion of time spent grazing, as recorded by the SMARTBOW 
ear tag and RumiWatch halter was 34.8% (CI 32.1–37.5) and 35.6% (CI 32.9–38.3) during the 
778 h recording period. Between SMARTBOW and RumiWatch the Pearson correlation for 
grazing was 0.91 (CI 0.90–0.92; P < 0.01) and the Spearman rank correlation was 0.84 (CI 
0.82–0.86; P < 0.01) for the same time period of 778 h (Table 2). 

Table 1. Percentage of time (±SD) and 95% confidence intervals for grazing or no grazing during 
different time periods recorded, as captured by SMARTBOW and RumiWatch

Recording 
period Behaviour SMARTBOW 95% CI

Rumi

Watch
95% CI Mean Difference P-value 

for t-test

778 h

Grazing 34.8 ± 38.6
32.1–
37.5

35.6 ± 
38.7

32.9–
38.3

-0.8 ± 16.2 0.16

No grazing 65.2 ± 38.6
62.5–
67.9

64.4 ± 
38.7

61.7–
67.1

0.8 ± 16.2 0.16

Table 2. Pearson correlation and Spearman rank coefficients for SMARTBOW and RumiWatch over 
recording periods of 150 h, 248 h and 778 h

Recording period Pearson correlation 
and 95% CI Spearman rank and 95% CI P-value

778 h 0.91 (0.90–0.92) 0.84 (CI 0.82–0.86) 0.01

The mean difference in percentage of time recorded as grazing by SMARTBOW and 
RumiWatch were very similar (P = 0.75, 0.25. 0.16). The standard deviation although large, 
is derived from the data being skewed as can be seen by the percentage of time spent not 
grazing at 65% (Table 1). The 150 h and 248 h datasets were also analysed but no notable 
differences were found either between 150 h, 248 h and 778 h.

A profile of daily cow grazing was established by calculating the average minutes spent 
grazing during each hour of the day. This data is shown in Figure 1. This may be used to 
identify times of more and less intense grazing over the full day. Figure 1 shows that there 
are very few hours (approximately 4-5 h) when cows grazed for more than 31 minutes 
h-1 (> 50% of each hour). However, cows graze on average up to 8 h of their day (Kilgour, 
2012), and spend the remainder of the day at behaviours other than grazing. In order to 
investigate similar grazing intensities, a criteria of > 26 min h-1 was applied, i.e. the hours 
when cows spent > 26 min h-1 grazing were identified (Table 3).
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Figure 1. Profile of hourly grazing time during the day as measured by RumiWatch (—) and SMARTBOW 
(----), on the 778 h dataset

As observed in Figure 1, the times of most and least grazing intensities coincide for both 
the RumiWatch and SMARTBOW measurements. The hours with > 26 min grazing were 
selected and the RumiWatch and SMARTBOW were in agreement on these hours. The 
grazing pattern of the herd did show some variation. This may have been due to the fact 
that cows were being rotated every six hours to a new paddock and had different milking 
schedules. This inconsistency could have caused lower agreement than expected because 
the average min h-1 as displayed in Figure 1 were averaged over the eight days when data 
were collected. This average may not exactly reflect the everyday patterns. Typically, cows 
would come up to the parlor and return to pasture and start grazing for 1 - 2 hours after 
milking. 

When the eight hours of maximum grazing observed were selected in each dataset, the 
grazing times as measured by RumiWatch and SMARTBOW were correlated and shown in 
Table 3. Measurement of grazing behaviour can sometimes be difficult, as the behaviour 
of grazing may be considered as both active and eating behaviours because cows may 
graze while standing or while walking. However, very strong agreement between grazing 
measurements with RumiWatch and SMARTBOW were observed in this study.

Table 3. Correlations of hours spent grazing during the day

Recording 
period Time of day, hours Pearson correlation 

and 95% CI
Spearman rank 

and 95% CI P-value

778 h
7, 10, 11, 13, 14, 15, 

16, 20
0.86 (0.82–0.89) 0.82 (0.78–0.86) 0.01

Conclusions

Both the RumiWatch halter system and the SMARTBOW ear tag were in agreement for 
monitoring grazing. Thus, the SMARTBOW ear tag can accurately monitor grazing behaviour 
in a pasture-based system. Although this algorithm is not commercially available yet, 
there is potential for the ear tag to be utilised in pasture-based dairy production systems 
to support farm management decision making.
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Mark Bristow, Northern Ireland
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Every four seconds, the SMARTBOW® ear tag system updates data 
on each cow in your herd, detecting heat, rumination changes 
and location. Then artificial intelligence analyzes the data and 
alerts your device to any insights, and you take action. Welcome  
to real-time dairy farming. SMARTBOW.COM
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DAFM Herbage Evaluation Programmes and Outcomes 

 Each year the Department of Agriculture, Food & the Marine 
(DAFM) evaluates a large number of grass and white clover 
varieties to determine their value for cultivation and use (VCU) for 
Irish conditions. 

 These varieties are trialled at five different centres around the 
country and are evaluated for National List and Recommended List 
purposes. 

 
 There are a minimum of two sowing years and two harvest years for 

grass and white clover varieties. 

 A General Purpose (silage protocol) and a Simulated Grazing trial 
protocol is used for evaluating Intermediate and Late Perennial 
Ryegrass (PRG) varieties. 

 Varieties are evaluated for dry matter yield (both grazing and 
silage), quality and ground cover. 

 Varieties are also evaluated in heading date trials to determine their 
maturity. 

 Intermediate and Late Perennial Ryegrass trial data is analysed 
using the Teagasc Pasture Profit Index (PPI) model, which assigns 
an economic value to varieties based on seasonal dry matter yield, 
silage dry matter yield, quality and persistency. 

 DAFM publishes its Recommended List of Grass and White Clover 
Varieties for Ireland annually. 

 

 
 

 

www.agriculture.gov.ie 
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